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1 Introduction

Let H be a real Hilbert space, whose inner product
and norm are denoted by〈·, ·〉 and‖ ·‖, respectively. LetK
be a closed convex set inH andT : H → H be a nonlinear
operator. Letϕ(., .) : H×H −→R∪{+∞} be a continuous
bifunction. We consider the problem of findingu∈ H such
that
〈Tu,v− u〉+ϕ(v,u)−ϕ(u,u)≥ 0, ∀v ∈ H. (1)
Problem (1) is called the mixed quasi variational
inequality. Such type of mixed quasi variational
inequalities arise in the study of elasticity with non-local
friction laws, fluid flow through porous media and
structural analysis. For the finite element analysis,
existence results and applications, see [19,21].
If the bifunction ϕ(., .) is a proper, convex and lower
semicontinuous function with respect to the first
argument, then problem (1) is equivalent to findingu ∈ H
such that
0∈ Tu+ ∂ϕ(u,u), (2)
which is known as finding the zero of the sum of monotone
operators.

For ϕ(v,u) = ϕ(v),∀u ∈ H, problem (1) reduces to
findingu ∈ H such that
〈Tu,v− u〉+ϕ(v)−ϕ(u)≥ 0, ∀v ∈ H, (3)

which is called the mixed variational inequality or
variational inequality of the second kind, see [1,13,14,15,
17,18,19,21].

If ϕ(., .) = ϕ(.) is an indicator function of a closed
convex setK in H, then problem (1) is equivalent to finding
u ∈ K such that

〈Tu,v− u〉 ≥ 0, ∀v ∈ K, (4)

which is known as the classical variational inequality
introduced and studied by Stampacchia [26] in 1964.
Due to the presence of the nonlinear bifunction, the
projection method and its variant forms including the
Wiener-Hopf equations technique can not be extended to
suggest iterative methods for solving mixed quasi
variational inequalities (1). To overcome these
drawbacks, some iterative methods have been suggested
for special cases of the mixed quasi variational
inequalities. For example, if the bifunction is proper,
convex and lower semicontinuous function with respect to
the first argument, then one can show that the mixed quasi
variational inequalities are equivalent to the fixed-point
problems and the implicit resolvent equations using the
resolvent operator technique. This equivalent formulation
has been used to suggest and analyze some iterative
methods. Several modified resolvent methods have been
suggested and developed for solving mixed variational
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inequalities. For recent development of the subject, we
refer to [[2]-[11], [19]-[25]].

Inspired by the above cited works, we propose a
descent resolvent method for solving mixed quasi
variational inequality, the new iterate is obtained along a
new descent direction. The new direction is obtained by
combining two descent directions. Global convergence of
the proposed method is proved under certain assumptions.
To illustrate the proposed method and demonstrate its
efficiency, some applications and their numerical results
are also provided. Our results can be viewed as significant
extensions of the previously known results.

2 Preliminaries

In this section, we recall some basic definitions and
results, which will be frequently used in our later analysis.

Definition 2.1. The mappingT : Ω ⊂ H → H is said to be
(a) monotone over a setΩ if

〈T (x)−T (y),x− y〉 ≥ 0, ∀x,y ∈ Ω ; (5)

(b) strongly monotone overΩ if there exists anα > 0
such that

〈T (x)−T (y),x− y〉 ≥ α‖x− y‖2, ∀x,y ∈ Ω ; (6)

(c) co-coercive overΩ if there exists ac > 0 such that

〈T (x)−T (y),x−y〉≥ c‖T (x)−T (y)‖2, ∀x,y ∈ Ω ;(7)

(d) Lipschitz continuous overΩ if there exists anL > 0
such that

‖T (x)−T (y)‖ ≤ ‖x− y‖2, ∀x,y ∈ Ω . (8)

It is clear from Definition 2.1 that co-coercive
mappings are monotone but not necessarily strongly
monotone. Conversely, strongly monotone and Lipschitz
continuous mapping are co-coercive. This shows that
co-coercivity is a weaker condition than strongly
monotonicity.

Definition 2.2. The bifunctionϕ(., .) is said to beskew-
symmetric, if,

ϕ(u,u)−ϕ(u,v)−ϕ(v,u)+ϕ(v,v)≥ 0, ∀u,v ∈ H. (9)

Clearly, if the bifunctionϕ(., .) is linear in both arguments,
then,

ϕ(u,u)−ϕ(u,v)−ϕ(v,u)+ϕ(v,v) = ϕ(u− v,u− v)

≥ 0, ∀u,v ∈ H,

which shows that the bifunctionϕ(., .) is nonnegative.

Definition 2.3.[12] Let A be a maximal monotone
operator, then the resolvent operator associated withA is
defined as

JA(u) = (I+ρA)−1(u), ∀u ∈ H,

whereρ > 0 is a constant andI is the identity operator.

Remark 2.1. It is well known that the subdifferential
∂ϕ(., .) of a convex, proper and lower-semicontinuous
function ϕ(., .) : H × H −→ R ∪ {+∞} is a maximal
monotone with respect to the first argument, we can
define its resolvent by

Jϕ(u) = (I+ρ∂ϕ(.,u))−1) = (I+ρ∂ϕ(u))−1, (10)

where∂ϕ(u) = ∂ϕ(.,u), unless otherwise specified.
The resolvent operatorJϕ(u)defined by (10) has the

following characterization,

Lemma 2.1.[23] For a givenu ∈ H, z ∈ H satisfies the
inequality

〈u− z,v− u〉+ρϕ(v,u)−ρϕ(u,u)≥ 0, ∀v ∈ H, (11)

if and only if

u = Jϕ(u)[z],

whereJϕ(u) is resolvent operator defined by (10).
It follows from Lemma 2.1 that

〈Jϕ(u)[z]−z,v−Jϕ(u)[z]〉+ρϕ(v,Jϕ(u)[z])−ρϕ(Jϕ(u)[z],Jϕ(u) [z])≥0, ∀u,v,z∈H(12)

]

The following result can be proved by using Lemma
2.1.

Lemma 2.2. u∗ is solution of problem (1) if and only if
u∗ ∈ H satisfies the relation:

u∗ = Jϕ(u∗)[u
∗−ρT(u∗)], (13)

] whereρ > 0.
From Lemma 2.2, it is clear thatu is solution of (1) if

and only ifu is a zero point of the function

r(u,ρ) := u− Jϕ(u)[u−ρT(u)].

The following lemma shows that‖r(u,ρ)‖ is a

non-decreasing function, while
‖r(u,ρ)‖

ρ
is a

non-increasing one with respect toρ .

Lemma 2.3.[5] For all u ∈ H andρ ′ ≥ ρ > 0, it holds that

‖r(u,ρ ′)‖ ≥ ‖r(u,ρ)‖ (14)

] and

‖r(u,ρ ′)‖
ρ ′ ≤ ‖r(u,ρ)‖

ρ
. (15)

]
Throughout this paper, we make following

assumptions.

Assumptions:

–H is a finite dimension space.
–T is continuous and co-coercive with modulusc > 0
on H.

–The bifunctionϕ(., .) is skew-symmetric.
–The solution set of problem (1) denoted byS∗ is
nonempty.
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3 The proposed method and some properties

In this section, we suggest and analyze the new descent
resolvent method for solving mixed quasi variational
inequality (1). To describe our method, we needρk
satisfies

0< ρl ≤
∞

inf
k=0

ρk ≤
∞

sup
k=0

ρk ≤ ρu < 4c.

Algorithm 3.1

Step 0. Givenε > 0,γ ∈ [1,2),µ ∈ (0,1),σ ∈ (0,1),δ ∈
(0,1),δ0 ∈ (0,1) andu0 ∈ H, set

k = 0.
Step 1. Setρk = ρ . If ‖r(uk,ρ)‖< ε, then stop; otherwise,
find the smallest no-negative

integermk, such thatρk = ρµmk satisfying

‖ρk(T (u
k)−T(wk))‖ ≤ δ‖r(uk,ρk)‖, (16)

] where

wk = Jϕ(uk)[u
k −ρkT (uk)].

Step 2. For eachu∗ ∈ S∗, choose a directiondk satisfying
the following inequality

〈dk,u
k −u∗〉 ≥ ||r(uk,ρk)||2−ρk〈r(uk,ρk),T (u

k)−T (wk)〉.(17)

] Compute

Dk = (1−σ)r(uk,ρk)+σdk. (18)

] Step 3. Get the next iterate

uk+1 = uk − γαkDk

where

αk = β
||r(uk,ρk)||2

||Dk||2

and

β = (1−σ)(1− ρk

4c
)+σ(1− δ ).

Step 4. If

‖ρk(T (u
k)−T(wk))‖ ≤ δ0‖r(uk,ρk)‖,

then setρ = ρk
µ , else setρ = ρk. Setk := k+1,

and go to Step 1.

If ϕ(v,u) = ϕ(v),∀u ∈ H, and ϕ is an indicator
function of a closed convex setK in H, thenJϕ ≡ PK [20],
the projection ofH onto K. Consequently Algorithm 3.1
reduces to Algorithm 3.2 for solving variational
inequalities (4).

Algorithm 3.2
Step 0. Givenε > 0,γ ∈ [1,2),µ ∈ (0,1),σ ∈ (0,1),δ ∈
(0,1),δ0 ∈ (0,1) andu0 ∈ K, set

k = 0.
Step 1. Setρk = ρ . If ‖r(uk,ρ)‖< ε, then stop; otherwise,
find the smallest no-negative

integermk, such thatρk = ρµmk satisfying

‖ρk(T (u
k)−T (wk))‖ ≤ δ‖r(uk,ρk)‖,

where

wk = PK [u
k −ρkT (uk)].

Step 2. For eachu∗ ∈ S∗, choose a directiondk satisfying
the following inequality

〈dk,u
k−u∗〉≥ ||r(uk,ρk)||2−ρk〈r(uk,ρk),T (u

k)−T (wk)〉.

Compute

Dk = (1−σ)r(uk,ρk)+σdk.

Step 3. Get the next iterate

uk+1 = uk − γαkDk.

where

αk = β
||r(uk,ρk)||2

||Dk||2

and

β = (1−σ)(1− ρk

4c
)+σ(1− δ ).

Step 4. If

‖ρk(T (u
k)−T(wk))‖ ≤ δ0‖r(uk,ρk)‖,

then setρ = ρk
µ , else setρ = ρk. Setk := k+1,

and go to Step 1.

Lemma 3.1. Let u∗ ∈ S∗ and∀uk ∈ H, we have

〈r(uk,ρk),u
k − u∗〉 ≥ (1− ρk

4c
)||r(uk,ρk)||2. (19)

Proof: Substitutingz = uk−ρkT (uk) andv = u∗ into (12),
and using the definition ofr(uk,ρk), we get

〈r(uk,ρk)−ρkT (uk),wk−u∗〉+ρkϕ(u∗,wk)−ρkϕ(wk,wk)≥ 0.(20)

] From (1) we have

〈ρkT (u∗),wk − u∗〉+ρkϕ(wk,u∗)−ρkϕ(u∗,u∗)≥ 0. (21)

] Adding (20) and (21), and using the skew-symmetry of
the bifunctionϕ(., .), we have

〈r(uk,ρk)−ρk[T (u
k)−T (u∗)],wk − u∗〉 ≥ 0

which can be rewritten as

〈r(uk,ρk)−ρk[T (u
k)−T (u∗)],uk − u∗− r(uk,ρk)〉 ≥ 0.
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Using the co-coercivity ofT, we get

〈uk −u∗,r(uk,ρk)〉 ≥ ‖r(uk,ρk)‖2−ρk〈T (uk)−T (u∗),

r(uk,ρk)〉+ρk〈T (uk)−T (u∗),uk −u∗〉
≥ ‖r(uk,ρk)‖2−ρk〈T (uk)−T (u∗),

r(uk,ρk)〉+ρkc‖T (uk)−T (u∗)‖2

= ‖r(uk,ρk)‖2+‖√ρkc(T (uk)−

T (u∗))− 1
2

√

ρk

c
r(uk,ρk)‖2

−ρk

4c
||r(uk,ρk)||2

≥ (1− ρk

4c
)||r(uk,ρk)||2.

Hence, (19) holds and the proof is completed. ⊓⊔
Lemma 3.2. Let u∗ ∈ S∗ and∀uk ∈ H, then we have

〈Dk,u
k − u∗〉 ≥ β ||r(uk,ρk)||2. (22)

Proof: Using the definition ofDk, Lemma 3.1, (16) and
(17). For any solutionu∗ ∈ S∗, we have

〈Dk,u
k −u∗〉 = 〈(1−σ)r(uk ,ρk)+σdk,u

k −u∗〉
= (1−σ)〈r(uk ,ρk),u

k −u∗〉+σ〈dk ,u
k −u∗〉

≥ (1−σ)(1− ρk

4c
)‖r(uk,ρk)‖2+σ‖r(uk,ρk)‖2

−σ〈r(uk,ρk),T (u
k)−T (wk)〉

≥ (1−σ)(1− ρk

4c
)‖r(uk,ρk)‖2+σ‖r(uk,ρk)‖2

−δσ‖r(uk,ρk)‖2

= [(1−σ)(1− ρk

4c
)+σ(1−δ )]||r(uk ,ρk)||2.

Using the definition ofβ , we get the assertion of this
lemma. ⊓⊔

Remark 3.1.
-Lemma 3.2 shows that−Dk is a descent direction atxk for
the merit function1

2||x− x∗||2.
-At iteration k, the two directions

d1
k = r(uk,ρk)+ρkT (wk)

and
d2

k = r(uk,ρk)+ρk[T (w
k)−T (uk)]

satisfied (17). For the proof, see Lemma 3.3 in [3] for d1
k

and Lemma 3.2 in [22] for d2
k .

4 Convergence analysis

In this section, we prove the global convergence of
the proposed method. The following theorem plays a
crucial role in the convergence of the proposed method.

Theorem 4.1 Let u∗ ∈ S∗ and uk+1 be the sequence
obtained from algorithm 3.1. Thenuk is bounded and

||uk+1− u∗||2 ≤ ||uk − u∗||2− γ(2− γ)β 2 ||r(uk,ρk)||4
||Dk||2

.

(23)

Proof: Let u∗ ∈ H be a solution of problem (1), then

||uk+1−u∗||2 = ||uk −u∗−αkγDk||2

= ||uk −u∗||2+α2
k γ2||Dk||2−2αkγ〈uk −u∗,Dk〉

≤ ||uk −u∗||2+α2
k γ2||Dk||2−2αkγβ ||r(uk,ρk)||2

= ||uk −u∗||2− γ(2− γ)βαk||r(uk,ρk)||2.
Then

||uk+1− u∗||2 ≤ ||uk − u∗||2− γ(2− γ)β 2 ||r(uk,ρk)||4
||Dk||2

.

Sinceγ ∈ [1,2), we have

‖uk+1− u∗‖ ≤ ‖uk − u∗‖ ≤ . . .≤ ‖u0− u∗‖.

Then, the sequenceuk is bounded. ⊓⊔
Now, the convergence of the proposed method could

be proved as follows

Theorem 4.2.The sequenceuk generated by the proposed
method converges to a solution point of problem (1).

Proof: It follows from (23) that

∞

∑
k=0

‖r(uk,ρk)‖4

‖Dk‖2 < ∞

which means that

lim
k→∞

‖r(uk,ρk)‖= 0, (24)

] and it follows from Lemma 2.3 that

min{1,ρk}‖r(uk,1)‖ ≤ ‖r(uk,ρk)‖. (25)

] Combining (24) and (25), we get

lim
k→∞

ρk‖r(uk,1)‖= 0. (26)

] We have two possible cases. Firstly, suppose that

lim
k→∞

supρk > 0.

It follows from (26) that

lim
k→∞

inf‖r(uk,1)‖= 0.

Since{uk} is bounded, it has a cluster point ¯u such that
‖r(ū,1)‖ = 0, which implies ¯u is a solution of problem
(1).

Now, we consider the second possible case

lim
k→∞

ρk = 0.

By the choice ofρk we know that (16) was not satisfied
for mk −1. Then fork large enough such thatρk < µ , we
obtain

‖T (uk)−T (Jϕ(uk)[u
k − (ρk/µ)T (uk)])‖

≥ δ µ ||r(uk,ρk/µ)||/ρk

≥ δ‖r(uk,1)‖

c© 2016 NSP
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where the second inequality follows from Lemma 2.3.
Let ū be a cluster point of{uk} and the subsequence{uk j}
converges to ¯u. Then, we have

‖r(ū,1)‖ = lim
j→∞

‖r(uk j ,1)‖

≤ lim
j→∞

‖T (uk j )−T (Jϕ(uk j )
[uk j − (ρk j

/µ)T (uk j )])‖
δ

= 0,

which means that ¯u is a solution of problem (1).
In the following, we prove that the sequence{uk} has exactly one
cluster point. Assume that ˜u is another cluster point and satisfies

τ := ‖ũ− ū‖> 0.

Since ¯u is a cluster point of the sequence{uk}, there is ak0 > 0
such that

‖uk0 − ū‖ ≤ τ
2
.

On the other hand, since ¯u ∈ S∗ and from (23), we have

‖uk − ū‖ ≤ ‖uk0 − ū‖ for all k ≥ k0,

it follows that

‖uk − ũ‖ ≥ ‖ũ− ū‖−‖uk − ū‖ ≥ τ
2

∀k ≥ k0.

This contradicts the assumption that ˜u is cluster point of{uk},
thus the sequence{uk} converges to ¯u ∈ S∗. ⊓⊔

5 Preliminary Computational Results

In the section, we give some numerical results for the
proposed method. We consider the nonlinear complementarity
problems
Find u ∈ Rn such that

u ≥ 0, T (u)≥ 0, 〈u,T (u)〉= 0, (27)

] where T (u) = D(u) + Mu + q, D(u) and Mu + q are the
nonlinear part and linear parts ofT (u) respectively. Problem
(27) is a special case of problem (1), by taking

ϕ(v,u) =
{

0, if v ∈ Rn
+;

+∞, otherwise .

In this case Algorithm 3.1 collapses to Algorithm 3.2.
We form the test problems similarly as in Harker and Pang

[16]. The matrix M = AT A + B, where A is an n × n matrix
whose entries are randomly generated in the interval(−5,+5)
and a skew-symmetric matrixB is generated in the same way.
The vectorq is generated from a uniform distribution in the
interval (−500,500) (easy problems) and(−500,0) (hard
problems), respectively. InD(u), the nonlinear part ofT (u), the
components areD j(u) = d j ∗ arctan(u j) and d j is a random
variable in(0,1).

In all tests we tookµ = 2/3, δ = 0.95,c = 0.9, δ0 = 0.2,
γ = 1.95 anddk = r(uk,ρk) + ρk[T (w

k)− T (uk)], the starting
point u0 = (0, ...,0)T . All codes are written in Matlab. The
computation begins withρ0 = 1 and stops as soon as
‖r(uk,ρk)‖∞ ≤ 10−7. The test results for easy problems
(q ∈ (−500,500)) and hard problems (q ∈ (−500,0)) are
reported in tables1-2.

Table 1 Numerical results for easy problems

Method in [22] Algorithm 3.2
n No. It. CPU(Sec.) No. It. CPU(Sec.)

200 53 0.03 20 0.04
300 46 0.04 21 0.06
500 24 0.11 23 0.31
700 41 0.15 23 0.44

Table 2 Numerical results for hard problems

Method in [22] Algorithm 3.2
n No. It. CPU(Sec.) No. It. CPU(Sec.)

200 85 0.04 23 0.09
300 85 0.08 26 0.13
500 31 0.37 23 0.56
700 64 0.81 70 1.05

From Tables1-2, we can see that our Algorithm 3.2 is more
efficient than the method in [22], the number of iterations is much
less than that of [22].
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