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Abstract: In this paper, we introduce the notions ofV,A]-summability andA —statistical convergence of function by taking
a nonnegative real-valued Lebesque measurable functidheirinterval (1,00) and introduce new notions, namely/,A](.#)—
summability, and¥), —statistical convergence of function. We mainly examinertiation between these two new methods.
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1 Introduction We write st — limx, = L in casex = (x¢) is st—
statistically convergent th, (see, Fridy 8]).
The idea of convergence of a real sequence had been
extended to statistical convergence by Fa¥t $ee, also The concept of.#—convergence was introduced by
Schoenberg 7). Over the years and under different Kostyrko et al. in a metric space, (s&3)[ Later on it was
names statistical convergence has been discussed in ttierther studied by Dems], Das, Savas and Ghosal(],
theory of Fourier analysis, ergodic theory and numberSavas (11], [17], [13], [14], [15], [16], [17] and [1§]) and
theory. Later on it was further investigated from the many others.” —convergence is a generalization form of
sequence space point of view and linked with statistical convergence and that is based on the notion of
summability theory by Fridy3], Connor B], Connor and  an ideal of the subset of positive integeks More
Savas §], Salat p], Cakalli [7] and many others. In the applications of ideals can be found b9 and [20].
recent years, generalization of statistical convergence In another direction, the idea ofA —statistical
have appeared in the study of strong integral summabilityconvergence was introduced and studied by Mursaleen
and the structure of ideals of bounded continuous[21].

functions on Ston€&ech compactification of the natural In this note we use ideals to introduce the concept of
numbers. Moreover statistical convergence is closely.#, — statistical convergence of nonnegative real-valued
related to the concept of convergence in probability. Lebesque measurable function in the inter{fako) and
The notion of statistical convergence depends on thenvestigate some of its convergence.

density of subsets dfl. A subsetE of N is said to have Throughout by functionx(t) we shall mean a
densityd (E) if nonnegative real-valued Lebesque measurable function in

L0 the interval(1,) andN will stand for the set of natural

: : numbers.
O(E)= Alnm ; k;xg (k) exists

Note that ifK C N is finite set, thed(K) = 0, and for any

setk € N,6(K®) =1 6(K).

A sequencex = (Xi) is said to bestatistically convergent

toL if for everye >0 The following definitions and notions will be needed in
the sequel.

2 Main Results

O({keN:|x—L|>¢€})=0.
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Definition 1.A family .# ¢ 2V is said to be an ideal o
if the following conditions hold:

(@) ABelimplies AuB€ .7,

(b) Ae .7, BC Aimplies Be .7,

Definition 2.A non-empty family k= 2 is said to be a
filter of N if the following conditions hold:

(@e¢F,

(b) AB € F implies AAB € F,

(c) Ae F, ACc Bimplies BE F,

If . is a properideal oN (i.e.,N ¢ .# ), then the family
of setsF(/)={MCN: FAc #:M=N\A}is a
filter of N. It is called the filter associated with the ideal.

Definition 3.A proper ideal.# is said to be admissible if
{n} € .# for each ne N.

Throughout.# will stand for a proper admissible
ideal ofN.

Definition 4.(See B]). Let .# c 2V be a proper
admissible ideal irN.

(i) The sequencéx,) of elements oR is said to be
#-convergent to Le R if for each € > 0 the set
Ale)={neN:|xp—L|>¢} e 7.

(i) The sequencéx,) of elements oR is said to be
J*-convergent to Le R if there exists Me F(.#) such
that {X,}nem converges to L

For . = Ztin = {AC N: Ais a finite subse}, .7 —
statistical convergence coincides with statistical
convergence.

Definition 6.A sequence »x= (X) is said to be
7, —statistically convergent to L or,3.#)- convergent
to L if foranye >0andd >0

1
{neN:)\—|{ke|n:|xk—L|2£}|25}ef.
n

In this case we write x— L(S,(.#)). The class of all
7, —statistically convergent sequences will be denoted by
S (A).

We now introduce our main definition.

Definition 7.Let A € A and x(t) be a nonnegative real-
valued Lebesque measurable function in the inteftab)

if
| L d
I—im—/ X(t) — L|dt = 0.
n—o Ap nf)\n+l| () |

Then we say that the functior(t) is [V,A](.%)—
summable toL. If ¥ = Fn = {ACN:Ais a finite
subset }, [V,A](.#)— summability becomes[V,A]
summability, which is defined as follows :

1)

g
n||3rloA—n/Mn+l|x(t)—|_|o|t:o,(see, p7). (2

Definition 8.A nonnegative real-valued Lebesque
measurable function (t) is said to be.#, —statistically

LetA = (An) be a non-decreasing sequence of POSitiVeconvergent or §(.#)- convergent to L, if for everg > 0

numbers tending tee such that
)\n+l S )\n+17)\l: 1

The collection of such sequengewill be denoted byA.

andd > 0,

neN:%Hteln:|x(t)—L|>£}|>6}eﬂ.
n

The generalized de la Valée-Pousin mean is defined by

wherel, = [n—Ay+1,n].

A sequencex = (X) is said to beV,A) —summable
to a number if t,(x) — L asn — . If Ay =n, then
(V,A) — summability reduces t(C, 1) summability.

In [15], Savas and Das defineds- statistical
convergence and’, - statistical convergence as follows:

Definition 5.A sequence »x= (X) is said to be
& —statistically convergent to L, if for every > 0, and
0 >0,

{neN:%|{k<n:|xk—L|>s}|>5}ef.

In this case we write S.#) — limx(t) = L or
X(t) = L (S\(#)). We also write.# — limx(t) = L. For
J = Jin, S (F)-convergence again coincides with
A —statistical convergencezp.

We shall denote bys(.#),S, (.#) and[V,A](.#) the
collections of all .7-statistically convergent,
S)(#)-convergent andV,A](.#) -convergent functions
respectively.

Theorem 1Let A = (Ap) € A and x(t) be a nonnegative
real-valued Lebesque measurable function in the interval
(1,0). Then

(i) x(t) = LIV,A](#) = x(t) — L(S, (-#)) and the
inclusion|V,A](#) C S, () is proper for every ideal? .

(i) If x (t) is bounded andx— L (S, (-#)) then Xt) —
L V,A|(#).
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Proof(i) Let € > 0 andx(t) — L[V,A](-#). We have
X(t)—L|>el{tely:| x(t)—L|>&}.

teln&|x(t)-L|>€

So for a giverd > 0,

1 1
—{telh:|xt)-L|>€}|>d=— [x(t)—L|>e€d
n A tely

e {neN:A—1n|{teln:|x(t)—L|2£}|26}

c{ne '/\i{ﬂx() L >ep>ed

Sincex(t) — L[V,A](.#), so the set on the right hand
side belongs toZ and so it follows thax(t) — L (S, (.¥)).
This proves the result.

To show that, (#) ¢ [V,A](#
Define a functiorx by

t forn—[yAn]+1<t<nn¢A
x(t):{t forn—An+1<t<nneA
0 otherwise.

), take afixedA € .7.

Then for everye > 0(0 < € < 1) since

VA
A

n

1
—|H{tely:|x(t)—0|>¢}| = —0
n
asn— oo andn ¢ A, so for everyd > 0,
{ne N:E[{teln:[xt)—L|> e} > 5} CAU{L,2,...m}

for somem e N. Since.# is admissible so it follows that

X(t) = 0 (S, (#)). Obviously
1
— [ |x(t) — L]dt — co (N — o)

i.ex(t) » 0V,A](#). Note that ifA € .7 is infinite then
X(t) - 0(Sy). This example also shows tha¥),—
statistical convergence is more general thastatistical
convergence. This completed the proof of (i)

(i Suppose thak(t) — L (S, (.#)) andx(t) is bounded
by M. Lete > 0 be given. Now

1 1
— X L|dt = / X(t) —L|dt
An /| ®) -4 An eln&\x(t)fL\zJ 1) -L]

1
+ - X(t) — L|dt
An /teln&\x(t)fLKe' ( ) |

< /\M{teln:|x(t)—L|2£}+£.
n

Hence
1
{ne N:—§ [x(t)—L|> 28} C Ag)

and so belongs to?. This shows thak(t) — L[V,A](.#)
and this completed the proof of (ii).

Theorem 2(i) S(.#) C S, (#) if Iinmjgf% > 0.
(i) If IinmJnfLr? =0, .#-strongly (by which we mean

that 3 a subsequencen(j))iL,, for WhICh ) < 3 VJ
and{n(j):jeN} ¢ .7)thenS7) & S, (S
Proof(i) For givene > 0,
%|{t§n:\x(t)—L\ >} > }|{teln:\x(t)—L\ > e}
A
> ;”f\{teln IX(t) —L| = e}l

If liminf 40 = a then from definition{n EN:dn < %}is
n—oo
finite. Ford > 0,

{neN:)\—lnHteln:|x(t)—L|2£}|26}

C {neN::—L|{te|n:|x(t)—L|>e}|>25}U

An A
{neN —<2}

Since .# is admissible, the set on the right hand side
belongs to# and this completed the proof of (i).
(i) Define a functionx(t) by

( liftely,j=
0 otherW|se

X(t) =

Thenx(t) is statistically convergent and s@t) € S(.#)
(Since.7 is admissible). Buk(t) ¢ [V,A](.#) and so by
Theorem 2.1 (iix(t) ¢ S, (.#) . This completes the proof.
Theorem 3If A € A be such that IimA—r;1 =1, then
S\(F) CS).

ProofLet d > 0 be given. Sincémn’\—r;‘ =1, we can choose

me N such thatdn — 1| < §_ for all n > m. Now observe
that, fore > 0

CHt<nix) Lz e} = St <n-An: 0 ~L| > g}

+ %|{t €ln:|xt)—L| > &}

Note that{neN:A—ln|{te In:|x(t)—L|>¢€} > ﬁ} — < n—n)\n+%\{te|n:\x(t)—u > e}
A(e)(sayE 7. If ne (A(g))  then 5 1
L S1-(1=5)+ Hteln:|xt) -L| =&}
— X(t) —L| < 2e. o 1
A WY = O e i Lz e,
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