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Abstract: A three level trophic fish web model is proposed, consisting of clupeiforms pilchard (Sardina pilchardus) and anchovy
(Engraulis encrasicolus), at the bottom, mackerel (Scomber scombrus) in the intermediate trophic level and tunny (Thunnus thynnus)
as top predators. The model includes human harvesting. The clupeiforms population is further partitioned into three age classes, eggs,
larvae and the adult fishes to account for possible cannibalism but mainly for the fact that these larvae in the Mediterranean countries
are highly appreciated as a delicacy for human consumption.In the absence of fisheries, to prevent total extinction and maintaining
coexistence it is important that a sufficient amount of eggs fertilize to form larvae. The predation rate of larvae by other fish populations
also has an important role, especially for the occurrence ofperiodic solutions. Different harvesting policies are then numerically
simulated. Independently of the harvesting policy used, even a small amount of selective harvesting of larvae may causetotal extinction
of the system. To prevent it, fishing that avoids the catch of the larvae should be adopted. With non selective harvesting the system is
preserved, but for certain parameter ranges oscillations arise, which under unfavorable environmental perturbations may lead the food
chain to collapse.
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1 Introduction

Starting from the seventies, researchers in mathematical
biology have devoted much effort to the study of food
chain systems [17,25,30]. Also models for cannibalism
have been investigated, since they frequently occur in
natural systems, [2,23,38]. More recently, in the past
twenty years, several models for plankton dynamics have
been formulated, [9,19,33,34]. This is a relevant research
topic because of its importance for human feeding. In fact
plankton lies at the bottom of the food chain in the ocean,
and thus ultimately also affects fisheries. Some of the
models combined also the physical features of the ocean,
[31], other recent research efforts have been dedicated to
the issue of pattern formation, [16,27,24], and the
occurrence of red, or brown, tides, [6,7], which also have
a negative effect on important human industries such as
fisheries and tourism.

In this investigation we consider a complex situation
in which several fish populations interact in a food web,
to which is added also the external human intervention,
represented by fishing. We mainly concentrate here on the
fundamental role that younglings have in shaping the
population dynamics and how this ultimately affects the
future outcome of the whole aquatic food chain. This is
particularly important in a closed sea such as the
Mediterranean. In part larvae can be subject of
cannibalism by their own adults, [28], and above all they
are harvested by man. Both these aspects are suitably
taken into account in the model. The aim is the
investigation of selective harvesting on the larva of a
specific fish population, in presence of its predator and a
top predator. We compare the results with unselective
fishing on all the fish populations.

In Italy the whitebait of anchovy and pilchard are
indicated with the vernacular term ofbianchetti (or
gianchetti). As in use for other fish species both in Europe
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and in other countries of the world, such as New Zealand,
Australia, China, in Liguria and in other Italian Regions
also the whitebait of anchovy and pilchard remains in the
human alimentary tradition as a delicacy and expensive
food. In fact, while fishing ofbianchetti of anchovy is
forbidden according to rules of the European Community
(CE 2550/2000), fishing of pilchardbianchetti is still
allowed, though regulated by norms and periods which
vary every year and depending on geographic locations:
usually it is performed for 60 days in the period between
January and March [12]. Specifically, in 2010 the period
has been from February 15th until April 15th.
Considering the size of the young fishes, from 7,000 to
12,000 individuals can be found in 1 kg of catch and
during a season of fishing, along the Ligurian coast, the
authorized boats can fish up to a few tons ofbianchetti.
Recently, consumption of the blue fish has increased, even
if the rate of catch is flatly decreasing. Recent reports,
[14], indicate that alsobianchetti consumption in Italy has
increased in the past years, despite a decline of the catch.

The paper is organized as follows. After giving some
biological background, in Section 3 we describe the
model. In Section 4 we analyze the system with no
harvesting, establishing the equilibria and their stability,
analytically or by means of simulations. In Section 5
harvesting is taken in consideration, with a comparison of
several options for the strategies. A final discussion
concludes the paper.

2 Biological background

The term “blue fish” identifies a group of deep-sea
species, characterized by a dark blue color, also with
green shades, on the back and on part of both sides as
well as a silver color on the sides and the abdomen. In
water, this color takes on a mimetic effect, since the fish
becomes invisible for predators, both fishes and
cetaceans, which prey on it from the bottom upwards, as
well as horizontally, or from the top, mainly the birds.
The blue fish are mostly gregarious, the gathering in form
of school reducing for the single specimen the possibility
of being predated. This occurs because the predator, in
front of a remarkable number of prey, feels difficult to
select the individual fish to attack, [20,26,35]. Already
almost a century ago it was observed that schools of
sardines can confuse Great Northern loons, [1]. In other
situations the same phenomenon is observed, for instance
Japanese honeybees form a defensive ball around
attacking hornets, [22], while flocks of Bush tits detecting
hawks make a confusion chorus, [18]. In fact, considering
the limited visibility in water, every fish can be seen by a
predator in a restricted field, defined by the maximum
distance of visibility: if the fishes of the school swim very
near each other, they cause an overlapping of fields and
the probability by the predator to sight a school on the
open sea becomes only slightly greater than that of
sighting a single specimen. The predators, like mackerel

and tunny, in turn gather into schools with the aim of both
increasing their field of vision, therefore the hunting area,
and of hunting in a coordinate and cooperative way. For
instance tunnies form sets of 10-15 individuals which
arrange themselves in a parabolic formation, with the
concavity ahead. In this way, the prey are gradually
surrounded and the predators save energy. Moreover,
among the reasons leading to the formation of wide fish
gatherings, there could be a number of advantages, among
which energy saving, as mentioned, and also more ease in
reproduction [5].

Furthermore, blue fishes include migratory species,
moving in the water both vertically and horizontally; the
reasons, the duration, and the extent of the migrations
vary from species to species but are mostly connected
with trophism and reproduction, in addition to
environmental reasons, such as salinity and temperature.

In the Mediterranean, the species belonging to blue
fish have size ranging from 10 cm up to 1 m; in addition
to the clupeiforms pilchard (Sardina pilchardus) and
anchovy (Engraulis encrasicolus), they include different
species, such as mackerel (Scomber scombrus) and tunny
(Thunnus thynnus).

The anchovy makes remarkable migrations
approaching the coast in the spring while going down, in
winter, to depths of more than 100 m; it has trophic
diurnal habits and feeds on zooplankton, selecting prey
one by one. The reproduction occurs from April until
September, with a peak in June-July; its maximum length
is about 20 cm, [4]. The pilchard makes vertical and
horizontal migrations according to the temperature. It
feeds on plankton filtered by means of branchial spines,
thin and dense. The reproduction occurs all year round
and shows a maximum in winter; the maximum size is
about 20 cm [4]. At the hatch thebianchetti are 2 mm
long and maintain a transparent body till they reach the
length of 35-40 mm: at this point, the body begins to
pigment and the pigmentation is complete when the size
reaches 60 mm (“dressed”bianchetti). Thebianchetti live
near the coastline and move to the open sea only when
they have reached maturity [5].

The mackerel makes seasonal migrations, being in
deep waters during the winter and moving towards the
coast during the reproductive period, i.e. around the end
of the winter to the beginning of the spring. Since the
beginning of autumn, it feeds mainly on small
clupeiforms. The maximum size of the species is 30-35
cm, exceptionally up to 50 cm, and the maximum weight
is about 1.5 kg [3].

The tunny ravenously feeds on all the fishes it meets;
the fish interrupts feeding only during the reproductive
period, i.e. around May and June, when it moves towards
the coast; it begins again the trophic migration to the open
sea at the end of summer or beginning of the autumn. The
tunny length is well over 1 m and up to 3 m, with a
weight from 30-40 kg up to 400 kg [3].

In the Ligurian Sea (Northern Mediterranean), the
waters 10 miles off the coast represent a “meeting point”
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for some species of blue fish, i.e. a trophic and migration
area [5]: anchovy and pilchard constitute prey for the
mackerel which in turn is prey for the tunny. When the
mackerel is in shallower waters, at the end of winter, it
feeds also onbianchetti. Mainly when it is juvenile, the
tunny prey also the clupeiforms. Besides in the gut
content of anchovy also thebianchetti have been found,
[28], evidently selected by the anchovy during its feeding
“one by one”. During its non selective filter-feeding on
planktonic organisms, the pilchard eats its own eggs and
small larvae.

The man feeds on all the levels of this trophic chain:
in the Ligurian Sea the blue fish represents the
predominant part of the superficial fishing, performed by
means of seines, having mesh-size and length which vary
according to the fish species to be captured. Lately the
recommendations relevant to correct human feeding
induce an increased consumption of the blue fish, whose
meat is rich in unsaturated fatty acids.

3 Model formulation

We begin by illustrating the system characteristics. There
are two adult populations involved, the top,P, and
intermediate, F , predators, tuna and mackerel
respectively, while in view of the interest in the fishing of
bianchetti we partition anchovies and pilchard, among
adults, larvae and eggs, denoted byS, L and E
respectively. For mathematical simplicity, we at first
assumed the interactions among the populations to be of
the form Holling type I, i.e. governed by the mass action
law. Later on, to observe the robustness of our results, we
numerically tested the model also with a Holling type II
functional response.

The model is

dE
dt

=−µE +mS−θES

dL
dt

= eSE −νL− a1LF −H1(L)

dS
dt

= lL− nS− a2SF − bSP−H2(S) (1)

dF
dt

= a1k1LF + a2k2SF − cFP− f F −H2(F)

dP
dt

= bhSP+ cgFP− pP−H2(P).

Here, also human interference, i.e. fishing, is accounted
for. The harvesting strategies for the larva and different
fish populations are modeled by the last terms of each
equation, but for the first one, and respectively denoted by
H1 and H2. In this way we account for the fact that
bianchetti may or may not be subject to the same fishing
strategy as the other fishes, while all the adult fishes are
harvested with the same strategy.

The parameterse andl represent the maturation rates
from egg to larva and from larva to adult population

respectively,µ is the loss rate ofE, due to natural
mortality, dispersion due to the currents, predation by
other species;ν is again the loss rate of individuals in the
L population, but in this case in addition to the above
mortality factors, also the maturation process into adults
is accounted for;θ > e denotes the net loss in egg
populationE due the cannibalism of the adult fishS on its
own eggs and the fecundation process for which eggs
mature to the larval stage. The parameterm is the
reproduction rate of theS population; the mackerelsF
hunt at ratea1 on larvaeL and a2 on pilchardsS with
mass conversion factorsk1 andk2 respectively; similarly
b and h respectively denote the predation rates and
conversion factors ofP on S while c andg are again the
predation rate and conversion factor of tunniesP by
hunting F ’s. The natural death rates ofS, F and P are
respectivelyn, f andp.

The first, second and the third equations denote the
evolution of the various life stages of the preyS. In the
first equation for the eggs dynamics, the first term denotes
the loss of eggs due to natural mortality, predation by
other species and dispersion. The second term represents
new recruits due to reproduction of the adults. Their
environment is a large area with enough resources, so that
Malthus growth can be assumed. The last term models
cannibalism byS and maturation to becomebianchetti
due to hatching. Note that both these processes are related
to encounters of individuals in the two populations either
for predation or for mating, as eggs are fertilized in water.

The second equation shows the larvae dynamics.
Individuals enter this class via maturation, first term, and
are subject to mortality or mature to become adults: in
both cases their numbers decrease, and this is modeled by
the second term; finally they can be prey of the mackerels
F. The pilchardsS are modelled by the third equation.
They enter this class from matured larvae, at ratel < ν,
are subject to the natural mortality, second term, and are
preyed by mackerels and by tunnies. The mackerels
dynamics benefits from hunting the larvae and the
pilchards, first two terms, but is subject also to hunt by
tunnies and to its own natural mortality, third and fourth
terms. The tunnies could in principle also feed on other
sources, but we disregard this situation here. They feed
both on the pilchards and on the mackerels, first two
terms of the last equation, but die out exponentially in
their absence, third term.

4 The system with no harvesting

4.1 Boundary equilibria and their stability

Proposition 4.1. The system (1) with no harvesting,
H1 ≡ H2 ≡ 0, has the following boundary equilibria in the
E − L − S−F − P phase space, in addition to the trivial
equilibrium in which each population vanishes,
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V0 ≡ (0,0,0,0,0):

V1 ≡

(
νn
el

,
n∆
l
,∆ ,0,0

)
, ∆ =

µνn
mel−θνn

,

V2 ≡

(
Θ ,

peΘ
bhν

,
p

bh
,0,

leΘ − nν
νb

)
, Θ =

mp
µbh+θ p

.

There is another boundary equilibrium point
V3 ≡ (E3, L3, S3, F3, 0) with P = 0, where

E3 =
mS3

µ +θS3
, L3 =

S3(n+ a2F3)

l
,

S3 =
f l

a1k1(n+ a2F3)+ a2k2l

whereF3 is a root of the equation

Q1F4+Q2F3+Q3F2+Q4F +Q5 = 0 (2)

with Q1 = a3
1k2

1a2
2µ and

Q2 = (a1k1n+ a2k2l)a2
1µk1a2+ a1k1a2(νµa1k1a2

+a2
1µk1n+ a1µa2k2l + a1θ f l + a2

1µk1a2
2

+a2
1a2µk1n),

Q3 = (a1k1n+ a2k2l)(νµa1k1a2+ a2
1µk1n+ a1µa2k2l

+a1θ f l + a2
1µk1a2

2+ a2
1a2µk1n)+ a1k1a2(a1nθ f l

+a2
1a2µk1n+νµa2k2l + a1nµa2k2l +νθ f l

+a2
1µk1n2+νa2µa1k1n+ a1µa2

2k2l

+νµa1k1a2
2+νµa1k1n+ a1a2θ f l),

Q4 = (a1k1n+ a2k2l)(a1nθ f l+ a2
1a2µk1n+νµa2k2l

+a1nµa2k2l + a2
1µk1n2+νθ f l +νa2µa1k1n

+a1µa2
2k2l +νµa1k1a2

2+νµa1k1n+ a1a2θ f l)

+a1k1a2(νnµa2k2l +νa2µa1k1n+νµa1k1n2

+νnθ f l +νµa2
2k2l − e f l2m+νa2θ f l),

Q5 = (a1k1n+ a2k2l)(νµa2
2k2l − e f l2m+νnµa2k2l

+νa2µa1k1n+νnθ f l+νa2θ f l +νµa1k1n2).

Proof. SinceQi s’, i = 1,2,3 are positive, equation (2)
has a unique positive root if and only ifQ5 < 0. This is
only possible ife or m or both are very large so that the
terme f l2m becomes greater than the other positive terms
present in the expression ofQ4 and Q5. Hence, the
necessary and sufficient condition for the feasibility of a
unique boundary equilibrium pointV3 is that em should
exceed a threshold value. Further, from the analysis ofV3
we need eithera1 6= 0 or a2 6= 0 for the feasibility ofS3,
i.e., F has to feed on eitherL or S. This is obvious, since
no other food sources are present for the mackerels, and
in their absence the latter would disappear.�

Remark 4.1. The feasibility condition forV1 is given by
mel > θνn, for V2 feasibility is ensured byleΘ > nν.

Generally it is the size of the predator that selects the
size of the prey. In the autumn, rather than pilchards’ eggs
or zooplankton, mackerel prefer, or find more abundant,

other types of food. At the peak of the summer instead,
after the reproduction season, the feeding of the young
mackerel is rather voracious and based on everything they
can find, whether be it pilchards’ eggs, pelagic
crustaceans, clupeiforms or zooplankton.

Proposition 4.2. Exploring the case in which mackerel
divert their attention frombianchetti, i.e. settinga1 = 0,
the equilibrium pointV3 can be explicitly evaluated,

V̂3 ≡

(
m f

a2k2µ +θ f
,

f (n+ a2Ω)

a2k2l
,

f
a2k2

, Ω , 0

)
,

where,

Ω =
e f lm−νµa2

2k2−νnµa2k2−νnθ f −νa2θ f
νθ f +νµa2k2

.

Remark 4.2. In this case, i.e. fora1 = 0,V3 is feasible for
e f lm > νµa2

2k2+νnµa2k2+νnθ f +νa2θ f .

Proposition 4.3. Next if we assume thatF does not feed
on S, i.e.,a2 = 0 the equation (2) becomes,

(a2
1µk1n+ a1θ f l)F2+(νθ f l + a1nθ f l+ a2

1µk1n2

+νµa1k1n)F − e f l2m+νnθ f l+νµa1k1n2 = 0. (3)

The equation (3) has a unique positive real root if and
only if e f l2m > νnθ f l + νµa1k1n2. Thus whena2 = 0,
the equilibrium pointV3 is feasible for

e f l2m > νnθ f l +νµa1k1n2
. (4)

The stability properties of these equilibrium points are
studied through the Jacobian matrix analysis. The Jacobian
J at an arbitrary point is given by the matrix below with
J44 = a1k1L+ a2k2S− cP− f , J55 = bhS+ cgF− p,




−µ −θS 0 m−θE 0 0
eS −ν − a1F eE −a1L 0
0 l −n− bP− a2F −a2S −bS
0 a1k1F a2k2F J44 −cF
0 0 bhP cgP J55


 .

(5)

Proposition 4.4. V0 is always stable.

Proof. The eigenvalues associated with the matrix (5)
evaluated at the origin are−µ , −ν, −n, − f , −p. Since
all the eigenvalues are negative real numbers, the claim
follows.�

Proposition 4.5. V1 is always unstable.

Proof. Two eigenvalues associated with the matrix (5) at
V1 are explicitly given bya1k1n∆ l−1+a2k2∆ − f , bh∆− p
and the remaining ones are the roots of the cubic equation

Y 3+ω1Y
2+ω2Y +ω3 = 0, (6)

whereω1 = n+ν+µ +θ∆ , ω2 = (µ +θ∆)(n+ν), ω3 =
∆(elm−θνn). From the existence criteria we havemel >
nνθ , soω3 < 0. Hence, by the Routh-Hurwitz criterion the
claim follows.�
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Proposition 4.6. V2 is stable if and only if the following
conditions hold:η4 > 0, η2 > η3η1η4 anda1k1pmeΘ +
a2k2pν < cmlehΘ + cnhν + f bhν.
Proof. The eigenvalues of the Jacobian (5) atV2 are

a1k1peΘ + a2k2pν − clehΘ − cnhν − f bhν
bhν

and the roots of the quartic equation

η1Z4+η2Z3+η3Z2+η4Z+η5 = 0, (7)

with coefficients

η1 = νbh,

η2 = leΘbh+ν2bh+ µνbh+θ pν,
η3 = pbhleΘ − pbhνn+ leΘ µbh+ leΘθ p

+ν2µbh+ν2θ p,

η4 = p2leΘθ − pν2nbh− pµνnbh− p2θνn− plemν
+leΘθ pν + pleΘνbh+ pleΘ µbh,

η5 = pνleΘ µbh+ p2νleΘθ − pν2µnbh− p2ν2θn.

Here η1 andη2 are always positive. From the existence
criteria of V2, η3 and η5 are also positive. The Routh
Hurwitz conditions indicate that all the roots of the
equation (7) have negative real parts if and only if
η1 > 0, η3 > 0, η4 > 0 andη2 > η3η1η4. �

Since it was not possible to find a closed form forV3, it
is not possible to find the stability conditions explicitly for
V3 and hence this analysis is omitted. However,V̂3 takes a
simplest form witha1 = 0 and so the stability property at
V̂3 is studied witha1 = 0.

Proposition 4.7. The equilibrium point̂V3 (assuminga1 =
0) is stable if and only if both the following conditions hold

bh f
a2k2

+ cgΩ < p, ζ4 > 0, ζ2 > ζ1ζ3ζ4.

Proof. The eigenvalues of the Jacobian (5) atV̂3 with a1 =
0 are

bh f
a2k2

+ cgΩ − p,

and the roots of the quartic equation,

ζ1V 4+ ζ2V
3+ ζ3V

2+ ζ4V + ζ5 = 0 (8)

whereζ1 = a2k2, ζ2 = νa2k2+ na2k2+ a2
2Ωk2+ρ1,

ζ3 = a2
2Ω f k2+ na2k2ν + a2

2k2Ων

+ρ1(n+ a2Ω +ν)−
lem f a2k2

ρ1
,

ζ4 = a2
2k2 f Ων +ρ1(a2 f Ω +νn+ a2Ων)

−lem f −
lem f a2k2µ

ρ1
,

ζ5 = f a2Ωρ1ν andρ1 = µa2k2+θ f .
Sinceζ2 > 0 andζ5 > 0, the claim follows.�

4.2 The coexistence equilibrium

We now turn to simulations. Fecundity of pilchards
depends on geographical area, ranging from 50000 to
60000 and from 76000 to 490000 eggs, with spawning all
year round once or twice per year. The larval stage
duration from egg to adult lasts 40 days, [11,37]. Based
on this information we consider two possible scenarios,
one with low reproduction rate and one with a higher one.
In the first case, assuming 72000 eggs per year mature,
we getm = 200 per day, while in the latter one we have
taken 360000 eggs per year to mature, givingm = 1000
per day. Splitting evenly the maturing duration among egg
to larvae and larvae to adult, we takee = 0.05 and
ν = l = 0.05. For the mortality, [10], the natural mortality
amounts to 0.64 per year, slightly lower, 0.5, in the
Adriatic, [29], giving n = 0.002 per day. ForTunnus
thynnus natural mortality is 0.14 per year for all ages,
[15], giving p = 0.0004 per day. We use the same values
also for mackerel,f = 0.0004.

Table 1: The parameter values: those that are found in the
literature, [11,37,10,29], are reported with a star, the remaining
ones are hypothetical.

Name values Name values
*m 200 day−1 a2 0.1 kg−1day−1

g 0.01 *ν 0.05 day−1

µ 0.3 day−1 b 0.0015 kg−1day−1

*e 0.05 kg−1day−1 c 0.27 kg−1day−1

*n 0.002 day−1 * f 0.0004 day−1

* l 0.05 day−1 k1 0.6
θ 0.2 kg−1day−1 k2 0.5
a1 2.3 kg−1day−1 * p 0.0004 day−1

h 0.0001 – –

The set of parameter values taken from literature are
summarized in Table1. For further analysis the interior
equilibrium is investigated by means of numerical
simulations using the Matlab built-in routine ode45 with
the parameter values given in Table1. Under these
conditions, the coexistence equilibrium is stable, see
Figure1.

Taking now the conversion rate from egg to larva as a
parameter to study, we find that whene is reduced to
0.000071, all populations vanish and the system
collapses, see Figure2. Thus total disappearance is
possible if a large enough amount of eggs does not hatch
to become larvae, supporting and furthering our analytical
results of the former Subsection on the local stability of
the origin.
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Fig. 1: For the parameters given in Table1, the system (1)
without harvesting shows a stable interior equilibrium steady
state.
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Fig. 2: Total extinction of all the populations in system (1) with
no harvesting for a very low egg maturation ratee = 0.000071.

5 The various harvesting policies

Here we study the actual system (1) with different
harvesting policies, for the prey fish at the larval stage and
for all the adult fish populations. This means that we take
two functional forms forH1 and H2 and combine them
also with selective and unselective harvesting, i.e. when
the latter is performed only on adult fish or

indiscriminately on all the web populations, respectively.
The case of fishing on larvae only is also contemplated
although less realistic, as the adult fish catching in general
continues the whole year round.

5.1 Linear harvesting policies

We study the system with the assumption that the
harvestingH1 is done on the larvaeL via the function
H1 = q1L, q1 being the harvesting rate of the larvae, while
the adult fish populationsS, F and P are harvested at a
different rate q2, via the functions H2(S) = q2S,
H2(F) = q2F , H2(P) = q2P.

With these assumption onH1 and H2 the system (1)
again has three boundary equilibrium points in addition to
the origin. These equilibria are

U1 ≡

(
(ν + q1)(n+ q2)

el
,
(n+ q2)Φ

l
,Φ,0,0

)
,

Φ =
µ(ν + q1)(n+ q2)

mel −θ (ν + q1)(n+ q2)
,

U2 ≡

(
Ψ ,

(p+ q2)eΨ
bh(ν + q1)

,
(p+ q2)

bh
,0,

leΨ
(ν + q1)b

−
n+ q2

b

)
,

Ψ =
m(p+ q2)

µbh+θ (p+ q2)
,

U1 andU2 are feasible respectively for

mel > θ (n+ q2)(ν + q1), leΨ > (n+ q2)(ν + q1).

If we compare the values of the equilibria and their
feasibility conditions for this case with those for the model
in absence of harvesting, we note that the only difference is
in the scale, since here the constantsν, n, f , p of the model
with no harvesting get here replaced byν + q1, n + q2,
f + q2, p+ q2. The same changes occur for the feasibility
of U3, similar to the one ofV3, and for the stability of all
the equilibria. Thus we omit the analysis.

From the available literature, [10], the fishing mortality
in the Adriatic, [29], is 0.30 per year so thatq1 = 0.001
per day. The fishing mortality forTunnus thynnus depends
on the age, and we use an average value ofq2 = 0.0004
per day. So, for further analysis we simulate the system
(1) numerically with the parameter values given in Table1
with q1 = 0.001 andq2 = 0.0004 as found in the literature.
In these conditions the populations coexist, see Figure3.
But if the harvesting ratesq1 andq2, are both increased to
the level 0.02, we observe total extinction of the system.

5.1.1 Harvesting only of larvae

Although not much realistic, since fisheries operate
continually in time, we study here the food web with the
assumption that the harvestingH1 is done only on the
larvae. Using again the set of parameter values given in
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Fig. 3: Coexistence for the system (1) is attained when the fishing
efforts areq1 = 0.001 andq2 = 0.0004, as given in the literature.
Here the linear form of harvesting is used. The other parameters
are the same as in Figure1.

Table 1, if we introduce fisheries with removal rate
q1 = 2.1, the whole system is driven to extinction, as
depicted in Figure4. Thus increase in harvesting on
larvae can drive the system to total extinction but that
need almost a 2000 fold increase than normal rate and
that too with the top predator taking much larger time
than the others species. Thus in case of linear harvesting
strategy only on the larval population, it is very difficult
to cause total collapse of the food web. Recall however
that this situation is quite unrealistic, since adult fishesare
caught generally the whole year round.

5.1.2 Harvesting only adult fish

We consider the system (1) with the assumption that the
harvesting is forbidden on the younglings, i.e.H1 = 0 and
H2 is performed only on the adult fish populationsS, F
andP. For small values ofq1 the system is stable at the
coexistence steady state, but we do not report graphically
this result here. As the value is increased toq2 = 0.01 we
observed total collapse of the system, Figure5.

5.2 Harvesting with bounded maximal return

We now consider a more realistic description of the fish
catches, expressed by the Holling type-II function. For
illustrating the features of this function with respect to the
Holling type-I one can consult any standard text in
mathematical biology or even in operations research,
where the gain expressed by this function is known as the
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Fig. 4: Starting from the coexistence state of Figure1 with
selective linear harvesting onL at rateq1 = 2.1, q2 = 0, the other
parameters being the same as in Figure1, the food web collapses.
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Fig. 5: Again for linear selective harvesting on adult fish only,
starting from the condition and parameter values of Figure1, we
obtain total extinction with fishing effortsq1 = 0, q2 = 0.01.

law of diminishing returns, [8,13,16,21], but see also
[32]. The two functions for the larvae and for the adult
fishes are respectively expressed by

H1(L) =
q1L

1+ r1L
, H2(x) =

q2x
1+ r2x

.

The model (1) with these functions becomes too complex
to be studied analytically. We rather investigate it only by
means of numerical simulations. For the usual set of
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parameter values of Table1, and new parameter values
for the harvesting functions given byq1 = 0.001,
q2 = 0.0004, r1 = 0.1 and r2 = 0.4, the system shows
stable coexistence. The system remains unchanged for a
large range ofr1 andr2. But, as expected, upon increasing
the values ofqi’s, like in linear harvesting, here too the
system becomes totally extinct.

6 A possibly endangered situation

We now consider a set of hypothetical values and perform
bifurcation analysis to understand the possible ecological
danger associated with possible shifts of some parameter
values due possibly to relevant exogenous changes in the
environmental conditions. The hypothetical set of
parameter values, given in Table2, are chosen so that the
system shows stable coexistence. We start by searching
periodic solutions.

Table 2: A hypothetical set of parameter values.
Names values Names values

m 0.35 day−1 a2 0.2 kg−1day−1

g 0.6 ν 0.3 day−1

µ 0.3 day−1 b 0.6 kg−1day−1

e 0.8 kg−1day−1 c 0.7 kg−1day−1

n 0.14 day−1 f 0.4 day−1

l 0.5 day−1 k1 0.7
θ 0.2 kg−1day−1 k2 0.2
a1 0.65 kg−1day−1 p 0.5 day−1

h 0.5 – –

The values of different parameters are varied one by
one, keeping all the other ones fixed. It is observed that
when the predation ratea1 on L by the predatorsF
increases to 0.75, the system shows coexistence through
periodic oscillations, see Figure6. This is clearer from the
bifurcation diagram obtained using AUTO, Figure7,
where we have taken the parametera1 as the bifurcation
parameter. It is observed that for low value ofa1, the
populationF goes to extinction, while all the other ones
attain a steady state, with constant values independent of
the values of the parametera1. Past the branch point in
the terminology of AUTO, which in this case is rather a
transcritical bifurcation point, all the populations coexist
at a stable steady state withF increasing asa1 increases,
and all the other populations instead diminishing. When
the value crosses some threshold valuea1c, specifically
here it isa1c = 0.67, at which a Hopf bifurcation occurs,
the populations coexist through periodic oscillations.
Thus we have proven by means of simulations the
existence of a critical thresholda1c where the Hopf
bifurcation occurs around the positive steady state,
thereby inducing oscillations of the populations. The
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Fig. 6: Coexistence of all the species via oscillations in system
(1) with no harvesting when theF ’s hunting ratea1 increases
here from 0.65 to 0.75.

Fig. 7: For the system (1) without harvesting, using AUTO, we
plot a bifurcation diagram taking theF ’s hunting ratea1 as
bifurcation parameter. At the critical pointa1c there occurs a
Hopf bifurcation. BP stands for branch point, i.e. a transcritical
bifurcation, and HB means Hopf-bifurcation.

hunting rate ofF ’s on larvae therefore plays an important
role in the dynamics of the whole system and
consequently on the evolution of larvae and their
predators. The same bifurcation is obtained fora2, i.e.,
predation rate onS by the predatorsF, not reported here.
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Fig. 8: Bifurcation diagram, obtained using AUTO, for selective
adult fish linear harvesting, i.e.q1 = 0, takingq2 as bifurcation
parameter. Note the Hopf bifurcation at a lower critical value,
here the value is very small, and total extinction when a higher
threshold is reached. BP stands for branch point, i.e. transcritical
bifurcation, and HB means Hopf-bifurcation, SN is for saddle
node bifurcation.

Interesting findings on bifurcation are observed in the
model with harvesting, for example linear harvesting on
adult fish only. To understand the changes in the
dynamical behaviour of the species as functions of the
changes in the value ofq2 we plot the corresponding
bifurcation diagram in Figure8. The structure of this
picture is rather complicated, showing a branch point, i.e.
a transcritical bifurcation, two Hopf bifurcations and a
saddle-node bifurcation. For a certain range ofq2 all the
populations coexist, then a bifurcation occurs and
oscillations arise. In Figure8 at the branch point, i.e.
transcritical bifurcation, BP4,P vanishes while the other
populations remain in the system. Asq2 increases past the
branch point, i.e. transcritical bifurcation, BP4 there
occurs a Hopf-bifurcation, HB5, among the remaining
populations and then a saddle-node bifurcation, SN6,
leading all the population to collapse, i.e. causing total
extinction of the system. But already an important remark
here is that even for a not so large value of the harvesting
rate,q2 ≈ 0.17, the top predator population disappears.

Next we consider the model in the presence of
harvesting with bounded maximal return. We consider
this type of harvesting only on the larvae, i.e., we have
system (1) with q2 = 0 ≡ H2. With the parameter values
given in Table1 andr1 = 0.7, the bifurcation diagram is
plotted in Figure9 takingq1 as the bifurcating parameter.
The changes in the dynamical behaviour of the species as
functions of the larvae capturing rates show an initial

Fig. 9: Bifurcation diagram, obtained using AUTO, as function
of the effort q1 for the Holling type II selective harvesting on
larvae only. HB means Hopf-bifurcation.

steady state, which exists for a small range ofq1,
followed by a range ofq1 for which all the populations
coexist via limit cycles, past the Hopf bifurcation point
located atq1 ≈ 0.12. In fact for this small value ofq1, a
Hopf-bifurcation, HB2, occurs and sustained periodic
solutions arise.

Again to investigate the relation between the
capturing rateq1 and the saturation constantr1, we plot in
the two dimensionalr1− q1 parameter space a bifurcation
diagram, Figure10. For low values ofr1 and q1, we
observe a saddle-node bifurcation SN5. For very low
values ofr1 andq1 the system attains a stable coexisting
state, but by increasing eitherr1 or q1, the stability of the
system is destroyed and the system shows periodic
oscillations.

We finally consider the harvesting with bounded
maximal return for all the adult fishes, i.e. we setq1 = 0.
With the parameter values given in Table1 and fixing
r2 = 1.2, we plot the bifurcation diagram, Figure11,
taking q2 as the bifurcating parameter. The structure of
this diagram is again rather complicated, showing a Hopf
bifurcation HB2 for very low values ofq2, around 0.04,
leading to an unstable manifold for which the system
populations start all to oscillate giving rise to limit cycles
in the phase space. With an increase inq2, we observe a
saddle-node bifurcation (SN6) and a branch point, i.e.
transcritical bifurcation, located atq2 ≈ 0.22. Past this
value, it is seen from the figure that the top predator
population gets extinguished. But the presence of the
saddle-node bifurcation itself ultimately drives the whole
system to extinction.
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Fig. 10: Two parameter space diagram, obtained using AUTO,
showing the stability regions as functions ofq1 and r1 for the
Holling type II selective harvesting on larvae only. A saddle-node
(SN) bifurcation is observed for low values ofq1 andr1.

Fig. 11: Bifurcation diagram, obtained using AUTO, as function
of the effortq2 for the Holling type II selective harvesting only
on adult fishes. BP stands for branch point, i.e. transcritical
bifurcation, and HB means Hopf-bifurcation, SN is for saddle
node bifurcation.

Fig. 12: Two parameter space diagram, obtained using AUTO,
showing the stability regions as functions ofq2 and r2 for the
Holling type II selective harvesting only on adult fishes. Two
CUSP bifurcation are observed, both for low values ofq2, but
one for low value ofr2 and the other one for a high value ofr2.

We also provide a two-parameter space diagram in
terms of q2 and r2. In addition to the saddle node
bifurcation, located on the bottom left and almost
overlapping a cusp bifurcation, we observe the presence
of a second cusp bifurcation for a moderate value ofq2,
see Figure12. The cusp bifurcation implies the presence
of a hysteresis phenomenon. For the first one of the two,
this is also clear e.g. from Figure11 looking at the
behavior of the top predator populationP nearq2 = 0.22.

6.1 Numerical Result with Holling type-II
interaction

To understand the effect of predator saturation, we now
perform a numerical test on the model (1) modified with
Holling type-II functional response as the interaction term
and then compare the result with the original model (1).
With this assumption, the model (1) becomes

dE
dt

=−µE +mS−θES

dL
dt

= eSE −νL−
a1LF

1+β1F
−H1(L)

dS
dt

= lL− nS−
a2SF

1+β2F
−

bSP
1+ γ1P

−H2(S) (9)

dF
dt

=
a1k1LF
1+β1F

+
a2k2SF
1+β2F

−
cFP

1+ γ2P
− f F −H2(F)

dP
dt

=
bhSP

1+ γ1P
+

cgFP
1+ γ2P

− pP−H2(P).
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Fig. 13: For the system (9) without harvesting, using AUTO,
we plot a bifurcation diagram taking theF ’s hunting ratea1 as
bifurcation parameter. Here also, like in case of system (1), there
is a critical pointa1c where Hopf bifurcation occurs.

To capture the robustness of the results we start with the
parameter values corresponding to Table2, with β1 = 0.1,
β2 = 0.2, γ1 = 0.16, γ2 = 0.2. The system (9) without
harvesting shows a stable interior equilibrium steady
state. Next we plot the bifurcation diagram with the
hunting ratea1 as bifurcation parameter and observe the
same qualitative result, see Figure13. But when we
increaseβ1 to 0.2, the effect of predator saturation is
immediately observed, with no Hopf-bifurcation
occurring in the bifurcation diagram, see Figure14.

To observe the effect of harvesting we first simulate
the system (9) with linear harvesting withq1 = 0.07 and
q2 = 0.06 keeping the other parameters fixed and observe
periodic oscillations. We again observe periodic solutions
when we simulate the system (9) with Holling type II
indiscriminate harvesting whereq1 = 0.07, q2 = 0.06,
r1 = 0.6, r2 = 0.9. These results are in agreement with the
results we obtained for the model (1) with a difference in
the quantitative value ofq1 andq2. Finally we perform a
bifurcation diagram taking q2 as the bifurcation
parameter, see Figure15. The structure here is the same
and as complicated as we observe in case of the linear
interaction term. Thus we may conclude that the result we
obtain from the linear interaction term model (1) is robust
enough to hold true for other models with different
functional responses.

Fig. 14: We plot a bifurcation diagram for the system (9) with a1
as bifurcation parameter for a higher predator saturation constant
β1 = 0.2. In this case no Hopf bifurcation occurs.

Fig. 15: Bifurcation diagram for the system (9) as function of
the effort q2 for the Holling type II selective harvesting only
on adult fishes. BP stands for branch point, i.e. transcritical
bifurcation, and HB means Hopf-bifurcation, SN is for saddle
node bifurcation.
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7 Discussion

Here we considered a five dimensional population model,
modelling the situation in the Ligurian sea. This for two
main reasons. The Ligurian sea is one of the most
important places in the Mediterranean where the catch of
bianchetti is exerted. Secondly, this catch is not present in
all the Mediterranean, since in other cultures perhaps the
larvae are less palatable, or due to the local environmental
conditions,bianchetti are seldom present. The food web
accounts for the fact that clupeiforms constitute the prey
for mackerels and both are predated by tunnies. The
model is set up also to investigate how the possible
cannibalism of clupeiforms on their larval offsprings and
the latter being subject to capture by selective fishing to
get the valuablebianchetti affects the long term system
dynamics. In the absence of this selective harvesting, the
predators-free equilibrium is never stable, so that
clupeiforms with their eggs and thebianchetti never settle
to constant values. The conditional stability of the other
two boundary equilibria shows instead that one of the
intermediate predators may disappear, under certain
conditions on the model parameters. This is certainly not
a good implication, since it negatively affects the fishing
industry.

Adding also a linear fishing effort in the system, the
few analytical results indicate that the model retains the
same qualitative behavior as in its the absence, with only
quantitative differences, depending on the value of the
harvesting ratesqi, i = 1, 2.

We consider a set of parameter value representing the
real world situation, taken from different literature. In the
absence of harvesting, numerical experiments exhibit
total extinction if a large enough amount of eggs does not
hatch to become larva, in agreement with the analytical
result. The same result is observed for the model with
high harvesting rates. In the presence of linear harvesting
affecting both the larvae and the fishes, the system may
go toward extinction even for small values of the
harvesting rates ofbianchetti. With selective fishing
performed only on the larvae, there is a high chance of
total extinction. Harvesting only on larvae is however a
rather unrealistic situation, as fisheries operate
continually and therefore the harvest on the adult fish
populations in reality never ceases. But such result should
warn us of its possible undesirable consequences.

We also considered the Holling type-II form of
harvesting, which is more realistic as the Ligurian sea is
rather small, so that for increasing fishing efforts and
limited resources, diminishing returns are expected.

Assuming to hunt all the populations in the web, the
same phenomenon occurring for the linear harvesting
arises in this case as well. Changes are here observed only
in the values of the fishing rates for which the system
behaves differently, i.e. there are quantitative but not
qualitative differences with the previous situations.

Therefore, since selective harvesting only on larvae,
independently of the specific harvesting policy, may cause

total extinction, this kind of selective harvesting must be
avoided to prevent extinction of the food web.

With the hypothetical less realistic set of parameter
values for endangered ecological situation, we observed
that for too low value of the hunting ratea1 of the
mackerels on larvae, the former become extinct. For other
situations in nature leading to such outcome, see [36].
This is understandable since larvae and pilchards in this
model are the only food source of the mackerelsF and
the combination of a lowa1 with a low hunting ratea2 of
the mackerels on pilchardsS (Table 2) causes the
extinction of mackerels. For a moderate value ofa1, all
the populations coexist at a stable steady state, bur if the
value of this removal rate further increases and crosses a
threshold valuea1c, a Hopf bifurcation occurs and the
populations now coexist by exhibiting persistent periodic
oscillations. These remarks enlighten the role of the
removal ratea1 in shaping the dynamics of the food
chain.

Under the same ecological endangered situation,
when harvesting only on adult fish, the saddle-node
bifurcation occurs for values ofq2 andr2 that are larger if
compared with the parameter valuesq1 andr1 at which it
occurs when only larvae are harvested. Thus the chance
of extinction is higher for the latter case than in the
former. In other words, selective harvesting affecting only
the adult fishes has a lower environmental impact on the
whole food chain compared to selective harvesting
performed only on larvae. The chance of collapse of all
the populations is smaller, although the coexistence
equilibrium may become unstable and limit cycles around
it may well arise for smaller value ofq1, see the Hopf
bifurcation point HB2 in Figure11.

To assess the robustness of the model, we performed
numerical simulations for the same model in which the
Holling type II functional response is used. The result
obtained for the original model holds true also for the
Holling type II functional response when the predator
saturation is kept below a certain value. For higher values
of predator saturation, the system never reaches periodic
coexistence, rather switches between stable coexistence
and extinction.

The fishing of the different species of both the blue
fish, in general, andbianchetti, in particular, can thus
affect the various links of the natural trophic chain, with
consequences which could become remarkable or actually
irreparable. In spite of its economic palatability, then it
seems that fishing ofbianchetti should be avoided to
preserve the long term survival of the food chain resource.
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