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Abstract: We present a new general dynamic inequality of Opial type. This inequality is new even in both the continuous and discrete
cases. The inequality is proved by making use of a recently introduced new technique for Opial dynamic inequalities, thetime scales
integration by parts formula, the time scales chain rule, and classical as well as time scales versions of Hölder’s inequality.
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1 Introduction

In 1960, Olech [8] extended an inequality of Opial [9] and
proved that iff ∈ C1([0,h],R) with h> 0 satisfiesf (0) =
0, then

∫ h

0

∣

∣ f (t) f ′(t)
∣

∣dt ≤
h
2

∫ h

0

∣

∣ f ′(t)
∣

∣

2dt. (1)

This inequality created a lot of research activity, which
was summarized in the monograph [2], both for the
continuous and the discrete cases. In [3] (see
also [6, Theorem 6.23]), the authors extended (1) to an
arbitrary time scale T and proved that if
f ∈ C1

rd([0,h]T,R) with h> 0 satisfiesf (0) = 0, then

∫ h

0

∣

∣

∣

(

f 2)∆
(t)

∣

∣

∣
∆ t ≤ h

∫ h

0

(

f ∆ (t)
)2

∆ t. (2)

For extensions and generalizations of (2), we refer the
reader to the monograph [1]. Over the last sixty years, the
study of Opial inequalities (continuous and discrete) or
related Hardy operators focused on the investigations of
new inequalities or operators with weighted functions.
These inequalities have natural applications in applied
mathematics, especially in the theory of differential
equations in elasticity (ordinary or partial) and led to
many interesting questions and connections between
different areas of mathematical analysis. For example,
Hardy operators are closely related to quasiadditivity

properties of capacities and were recently used with
Opial-type inequalities to find the gaps between zeros of
differential equations that appear in the binding of
beams [10].

Here we will not give an introduction to time scales
calculus but instead refer the reader to [6, 7]. We only
remark that the delta derivative is the usual derivative if
T = R and the forward difference ifT = Z, and the delta
integral is the usual integral ifT = R and a sum ifT = Z,
and that the theory can be applied to any nonempty closed
setT ⊂ R, the so-called underlying time scale. We note
that pluggingT= R in (2) results in (1).

Using a novel technique in [4], the following
generalization of (2) was established, involving two
different weight functionssandr, see [4, Theorem 5.2].

Theorem 1. Assume that a∈ T, b∈ (a,∞)T,

r,s∈ Crd([a,b]T,(0,∞)), and f ∈ C1
rd([a,b]T,R).

If f (a) = 0, then

∫ b

a
s(t)

∣

∣

∣
( f 2)∆ (t)

∣

∣

∣
∆ t ≤ K

∫ b

a
r(t)

(

f ∆ (t)
)2

∆ t,

where

K =

√

∫ b

a
s2(t)(R2)∆ (t)∆ t with R(t) =

∫ t

a

∆τ
r(τ)

.
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We note that plugginga = 0, b = h, andr = s= 1 in
Theorem1 results in (2).

Refining the technique from [4], the same authors
proved in [5] the following generalization of Theorem1.

Theorem 2. Assume that a∈ T, b∈ (a,∞)T,

r,s∈ Crd([a,b]T,(0,∞)), and f ∈ C1
rd([a,b]T,R).

Let α > 1 andβ ≥ 0. If f (a) = 0, then

∫ b

a
s(t)

∣

∣

∣
( f α )∆ (t)( f ∆ (t))β

∣

∣

∣
∆ t ≤ K

∫ b

a
r(t)

∣

∣

∣
f ∆ (t)

∣

∣

∣

α+β
∆ t,

where

K =
α(β +1)

β+1
α+β

α +β







∫ b

a

(s(t))
α+β
α−1 (Rα+β )∆ (t)

(r(t))
β(α+β)

(α−1)(α+β−1)

∆ t







α−1
α+β

with

R(t) =
∫ t

a

∆τ

(r(τ))
1

α+β−1

.

We note that pluggingα = 2 andβ = 0 in Theorem2
results in Theorem1.

The purpose of this paper is to apply the new technique
that was developed in [4,5] in order to prove the following
generalization of Theorem2.

Theorem 3. Assume that a∈ T, b∈ (a,∞)T,

r,s∈ Crd([a,b]T,(0,∞)), and f ∈ C1
rd([a,b]T,R).

Let α ≥ 1, β ≥ 0, and k> β +1. If f (a) = 0, then

∫ b

a
s(t)

∣

∣

∣
( f α )∆ (t)( f ∆ (t))β

∣

∣

∣
∆ t

≤ K

{

∫ b

a
r(t)

∣

∣

∣
f ∆ (t)

∣

∣

∣

k
∆ t

}

α+β
k

,

where

K = c



















∫ b

a
(s(t))

k
k−β−1

(

R
kα−α−β
k−β−1

)∆
(t)

(r(t))
kβ

(k−1)(k−β−1)

∆ t



















k−β−1
k

with

c= α
(

k−β −1
kα −α −β

)

k−β−1
k

(

β +1
α +β

)

β+1
k

and

R(t) =
∫ t

a

∆τ

(r(τ))
1

k−1

.

We note that pluggingk= α +β in Theorem3 results
in Theorem2.

The paper is organized as follows: In Section2, we
present the basic definitions of time scales calculus that
will be used in the sequel. In Section3, we prove Theorem
3 and give some remarks. We prove our main result by
using the time scales chain rule, the time scales integration
by parts formula, and classical continuous and discrete as
well as time scales versions of Hölder’s inequality.

2 Time Scales Preliminaries

In this section, we briefly present some basic definitions
and results concerning the delta calculus on time scales
that we will use in this article. A time scaleT is an arbitrary
nonempty closed subset of the real numbers. We define
the forward jump operatorσ : T→ T by σ(t) := inf{s∈
T : s> t} for t ∈ T. For any functionf : T → R, we put
f σ = f ◦σ . A function f : T→R is called rd-continuous,
denoted byf ∈ Crd, if it is continuous at each right-dense
point (i.e.,σ(t) = t) and there exists a finite left-sided limit
at all left-dense points (i.e.,ρ(t) = t, where the backward
jump ρ is defined in a similar way as the forward jump
σ ). For the definition of the delta derivative and the delta
integral, we refer to [6,7]. If f ∈C1(R,R) andg :T→R is
delta differentiable, then thetime scales chain rule, see [6,
Theorem 1.90], states that

( f ◦g)∆ = g∆
∫ 1

0
f ′(hgσ +(1−h)g∆)dh,

and a special case, which we will use in this paper, is given
by

( f γ )∆ = γ f ∆
∫ 1

0
(h fσ +(1−h) f )γ−1 dh for γ ∈ R.

The time scales Ḧolder inequality, see [6, Theorem 6.13],
says

∫ b

a
| f (t)g(t)|∆ t ≤

{

∫ b

a
| f (t)|γ ∆ t

}
1
γ
{

∫ b

a
|g(t)|ν ∆ t

}
1
ν
,

where a,b ∈ T, f ,g ∈ Crd([a,b]T,R), γ > 1, and
ν = γ/(γ −1).

3 Proof of the Opial Inequality

In this section, we present the proof of our main result,
Theorem3, and give some corollaries and concluding
remarks.

Proof. Define

g(t) :=
∫ t

a
r(τ)

∣

∣

∣
f ∆ (τ)

∣

∣

∣

k
∆τ.
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Theng(a) = 0,

g∆ = r
∣

∣

∣
f ∆

∣

∣

∣

k
so that

∣

∣

∣
f ∆

∣

∣

∣
=

(

g∆

r

)

1
k

,

and

| f (t)| =

∣

∣

∣

∣

∣

∫ t

a

1

(r(τ))
1
k

(r(τ))
1
k f ∆ (τ)∆τ

∣

∣

∣

∣

∣

≤
∫ t

a

1

(r(τ))
1
k

(r(τ))
1
k

∣

∣

∣
f ∆ (τ)

∣

∣

∣
∆τ

≤

{

∫ t

a

∆τ

(r(τ))
1

k−1

}
k−1

k {

∫ t

a
r(τ)

∣

∣

∣
f ∆ (τ)

∣

∣

∣

k
∆τ

}
1
k

= (R(t))
k−1

k (g(t))
1
k ,

where we have used the time scales Hölder inequality with
conjugate exponentsk

k−1 andk > 1. Thus, forh ∈ [0,1],
we obtain

|h fσ +(1−h) f | ≤ h| f σ |+(1−h) | f |

≤ h(Rσ )
k−1

k (gσ )
1
k +(1−h)R

k−1
k g

1
k

= (hRσ )
k−1

k (hgσ )
1
k +((1−h)R)

k−1
k ((1−h)g)

1
k

≤ (hRσ +(1−h)R)
k−1

k (hgσ +(1−h)g)
1
k ,

where we have used the classical Hölder inequality for
sums with conjugate exponentskk−1 andk> 1. Hence
∣

∣

∣

∣

∫ 1

0
(h fσ +(1−h) f )α−1dh

∣

∣

∣

∣

≤

∫ 1

0
|h fσ +(1−h) f |α−1dh

≤
∫ 1

0
(hRσ +(1−h)R)

(k−1)(α−1)
k (hgσ +(1−h)g)

α−1
k dh

≤

{

∫ 1

0
(hRσ +(1−h)R)

(k−1)(α−1)
k−β−1 dh

}

k−β−1
k

×

{

∫ 1

0
(hgσ +(1−h)g)

α−1
β+1 dh

}

β+1
k

,

where we have used the classical Hölder inequality for
integrals with conjugate exponents k

k−β−1 and k
β+1 > 1.

Therefore, using the time scales chain rule three times, we
get
∣

∣

∣
( f α)∆ ( f ∆ )β

∣

∣

∣
= α

∣

∣

∣
f ∆

∣

∣

∣

β+1
∣

∣

∣

∣

∫ 1

0
(h fσ +(1−h) f )α−1dh

∣

∣

∣

∣

=
α(g∆ )

β+1
k

r
β+1

k

∣

∣

∣

∣

∫ 1

0
(h fσ +(1−h) f )α−1 dh

∣

∣

∣

∣

≤
α(g∆ )

β+1
k

r
β+1

k

{

∫ 1

0
(hRσ +(1−h)R)

(k−1)(α−1)
k−β−1 dh

}

k−β−1
k

×

{

∫ 1

0
(hgσ +(1−h)g)

α−1
β+1 dh

}

β+1
k

=
c

r
β

k−1

{

kα −α −β
k−β −1

R∆

×
∫ 1

0
(hRσ +(1−h)R)

kα−α−β
k−β−1 −1dh

}

k−β−1
k

×

{

α +β
β +1

g∆
∫ 1

0
(hgσ +(1−h)g)

α+β
β+1 −1dh

}

β+1
k

=
c

r
β

k−1

{

(

R
kα−α−β
k−β−1

)∆
}

k−β−1
k

{

(

g
α+β
β+1

)∆
}

β+1
k

,

and thus finally
∫ b

a
s(t)

∣

∣

∣

∣

( f α )∆ (t)
(

f ∆ (t)
)β

∣

∣

∣

∣

∆ t

≤ c
∫ b

a
s(t)

{

(

R
kα−α−β
k−β−1

)∆
(t)

}

k−β−1
k

(r(t))
β

k−1

×

{

(

g
α+β
β+1

)∆
(t)

}

β+1
k

∆ t

≤ c



















∫ b

a
(s(t))

k
k−β−1

(

R
kα−α−β
k−β−1

)∆
(t)

(r(t))
kβ

(k−β−1)(k−1)

∆ t



















k−β−1
k

×

{

∫ b

a

(

g
α+β
β+1

)∆
(t)∆ t

}

β+1
k

= K

{

g
α+β
β+1 (b)

}

β+1
k

= K(g(b))
α+β

k ,

where we have used one last time the time scales Hölder
inequality with conjugate exponents k

k−β−1 and k
β+1 > 1.

The proof is complete.

The next result follows from Theorem3 by choosing
β = 0.

Corollary 1. Assume that a∈ T, b∈ (a,∞)T,

r,s∈ Crd([a,b]T,(0,∞)), and f ∈ C1
rd([a,b]T,R).

Let α ≥ 1 and k> 1. If f (a) = 0, then

∫ b

a
s(t)

∣

∣

∣
( f α)∆ (t)

∣

∣

∣
∆ t ≤ K

{

∫ b

a
r(t)

∣

∣

∣
f ∆ (t)

∣

∣

∣

k
∆ t

}
α
k

,

where

K =

{

∫ b

a
(s(t))

k
k−1 (Rα)∆ (t)∆ t

}
k−1

k
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with

R(t) =
∫ t

a

∆τ

(r(τ))
1

k−1

.

The next result follows from Corollary1 by choosing
k= α (see also [5, Corollary 3.2]).

Corollary 2. Assume that a∈ T, b∈ (a,∞)T,

r,s∈ Crd([a,b]T,(0,∞)), and f ∈ C1
rd([a,b]T,R).

Let α > 1. If f (a) = 0, then

∫ b

a
s(t)

∣

∣

∣
( f α )∆ (t)

∣

∣

∣
∆ t ≤ K

∫ b

a
r(t)

∣

∣

∣
f ∆ (t)

∣

∣

∣

α
∆ t,

where

K =

{

∫ b

a
(s(t))

α
α−1 (Rα)∆ (t)∆ t

}
α−1

α

with

R(t) =
∫ t

a

∆τ

(r(τ))
1

α−1

.
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