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Abstract: In this paper, we propose a new hybrid algorithm for solvitapgl optimization problems, namely, integer programming
and minimax problems. The main idea of the proposed algurithirect Search Firefly Algorithm (DSFFA), is to combine firefly
algorithm with direct search methods such as pattern seardtiNelder-Mead methods. In the proposed algorithm, weothyatance
between the global exploration process and the local exgpilon process. The firefly algorithm has a good ability to enakwide
exploration process while the pattern search can incréasexploitation capability of the proposed algorithm. la fimal stage of the
proposed algorithm, we apply a final intensification prodesapplying the Nelder-Mead method on the best solution dosm far,

in order to accelerate the search instead of letting therighhgo running with more iterations without any improvemethe results.
Moreover, we investigate the general performance of the HAS&gorithm on 7 integer programming problems and 10 minima
problems, and compare it against 5 benchmark algorithmsoleimg integer programming problems and 4 benchmark dkgos for
solving minimax problems. Furthermore, the experimergallts indicate that DSFFA is a promising algorithm and etitgms the
other algorithms in most cases.

Keywords: Firefly algorithm, Direct search methods, pattern searcthatk Nelder-Mead method, integer programming problems,
Minimax problems

1 Introduction Firefly algorithm (FA) is one of the most promising
swarm intelligence algorithm inspired by the flashing
behaviour of fireflies$1]. Due to the powerful of firefly

Our goal of this paper is to solve minimax and integer @lgorithm, many researchers have applied it to solve
programming problems via a metaheuristic algorithm. ~ various applications, for example, Horng et al9], [20]

g : : applied FA for digital image compression and
Metaheuristic algorithms have been applied to solve e
T demonstrated that FA used least computation time5]in
many NP-hard optimization problems. Recently, there ares nati and Bajaj used FA for feaﬁjre selection] a[nd

new metaheuristic algorithms which are inspired from the : : .
behaviour of a group of social organisms. TheseShowed that firefly lalgorlthm produced consistent and
algorithms are called nature inspired algorithm or swarmgfrfgraﬁegr(?trhrﬁ:cﬁ IIr;S]tZrnrgsAoggnE]a ?r?g :ﬁﬂ?rasl'tysé%an
intelligence algorithms, such as Ant Colony Optimization FA t 9 Ivl n. ineerina d Zi n ,r bl r:: B u nd
(ACO) [13), Artificial Bee Colony (ABC) 5, Particle 1/ homiso € ewgll ee cr? ttefg foll ems. i SSEAa
Swarm Optimization (PSORF], Bacterial foraging 39, ahanti [7] as well as Chatterjee et alll applie
Bat algorithm (BA) B4, Bee Colony Optimization ‘;‘” anenna d‘?'es'gt” optimization. Sﬁyﬁd' et ;43][ "
eveloped a discrete version o which can efficiently
(BCO) [46], Wolf search §5], Cat swarm 11}, Cuckoo solve NP-hard scheduling problems, also i, [[53],

2\6/3vzrr$2/sﬁa]60ri§flgtcalgorlthm (FA) B, [53, Fish [59], the authors used FA efficiently to solve
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multi-objective load dispatch problems. Furthermore, in  One of the common gradient based approaches for
[37], [43], [56], FA have been applied for scheduling and solving minimax problems is Sequential Quadratic
traveling salesman problem in a promising way. Programming (SQP). Starting from an initial

The above-mentioned algorithms have been widelyapproximation of the solution, a Quadratic Programming
used to solve unconstrained and constrained problems an@P) problem is solved at each iteration of the SQP
their applications. However these algorithms have beermmethod, yielding a direction in the search space.
applied in a few works to solve minimax and integer  There are other algorithms based on a smooth
programming problems, although the variety of many realtechniques have been applied for solving minimax
life applications for these two problems such asproblems. These techniques are solving a sequence of
warehouse location problem, VLSI (very large scalesmooth problems, which approximate the minimax
integration) circuits design problems, robot path plagnin problems in the limit 30], [40], [50]. The algorithms
problems, scheduling problem, game theory, engineeringased in theses techniques aim to generate a sequence of
design problems [, [39], [57). approximations, which converges to Kuhn-Tucker point

An integer programming problem is a mathematical of the minimax problem, for a decreasing sequence of
optimization problem in which all of the variables are positive smoothing parameters. However, the drawback of
restricted to be integers. The unconstrained integetheses algorithms is these parameters are small too fast
programming problem can be defined as follow. and the smooth problems become significantly
minf(x), xe SC Z", 1) ill-conditioned.

) ) ) ) ) Some swarm intelligence algorithms have been
whereZ is the set of integer variableSjs a not necessarily applied to solve minimax problems such as PS9].[
bounded set. , _ The main drawback of applying swarm intelligence

One of the most famous exact integer programmingg|gorithms for solving minimax and integer programming
algorithms is Branch and Bound (BB). However it suffers problems is that they are a population based methods
from high complexity, since it explores a hundred of \ynich are computationally expensive.
nodes in a big tree structure when we solve a large scale The main objective of this paper is to produce a new
g;oglvevr:r;Rienctgﬂitlyérzzgrea?re §t?]me eft'forts t? apP')t/ Som'Ien‘lybrid swarm intelligence algorithm by combining the

. 9 gorithms 1o SOlve INtEYEr oot search methods with the firefly algorithm in order
programming .p.rc.)blems such as ant .colony algorlthmto solve minimax and integer programming problems
Lé?]t,iClgzqéwg:x'C'g;)ﬁﬁ;ggf”;ggﬁﬁggg a]é:u[ctz])b [18]. In the proposed algorithm, we try to overcome the
search algorithm4g] and firefly algorithmi] ' expensive computation time of applying other swarm

We consider another optimization p.roblem in this intelligence algorithms. Invoking the pattern search

= method can accelerate the search, while applying the
paper, namely, minimax problem.The general form of theNelder-Mead method can avoid running the algorithm
minimax problem 0] can be defined as more iterations around the optimal solution without any
min F(x) (2)  improvements.

Moreover, we investigate the general performance of
the proposed FA on well-known benchmark functions and
F(x) =max fi(x), i=1,...,m 3) compare its results against different algorithms. We call

TP n . the proposed algorithm, Direct Search Firefly Algorithm
Thewﬁgr:ii(r)lgérs gréli]r:mﬂr{;;ilng 1p’r.c.>.b7lrej1r.ns, with inequality (DSF.FA)' In'thi's algorithm, we try to comb.ine the firefly
constraints, of the form algorithm, with its good capability of e>_<p|or|ng the search

space, and two of the most promising direct search
min F(x), methods, pattern search and Nelder-Mead methods as
g(x)>0, i=2...,m local search methods.

We investigate the general performance of the DSFFA
algorithm on 7 integer programming problems and 10

where

can be transformed into the following minimax problem

min max fi(x), i=1,....,m (4)  minimax problems and compare it against 5 benchmark
algorithms for solving integer programming problems and
where 4 benchmark algorithms for solving minimax problems.
f1(X) = F(x), The experimental results indicate that DSFFA is a
fi(x) = F(x)— aigi(x), (5) promising algorithm and outperforms the other

algorithms in most cases.

The rest of this paper is organized as follows. In
It has been proved that for sufficiently largg, the  Section2, we highlight the applied direct search methods.
optimum point of the minimax problem, coincides with In Section3, we present the standard firefly algorithm and
the optimum point of the nonlinear programming problem its main components. We describe the proposed algorithm
[6]. and its main structure in Sectiof In Section5, we

o >0,; i=2,...,m
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Algorithm 1 Exploratory search
INPUT: Get the values af®, k, A, d

Table 1: The parameters of the pattern search algorithm.

parameter  definition OUTPUT. New base poinxk
Ap Initial mesh size :

d Variable dimension .

o Reduction factor of mesh size : Seti=1

m Pattern search repetition number : Setk=1

3 Tolerance . repeat

1
2

3

4: Sevd =x1rac T
5. if f(X) < f(X¥1) then
6

7

8

9

Setxl!(+l = xlk
present the numerical experimental results. Finally, we endif -
give the conclusion of the paper in Secti@in Seti =i+1
Setk=k+1
10: until i <d

2 Definition of the problems and an overview
of the applied algorithms

Algorithm 2 The basic pattern search algorithm
INPUT: Get the values of

In this section and its subsections, we give an overview thé?UTPUT: best solutionx*
pattern search method and the Nelder-Mead method.

1: Set the values of the initial values of the mesh sigg
reduction factor of mesh size and termination parameter
£

2: Setk= 1 {Parameter setting}

. . ) o 3: Set the starting base poixﬁ*l {Initial solution }
Direct search method is a method for solving optimization 4. repeat

2.1 Pattern search method

problem that dose not require any information about the 5.
gradient of the objective function. Pattern search methodg:
is one of the most applied direct search methodS to solve7:
global optimization problems. The pattern search method s:
(PS) was proposed by Hook and Jeeves (121).[In PS 9:

method, there are two type of moves, the exploratoryl0:
moves and the pattern moves. In the exploratory moves 41
coordinate search is applied around a selected solutiod2:

with a step length oA as shown in Algorithmt. If the

function value of the new solution is better than the 13:

current solution, the exploratory move is successful.igf

Otherwise, the step length is reduced as 6 (f the
exploratory move is successful, then the pattern search is
applied in order to generate the iterate solution. If the
iterate solution is better than the current solution, thel8
exploratory move is applied on the iterate solution and th

iterate solution is accepted as a new solution. Otherwise?of

if the exploratory move is unsuccessful, the pattern move?l
is rejected and the step lengthis reduced. The operation

is repeated until termination criteria are satisfied. The?3
algorithm of HJ pattern search and the main steps of it ar
presented in Algorithr2. The parameters in Algorithnis
and?2 are reported in Tabl.

5:
26:
27: until k<m

Perform exploratory search as shown in Algorithm
if exploratory move succeshen
Goto 16
else
if |Ax|| < €, then
Stop the search and the current point‘is
else
SetAy = 0Ay_1 {Incremental change reductior}

Goto5

end if
end if
Perform pattern move, whexgt? = xk+ (xk — X<~ 1)
Perform exploratory move witky as the base point
Set*1 equal to the output result exploratory move
if f(xH) < f(x¥) then

Setdk—1 = xk

Setk = xk+1 {New base point

Goto 16
else

Go to 9{The pattern move fails}
end if
Setk=k+1

We can summarize the pattern search algorithm in the
following steps.

—Step 1.The algorithm starts by setting the initial values
of the mesh siz&\y, reduction factor of mesh size

mesh size), if A < g, wheree is a very small value,

stop the search and produces the current solution.
—Step 4.1f the exploratory move fails and is not less

thang, reduce the mesh size as shown in the following

and termination parameter
—Step 2. Apply exploratory search as shown in
algorithm 1 by calculatingf (x¥) in order to obtain a

new base point equation
—Step 3.If the exploratory move is successful, perform
pattern search move, otherwise check the value of the Ak = 04k-1 (6)
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—Step 5.Apply pattern move by calculating,, where -Step 1. Given the current solutionx, two
XK+L — yk (xk _ xk—l)_ neighbourhood trial pointg; andy, are generated in

—Step 6. Set xp as a new base point and apply a neighbourhood of as shown in Figuré (a).
exploratory move on it. —Step 2 A simplex is constructed in order to find a local

—Step 7.If the pattern move is successful, repeat the  trial point as shown in Figur (b).
pattern search move on the new point, otherwise the —Step 3.1f y, is a worst point, we apply the Nelder-
pattern search fails and reduces the mesh size &.in ( Mead algorithm to find a better movement, as shown
—Step 8.The steps are repeated until the termination  in Figurel (c). If we find a better movement, we refer
criteria are satisfied (number of iterations). to this point as a local trial point.

2.2 Nelder Mead method 3 Overview of the firefly algorithm

Nelder and Mead in 1963f] proposed the Nelder-Mead In the following subsection, we will give an overview of
algorithm (NM). NM algorithm is one of the most the main concepts and structure of the firefly algorithm as
popular derivative-free nonlinear optimization algomith ~ follows.
It starts withn+ 1 points (verticesXp,Xp,...,Xnr1. The
vertices are evaluated, ordered and re-labeled in order to
assign the best point and the worst point. In minimization3.1 Main concepts
problems, theq is considered as the best vertex or point
if it has the minimum value of the objective function, The firefly algorithm (FA) is a population based
while the worst poinky, 1 with the maximum value of the  metaheuristic algorithm. FA was proposed by Xin-She
objective function. At each iteration, new points are Yang in late 2007 and 20089, [53. FA has been
computed, along with their function values, to form a new inspired from the behaviour of the swarm such as bird
simplex. Four scalar parameters must be specified tdolks, insects, fish schooling in nature. According to many
define a complete Nelder-Mead algorithm: coefficients ofrecent publications, FA is a promising algorithm and
reflectionp, expansiory, contractiont, and shrinkag®.  outperforms other metaheuristic algorithms such as
These parameters are chosen to satjsfy 0, x > 1, genetic algorithm 32|, [51], [52, [53]. FA has three
0<1<1 and 0< ¢ < 1. The main steps of the flashing characteristics and idealized rules, which are
Nelder-Mead algorithm are presented as shown below ifinspired from the real fireflies. We can summarize these
Algorithm 3. The Nelder-Mead algorithm starts with rules as follows:
n+ 1 verticesx;, i = 1,...,n+ 1, which are evaluated by L , )
calculation their fitness function values. The vertices are 1"_6‘” f_|refl|es aré unisex gnd they will move to other
ordered according to their fitness functions. The reflection _ fireflies regardless of their sex. . .
process starts by computing the reflected point 2.The attractiveness of the firefly is pro_poruonal to its
X = X+ p(X— X4 1)), wherexs the average of all points bnghtngss and it decreases as the' dlstan(;e from the
except the worst. If the reflected poixtis lower than the other firefly increases. The less brighter firefly will
nth point f (x,) and greater than the best poiiixi), then move towards the brighter one. The firefly will move
the reflected point is accepted and the iteration is randomly if there is no brighter firefly than a
terminated. If the reflected point is better than the best _Particularone. o .
point, then the algorithm starts the expansion process by 3.The bnghtngss of a f|refly is determined by the value
calculating the expanded poirg = X+ X (% — X). If Xe is of the objective function.
better than the reflected pointh, the expanded point is
accepted, Otherwise the reflected point is accepted and . )
the iteration is terminated. If the reflected poigtis 3.2 Attractiveness and brightness
greater than thenth point x, the algorithm starts a
contraction process by applying an outsigg or inside  In the firefly algorithm, the attractiveness of a firefly is
contractionxc depending on the comparison between thedetermined by its brightness which is associated with the
values of the reflected poirt and thenth pointx,. If the ~ objective function. The firefly with the less bright is
contracted pointoc Or Xic iS greater than the reflected attracted to the brighter firefly. The brightness (light
point x;, the shrink process is starting. In the shrink intensity)l of firefly decreases with the distance from its
process, the points are evaluated and the new vertices source, and light is absorbed by the environment. It is
simplex at the next iteration will ba),...,x,.,, where  known that light intensityl(r) varies following the
X =X+ QX —X1),i=2,...,n+1. inverse square law as follows

In Figurel, we present an example in order to explain
the main steps of the Nelder-Mead algorithm in two
dimensions. I(r) = 2 (7)
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Fig. 1: Nelder-Mead search strategy in two dimensions.

where lg is the light intensity at the source, is the
distance between any two fireflies. With the fixed light 2
absorption coefficieny and in order to avoid singularity X = X + Bo€Xp(—yrij)(xj —x) + a(rand—05).  (12)

atr = 0 in the expression in7j. The combined effect of (12), the first term is the current position of a firefly,

both the inverse square low and absorption can bgne second term is the attractiveness of the firefly to light
approximated to Gaussian form, i.e., intensity seen by neighbour fireflies and the third term is
I(r) = |Oe—Vf2, (8) the random movement of firefly when there are no
brighter firefly. The coefficiento is a randomization
parameter, wherex € [0,1], while rand is a random
numberrand € [0, 1].

Since a firefly attractiveness is proportional to the liglet th
intensity, the attractiveness function of the firefly can be
defined as

B(r) = Boe ", 9)
whereBy is the initial attractiveness at= 0 3.5 Special cases

) o The firefly algorithm has two special cases based on the
3.3 The distance between two fireflies absorption coefficien. The first case whep= «, in this

- . case, the attractiveness to light intensity is almost zad a
At the positionx; andx;, the distance between any tWo 4 fireflies cannot see each other. Therefore, the firefly
f|refl|eS| anQJ can be deflngd as Euclidian or Cartesian algorithm behaves like a random walk method.
distance as in37], [52], [53), i.e., The second case, when= 0, the light intensity does

not decreases as the distancebetween two fireflies

(10) increases and the attractive coefficient is congBaat 3.
In this case the firefly algorithm corresponds to the
standard particle swarm optimization algorithm (PSO).

rij = [Ix —xj| =

wherex; i is thekthcomponent of spatial coordinatgsof
ith firefly andd is the number of dimensions. Fdr= 2,

10 be writt
(10) can be written as 3.6 Firefly algorithm

rij = \/(Xi —X))2+ (Vi —yj)2. (11)
In this subsection, we highlight the main steps of the
standard Firefly algorithm (FFA)as shown in Algoritifm
3.4 Firefly movement as follows.
The fireflyi is attracted and moved to the firef)yif the —Step 1.The algorithm starts with the initial values of
firefly j is brighter than fireflyi. The movement of the the most important parameters such as the
firefly i to firefly j can be defined as randomization parameter, firefly attractivenesgp,
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Algorithm 3 The Nelder-Mead Algorithm
1. Let x; denote the list of vertices in the current simplexs

2. Order. Order and re-label tha+ 1 vertices from lowest
function valuef (x1) to highest function valué (x,;1) so that
fx) < f(x) <... < f(Xpe1)-
3. Reflection Compute the reflected poirt by
X = X+ P(X—Xn41)), Wherex'is the centroid of then best
points,
X=Yy(x/n),i=1,....n
if f(x1) <f(x)< f(xn)then
replacex, 1 with the reflected poirk, and go to Step 7.
end if
4. Expansion
if f(x) < f(xq)then
Compute the expanded poit by xe = X+ X (X —X).
end if
if f(xe) < f(x)then
Replacexy 1 with xe and go to Step 7.
else
Replacexy 1 with X, and go to Step 7.
end if
5. Contraction.
if f(x)> f(xn)then
Perform a contraction betweerand the best among, 1
andx;.
end if
if f(xn) < f(x)< f(xps1)then
Calculatexoc = X+ 1(% —X) { Outside contract:
end if
if f(Xoc) < f(x)then
Replacexy 1 with Xoc and go to Step 7.
else
Go to Step 6.
end if
if f(Xr) > f(X<n+1) then
Calculatexic = X+ T(Xn+1 — X). {Inside contrac}
end if
if f(Xic) > f(X(ny1) then
replacex,1 with xic and go to Step 7.

media light absorption coefficiemt population sizd®
and finally the maximum generation numb&GN
which is the standard termination criterion in the
algorithm.

—Step 2.The initial populationx, i = {1,...,P} is
randomly generated and the fithess function of each
solution f(x) in the population is evaluated by
calculating its corresponding objective function.

—Step 3.The following steps are repeated until the
termination criterion satisfied which is to reach the
desired number of iteratiodGN

Step 3.1.For eachx andxj, i = {1,...,P} and
i ={1,...,i}, if the objective function of fireflyj is
better than the objective function of firefiy then
firefly i will move towards the fireflyj as in (L2).

Step 3.2.0btain attractive varies with distance
via exp(—yr?) as in Q).

Step 3.3. Evaluate each solutiornk; in the
population and update the corresponding light
intensityl; of each solution.

Step 3.4.Rank the fireflies and find the current
best solutionyest.

—Step 4.Produce the best found solution so far.

2:

3:

Algorithm 4 Firefly algorithm
1:

Set the initial values of the randomization parameter
firefly attractivenesgp, media light absorption coefficiept
population sizé® and maximum generation numb&GN.
Generate the initial populatiog randomly,i = {1,...,P}
{Initialization }

Evaluate the fitness functiof(x;) of all solutions in the
population

4: Light intensityl; atx; is determined byf (x;)
else 5 Sett =0
go to Step 6. 6: repeat
end if _ 7. for (i=1;i < P;i++)do
6. Shrink. Evaluate the new vertices 3 for (j = 1;j < i:j++) do
X =x 4+ @ —%1),i=2,...,n+ 1. 9 if|<t+1))<|(t+l>) then
Replace the verticesq,...,xnr1 With the new vertices i L .
... 7X:1+1_ 12. en('nl\/licf)ve fireflyi towardsj
7. Stopping Condition. Order and re-label the vertices of the : ) . 2
b 12: Obtain attractivenegs, wheref(r) = Boe "
new simplex aa, X, .-, Xny1 such thaf () < () <. < 13: Evaluate the fitness functidifx;) of all solutions in
i];(;(r(];nlll) —f(x1) < ethen the population
Stop, wheree > 0 is a small predetermined tolerance. 1a: Update light intensit)
else 15: end for
Go to Step 3. 16: end for . ‘
end if 17:  Rank the solutions and keep the best solutiqu: found
so far in the population
18: t=t+1
19: until t < MGN
20: Produce the optimal solution.
(@© 2016 NSP
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4 The proposed DSFFA algorithm

In this section, we present the proposed DSFFA algorithm
in details and report all DSFFA parameters and their best

values in Table.

Algorithm 5 DSFFA algorithm
1: Set the initial values of the randomization parameter
firefly attractivenesgp, media light absorption coefficiept
population sizé® and maximum generation numb&GN.

2: Generate the initial populatiog randomly,i = {1,...,P}
{Initialization }
3: Evaluate the fitness functiof(x;) of all solutions in the
population
4: Light intensityl; atx; is determined byf (x;)
5: Sett =0
6: repeat
7. for (i=1;i <P;i++)do
8: for (j =1;j <i;j++)do
9: if Ii(tH)) < Iml)) then
10: Move fireflyi towardsj
11: end if
12: Obtain attractivenegs, wheref(r) = Boe*Vr2
13: Evaluate the fitness functidrix; ) of all solutions in
the population
14: Update light intensity;
15: end for
16: end for
17:  Rank the solutions and keep the best soluki; found
so far in the population
18:  Apply pattern search method on the best solutipg; as
shown in Algorithm2 {Pattern search algorithm}
19: t=t+1

20: until t < MGN
21: Apply Nelder-Mead method on th,ie best solutions as
shown in Algorithm3 {Final intensification }

We present the main steps of the proposed DSF
algorithm in Algorithm5 and list it as follows.

—Step 1.The algorithm starts with the initial values of
the randomization parameter, firefly attractiveness
Bo, media light absorption coefficient, population
sizeP and maximum generation numidGN.

—Step 2.The initial population is randomly generated
X, i = {1,...,P}.

—Step 3.Each solution in the population is evaluated by
calculating its corresponding fitness valfug ).

—Step 4.The light intensityl; of each solutiong in the
population is determined by its corresponding fithess
valuef(x).

—Step 5. The following steps are repeated until the
termination criterion is satisfied which is to reach the
desired number of iteratiodd GN.

Step 5.1.For eachx; andxj, i = {1,...,P} and
j ={1,...,i}, if the objective function of fireflyj is
better than the objective function of fireflyThe firefly
i will move towards the fireflyj as in (L2).

determined
experiments.

Step 5.2.0btain attractive varies with distance
via exg—yr?) asin Q).

Step 5.3. Evaluate each solutiork; in the
population and update the corresponding light
intensityl; of each solution.

Step 5.4.Rank the fireflies and find the current
best solutiornkyest.

Step 5.5.Apply the pattern search method as
shown in Algorithm2 on the best found solution so
far. The PS method is used in order to increase the
exploitation capability of the proposed algorithm.

—Step 6.1n order to accelerate the search and avoid
running the algorithm with more iterations without
any improvement in the results, we apply the
Nelder-Mead method on the best found solution in the
previous stage as a final intensification process.

5 Numerical experiments

In order to investigate the efficiency of the DSFFA , we
present the general performance of it with different
benchmark functions and compare the results of the
proposed algorithm against variant algorithms. We
program DSFFA via MATLAB and take the results of the
comparative algorithms from their original papers. In the
following subsections, we report the parameter setting of
the proposed algorithm with more details and the
properties of the applied test functions. Also, we present
the performance analysis of the proposed algorithm with
the comparative results between it and the other
algorithms.

5.1 Parameter setting

In Table2, we summarize the parameters of the DSFFA

FAaIgorithm and their assigned values. These values are

Table 2: Parameter setting.

Parameters  Definitions Values
P Population size 20
a Randomization parameter 0.5
Bo Firefly attractiveness 0.2
y Light absorption coefficient 1
£ Step size for checking descent directions 30
Local PS repetition number 5
Ao Initial mesh size (Ui—Li)/3
o Reduction factor of mesh size 0.01
MGN Maximum generation number 2d
Nelite No. of best solution for final intensification 1

based on the common setting in the literature and
through our preliminary numerical

—Population sizeP. The experimental tests show that
the best population size B = 20, increasing this
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number will increase the evaluation function values Table 3: The properties of the Integer programming test

without any improvement in the obtained results. functions. . . .
—Randomization parameter a. The randomization Function Dimension (d)  Bound  Optimal
parametewr is one of the most important parameters Fly 5 [-100 100] 0
in the firefly algorithm. In our proposed algorithm, we Flz 5 [-100 100] 0
find that the quality of the solution is related to the Fls 5 [-100100]  -737
value of a parameter and obtain the best solution E:“' i [-188 188] 8
when we reduce the parameterwith a geometric FIZ 5 %:100 100% e
progression reduction as the cooling schedule of Fl, 5 [100100] -3833.12

simulated annealing. In this paper, the experimental
tests show that the best initial value @fis ag = 0.5
and the value ofr is updated as the following.

Table3, we list the properties of the benchmark functions

delta 1 10(-4)\ (1/MGN) (function number, dimension of the problem, problem
elta= _( 0.9 ) ’ bound and the global optimal of each problem) and report
a= (1-deltaja. (13)  the functions with their definitions.

—Firefly attractiveness 3. Firefly movement is based Test problem 1[42. This problem is defined by

on the value of the attractiveness paramedeand Fli(X) = [|X||l1 = [Xa| + ...+ [Xnl-
updated as in 9. We set the initial value of
attractiveness parametgig= 0.2.

—Media light absorption coefficient y. The firefly X1
algorithm is very sensitive to media light absorption
coefficient parametey. It turns out the best initial :
value ofyis 1. Xn

—Pattern search parameters DSFFA uses PS as a Test problem 3[17]. This problem is defined by
local search algorithm in order to refine the obtained

Test problem 2[42]. This problem is defined by

Flo=x"x=[X1 - X]

solution from the firefly algorithm at each iteration. In Flz = [15 27 36 18 1Px

PS the mesh size is initialized adp, in our 35 —20-10 32 —1
experiments we sefl\; = (U; —L;)/3 and when no —20 40 -6 —31 32
improvement achieved in the exploration search 4x' |-10 -6 11 —6 —10| x.
process, the mesh size is deducted by using shrinkage 32 —-31 -6 38 —20
factor o. The experimental results show that the best —10 32 —10-20 31

value of o is 0.1. The PS steps are repeatetimes, ) ] ]
in order to increase the exploitation process of the  1est problem 4[17]. This problem is defined by
algorithm. In our experiment, we seb = 3 as a | (x) = (9 +2& — 11)2 + (3xy + HE—T7)2
pattern search iteration number. ) ] .
—Stopping condition parameters DSFFA terminates Test problem 5[17]. This problem is defined by
the search when the number of iterations reaches to 2 2 4
the desired maximum number of iterations or any other Fls() = (a+106)7 450 =)+ (x2 — 2)
terminations depending on the comparison with other +10(xq —X4)4~
algorithms. In our experiment, we set the value of the ¢t problem 6[41]. This problem is defined by
maximum iteration numbeviGN = 2d, whered is the
dimension of the problems. Flg(X) = 2X4 + 33 + 4xg X2 — 6% — 3%y
—Final intensification. The best obtained solutions
from the firefly algorithm and the pattern search
method are collected in list in order to apply the Fl;(x) = —380384— 13808x; — 23292x,+ 12308x§
Nelder-Mead method on them, the number of the 2
solutions in this list is calledNgi;. We setNgji = 1 in +20364% + 182250
order to avoid increasing in the function evaluation

lue, . .
valie 5.3 The efficiency of the proposed DSFFA
algorithm with integer programming problems

Test problem 7[17]. This problem is defined by

5.2 Integer programming optimization test

problems We verify the powerful of the proposed DSFFA with
integer programming problems and compare the standard

We test the efficiency of the DSFFA algorithm on 7 firefly algorithm with the proposed DSFFA algorithm

benchmark integer programming problerfs$;(— F17). In without applying the final intensification process
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(Nelder-Mead method). We set the same parameter valués.6 DSFFA and other algorithms
for both algorithms in order to make a fair comparison.

We show the efficiency of the proposed algorithm by We compare DSFFA with four benchmark algorithms
selecting the functionBly, Fl; andFl3 and plotting the  (particle swarm optimization with different variants
values of function values versus the number of iterationsalgorithms) in order to verify of the efficiency of the
as shown in Figur@. In Figure2, the solid line refers to  proposed algorithm. Before we discuss the comparison
the proposed DSFFA results, while the dotted line refersresults of all algorithms, we present a brief description
to the standard firefly results after 100 iterations. Figuire about the comparative four algorithngd.
shows that the function values rapidly decrease as the
number of iterations increases for DSFFA results than —-RWMPSOg. RWMPSOg is Random Walk Memetic
those of the standard firefly algorithm. We can conclude  Particle Swarm Optimization (with global variant),
from Figure2 that the combination between the standard ~ which combines the particle swarm optimization with
firefly algorithm with pattern search method can improve  random walk with direction exploitation.
the performance of the standard firefly algorithm and -RWMPSOI. RWMPSOI is Random Walk Memetic
accelerate the convergence of the proposed algorithm. Particle Swarm Optimization (with local variant),

which combines the particle swarm optimization with
random walk with direction exploitation.
—PSOg PSOg is standard particle swarm optimization
5.4 The general performance of the DSFFA with global variant without local search method.

algorithm with integer programming problems —PSOL PSOI is standard particle swarm optimization
with local variant without local search method.

In this subsection, we investigate the general performance

of the proposed algorithm on the integer programmings g 1 Comparison between RWMPSOg, RWMPSOI,
problems by plotting the values of function values versuspsog, PSOI and DSFFA for integer programming
the number of iterations as shown in FigGréor four test  proplems.

functions Fly4, Fls, Flg and Fl;. Figure 3 depicts the
results of the proposed algorithm without applying the
Nelder-Mead method in the final stage of the algorithm
after 100 iterations. We can conclude from Fig@rthat . : iy

: . in order to verify of the efficiency of our proposed
the function values of the proposed DSFFA rapidly algorithm. We test the five comparative algorithms on 7

decrease as the number of iterations increases and tkbeenchmark functions and report the results in Subsection
hybridization between the firefly algorithm and the

.2. We take the results of the comparative algorithms
pattern search method can accelerate the search and hq m their original paper3d]. In Table5, we report the
the algorithm to obtain the optimal or near optimal : X

solution in reasonable time minimum  (min), maximum (max), average (Mean),
: standard deviation (St.D) and Success rate (%Suc) of the

evaluation function values over 50 runs. We consider the

run succeeds if the algorithm reaches to the global

;o : _ minimum of the solution within an error of 16 before
5.5 The efficiency of applying the Nelder-Mead the 20,000 function evaluation value. We report the best

_methOd in the PfOPOSGd DSFFA algorithm with  aqits” between the comparative algorithmsbaidface
integer programming problems text. The results in Tablé show that the proposed
DSFFA algorithm succeeds in all runs and obtains the
desired objective value of each function faster than the
other algorithms.

In this subsection, we present the comparison results
between our DSFFA algorithm and the other algorithms

We apply Nelder-Mead method in the final stage of the
proposed DSFFA algorithm in order to accelerate the
convergence of the proposed algorithm and avoid running

the algorithm with more iterations without any

improvement or slow convergence in the obtained results®. 7 DSFFA and the branch and bound method
The results in Tabld show the mean evaluation function

values of the proposed DSFFA without and with applyingIn order to verify of the powerful of the proposed
Nelder-Mead method, respectively. We report the bestalgorithm, we apply another investigation on the integer
results inboldface text. The results in Tablé show that  programming problems by comparing the DSFFA
invoking the Nelder-Mead method in the final stage canalgorithm against the branch and bound (BB) meti&jd [
accelerate the search and help the algorithm to reach tf0], [28], [33]. Before we discuss the comparative results
the optimal or near optimal solution faster than the between the proposed algorithm and the BB method, we
proposed algorithm without applying the Nelder-Mead present the BB method and the main steps of its algorithm
method. for the sake of completeness.
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Fig. 3: The general performance of DSFFA algorithm with integeigpaonming problems

Table 4: The efficiency of invoking the Nelder-Mead method in the fistalge of DSFFA foF 11 — Fl7 integer programming problems
Function DSFFA DSFFA
without NM  with NM

Fly 1716.23 533.64
Flo 924.58 126.8
Flz 1315.24 629.12
Flg 378.15 157.34
Fls 1105.63 801.52
Flg 245.67 96.45
Fl7 615.47 154.84
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Table 5: Experimental results (min, max, mean, standard deviatiahrate of success) of function evaluation fol; — Fl; test

problems

Function Algorithm Min Max Mean St.D Suc

Fly RWMPSOg 17,160 74,699  27,176.3 8657 50
RWMPSOI 24,870 35,265  30,923.9 2405 50
PSOg 14,000 261,100 29,435.3 42,039 34
PSOI 27,400 35,800 31,252 1818 50
DSFFA 512 540 533.64 559 50

Fl, RWMPSOg 252 912 578.5 136.5 50
RWMPSOI 369 1931 773.9 2855 50
PSOg 400 1000 606.4 119 50
PSOI 450 1470 830.2 206 50
DSFFA 122 132 126.8 2.42 50

Fl3 RWMPSOg 361 41,593  6490.6 6913 50
RWMPSOI 5003 15,833  9292.6 2444 50
PSOg 2150 187,000 12,681 35,067 50
PSOI 4650 22,650 11,320 3803 50
DSFFA 553 699 629.12 33.87 50

Flg RWMPSOg 76 468 215 97.9 50
RWMPSOI 73 620 218.7 115.3 50
PSOg 100 620 369.6 113.2 50
PSOI 120 920 390 134.6 50
DSFFA 141 210 157.34 15.36 50

Flg RWMPSOg 687 2439 1521.8 360.7 50
RWMPSOI 675 3863 2102.9 689.5 50
PSOg 680 3440 1499 513.1 43
PSOI 800 3880 2472.4 6375 50
DSFFA 624 1024 801.52 96.82 50

Flg RWMPSOg 40 238 110.9 48.6 50
RWMPSOI 40 235 112 48.7 50
PSOg 80 350 204.8 62 50
PSOI 70 520 256 107.5 50
DSFFA 90 110 96.45 6.11

Fl; RWMPSOg 72 620 242.7 1322 50
RWMPSOI 70 573 248.9 134.4 50
PSOg 100 660 421.2 130.4 50
PSOI 100 820 466 165 50
DSFFA 128 234 154.84 16.60 50

5.7.1 Branch and bound method

The branch and bound method (BB) is one of the most

Algorithm 6 The branch and bound algorithm

1. Setthe feasible regiddg, Mg > S

2. Seti=0

widely used method for solving optimization problems.
The main idea of BB method is the feasible region of the g.
problem is partitioned subsequently into several sub
regions, this operation is called branching. The lower and 7.
upper bounds values of the function can be determined
over these partitions, this operation is called bounding. g:
We report the main steps of BB method in Algoritién

and summarize the BB algorithm in the following steps.

9:
10:
11:

—Step 1.The algorithm starts with a relaxed feasible 12:
regionMo O S, whereSis the feasible region of the 13

problem. This feasible regioNly is partitioned into

finitely many subseth;.

—Step 2.For each subsétl;, the lower boungB and the
upper boundr will be determined, where

3: repeat

Seti=i+1

Partition the feasible regidvip into many subsets;
For each subséf;, determine lower bounf, wheref =

min B(M;)

For each subséf;, determine upper bound, wherea =

min o (M;)

if (a=p)||/(a—pB <e¢)then

Stop
else

Select some of the sub3dt and partition them

end if

Determine new bound on the new partition elements
14: until (i <m)
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B(Mi) < inff(MiNS) < a(Mj), f is the objective Test problem 2[50]. This problem is defined by
function.
—Step 3.The algorithm is terminated, if the bounds are min FMz(x),
equal or very close, i.ea =8 (ora— B <¢), cisa FM,(x) = max fi(x), i=1,2,3,
predefined positive constant. f b2
—Step 4.0therwise, if the bounds are not equal or very 100 = X+,
close, some of the subsefd; are selected and fo(X) = (2—x1)%2+(2—x2)?,
partitioned in order to obtain a more refined partition fa(X) = 2exp(—X1+ Xo).
of Mo.
criteria are satisfied. programming problem and transformed to minimax

problem according to4) and 6). It is defined by

5.7.2 Comparison between the BB method and DSFFA FM3(X) = 32 + 3 + 2X4 + X4 — 5X1 — 5Xp — 21X3 -+ TXa,

for integer programming problems 5 2 5
RX)= X —X5—X3— X5 — X1+ X — X3+ X4+ 8,

In Table 6, we give the comparison results between the gs(x) = —xF —2x3 — x5 — 2x4+ X1 + X4 + 10,

BB method and the proposed DSFFA. We take the results B

of the BB method from its original pape2T]. In [27], the 94(X) =

BB algorithm transforms the initial integer problem

programming problem to a continuous problem. For the

bounding, the BB uses the sequential quadratic

programming method to solve the generated sub

problems. While for branching, BB uses depth first

traversal with backtracking. We report the average min FMy(x),

gMea)n), standard deviation (St.rI]D) t?nd rate of SLIJccess FM4(x) = maxfi(x) i=1,...,5

Suc) over 30 runs. We report the best mean evaluation 2 2 2

values between the two algorithmslioldface text. The () = (= 10)°+ 50— 12)° +x6 + 304 — 11)*+

results in Tablé show that the proposed algorithm results +10xE + 7x3 + X5 — 4xex7 — 10%6 — 8x7,

are better than the results of the BB method in all tested _ 2 2

functions. The overall results in Tabk show that the f2(x) = fl(x)+10(2X1+3X‘21+X3+24X4+5X5 127),

proposed algorithm is faster and more efficient than the f3(X) = f1(X) +10(7x1 + 3x2 + 10G + X4 — x5 — 282),

BB n}ethod. T A A fa(x) = f1(X) + 10(23%q + X5+ 6x§ — 8x; — 196),

After applying the proposed algorithm on the integer 2,2 2

programming problems and comparing it with different 5 f5(%) = f1(X) + 10(4X] +X; — 3x1Xp + 2% + 5% — 11x7.

algorithms, we conclude that the proposed DSFFA

algorithm is a promising algorithm and can obtain the  Test problem 5[44]. This problem is defined by

optimal or near optimal solution of the integer

programming functions faster than the other comparativenin FMs(x),

X —X — X5 — X% — 2X1 + X2+ X4 +5.

Test problem 4 [50]. This problem is a nonlinear
programming problem and it is defined by

algorithms. FMs(x) = max fi(x), i=1,2,
fl(X) = |X1—|—2X2—7|,
fo(X) = |2x1+X2— 5.

5.8 Minimax optimization test problems
In order to investigate the efficiency of the proposed Test problem 6[44]. This problem is defined by
algorithm, we consider another type of optimization i FMe(X)
problem, namely, minimax problem. We apply DSFFA ’

algorithm on 10 benchmark minimax functions and report FMe(x) = max fi(x),

their properties in Table’. We list the form of each i) = [x[, i=1,...,10.
function as follows. ' _ .
Test problem 1[50]. This problem is defined by Test problem 7[31]. This problem is defined by
min FM1(x), min FMz7(x),
FM1(x) = max fi(x), i=1,2,3, FMy(x) = max fi(x), i = 1,2,
f1(x) = X+x5
’ f1(X) = (X1 — v/ (% + X2)c0s, /X2 + X2)? + 0.005(x2 + X5,
0 (s (el 100 = 00— /06 + B)cos G 3 +0.00806 + )
fa(X) = 2exp—x1+ Xo). fo(X) = (%2 — \/(xf + x%)sin\/xf +X3)% 4 0.005(x5 + x3)*.

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 3, 841-860 (2016)www.naturalspublishing.com/Journals.asp NS = 853

Table 6: Experimental results (mean, standard deviation and raguodess) of function evaluation between BB and DSFFA for
Fl, — Fl7 test problems

Function Algorithm Mean St.D Suc

Flq BB 1167.83 659.8 30
DSFFA 534.86 3.77 30
Flo BB 139.7 102.6 30
DSFFA 127.16 3.31 30
Fl3 BB 4185.5 32.8 30
DSFFA 648.3 2593 30
Fly BB 316.9 125.4 30
DSFFA 157.46 17.01 30
Fls BB 2754 1030.1 30
DSFFA 667.67 103.21 30
Flg BB 211 15 30
DSFFA 140.53 11.36 30
Fl7 BB 358.6 14.7 30

DSFFA 156.36 13.99 30

Test problem 8[31]. This problem is defined by Table 7: Minimax test functions properties.
Function Dimension (d) Desired error goal
FMq 2 1.95222245
FM, 2 2
FM3 4 -40.1
min FMg(x), FMy 7 247
. 4
FMg(x) = max fi(x), i=1,...,4, FMs 2 100
2( ) ¥ 2 FMg 10 104
f1(x) = (xa — (xa+ 1))+ (x2 — (- (a+ 1)) ) " FM- 2 10-4
FMg 4 -44
26+ —5(x1 — (Xa+1)%) — 5(x2— (x1— FMo 7 680
FM1o 4 0.1

(at 1)) — 206+ 74,

fo(x) = f 10| (x1 — (X +1)%)? — (%—
200 =109+ [(Xl (at) ) i (XZ (Xl problem according to4) and 6). It is defined by

min FMg(x),

a2 22 _ A
(X4+1) ) ) +X3+X4+(Xl (X4+1) ) FMg(x) = max fi(x), i=1,....5,

(XZ — (X1 — (Xa+ 1)4)4) +X3— X4 — 8}7 9= <X17610)2+25<X2712)2+X‘31+3(X4711)2
+106€ + 73 + X4 — Axgx7 — 10% — 87,
f3(X) = fl(X) + 10{(X1 — (X4+ 1)4)2+ 2(X2 — (X]_— f2(0) = —2 — 2 — X3 — 4% — 5% + 127,
) fa(X) = —7x1— 32 — 104G — Xg + X5 + 282
(Xa+ 1)4)4) X5+ 26— (xa— (xa+1)%)— fa)= —23q ¥~ 6:C +8x +196
f5(X) = —4x¢ — X3+ 3xqX2 — 264 — 5xg + 11x7.
Xq— 10}, Test problem 10[31]. This problem is defined by
in FM1o(x)
fx:fx+10[x— +142+(x—x— min FM101),
09 = 119 +10[( g b7 (e FMio() = max fi(x)], i=1....2L
4
(at1)H)*) 8+ 200 — (e + 1)) - (X = Xiexptxt) +oexeixt) ~ 17
1
4 .
(Xz—(Xl—(X4+1)4) )—X4—5}- = —05+ 1
20

(14)
5.9 The efficiency of the proposed DSFFA
algorithm with minimax problems

Test problem 9 [31]. This problem is a nonlinear After verifying from the efficiency of the proposed
programming problem and transformed to minimax algorithm with the integer programming problems, we
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—DSFFA
---Standard Firefly algorithm

Fig. 4: The efficiency of the proposed DSFFA algorithm with minimaghdems

investigate the efficiency of combining the firefly 5.11 The efficiency of applying the Nelder-Mead
algorithm with the pattern search method to solvemethod in the proposed DSFFA algorithm with
minimax problems. This test is applied without invoking i i

the final intensification process (Nelder-Mead method).mlnlmax problems

The parameter setting values for both algorithms are the | .
same for both algorithms in order to make a fair We investigate the general performance of the proposed

comparison. We select the functiofdvl,, FMs, FMs, algorithm in order to verify. the importance of invoking
FMg and FM;, to show the efficiency of the proposed Fhe N_e!der;Mead method in the flnal stage as a final
algorithm and plot the values of function values versusintensification process. The results in TaBleshow the
the number of iterations as shown in Figdrdn Figure4, mean evaluation .funct|on values of the proposed DSFFA
the solid line refers to the proposed DSFFA results, whileWithout and with - applying Nelder-Mead method,
the dotted line refers to the standard firefly results after 5g€SPectively. We report the best resultsboldface text
iterations. Figuret shows that the function values rapidly @nd show that invoking the Nelder-Mead method in the
decrease as the number of iterations increases for DSFFANal stage enhance the general performance of the
results than those of the standard firefly algorithm. TheProposed algorithm and can accelerate the search to reach
results in Figuret show that the combination between the 0 the optimal or near optimal solution faster than the
standard firefly algorithm and the pattern search method®roPosed algorithm without applying the Nelder-Mead
can improve the performance of the standard fireflymethod.
algorithm and accelerate the convergence of the proposed
algorithm.

5.12 DSFFA and other algorithms

5.10 The general performance of the DSFFA e compare DSFFA with three benchmark algorithms in
algorithm with minimax problems order to verify of the efficiency of the proposed algorithm
on minimax problems. Before we discuss the comparison
We verify of the general performance of the proposedresults of all algorithms, we present a brief description
DSFFA on the minimax problems by plotting the values about the comparative three algorithms.
of function values versus the number of iterations as
shown in Figures for five test functions=My, FMz, F My, -HPS2 Pp2]. HPS2 is Heuristic Pattern Search
FMs andF M. algorithm. In R2], the authors applied it for solving
Figure5 depicts the results of the proposed algorithm  bound constrained minimax problems by combining
without applying the Nelder-Mead method in the final the Hook and Jeeves (HJ) pattern and exploratory
stage of the algorithm after 50 iterations. The results in  moves with a randomly generated approximate
Figure 5 show that the function values of the proposed  descent direction.
DSFFA rapidly decrease as the number of iterations -UPSOm B6]. UPSOm is a Unified Particle Swarm
increases. We conclude that the hybridization between the Optimization algorithm, which combines the global
firefly algorithm and the pattern search method can and local variants of the standard PSO and
accelerate the search and help the algorithm to obtain the incorporates a stochastic parameter to imitate
optimal or near optimal solution in a few iterations. mutation in evolutionary algorithms.
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Table 8: The efficiency of invoking the Nelder-Mead method in the fisigige of DSFFA foF M1 — F Mg minimax problems

Function DSFFA DSFFA
without NM  with NM

FMq 1115.26 334.61
FM» 690.45 369.39
FM3 687.56 444.31
FMy 1587.63 611.45
FMsg 438.59 169.08
FMeg 13,589 8558.89
FM-, 2568.25 708.13
FMg 7569.15 4388.71
FMg 7148.47 5976.34
FM1o 614.89 294.22

-RWMPSOg B9]. RWMPSOg is Random Walk algorithm. We test the four comparative algorithms on 10
Memetic Particle Swarm Optimization (with global benchmark functions and report the results in Subsection

variant), which combines the particle swarm 5.8 We take the results of the comparative algorithms
optimization with random walk with direction from their original paper22. In Table9, we report the
exploitation. average (Avg), standard deviation (SD) and Success rate

(%Suc) over 100 runs. The mark (-) férMg in HPS2

algorithm and FM,, FMg and FMg in RWMPSOg
5.12.1 Comparison between HPS2, UPSOm, RWMPSOgalgorithm in Table9 means that the results of these
and DSFFA for minimax problems algorithms for these functions are not reported in their

original paper. The run succeeds if the algorithm reaches
In this subsection, we give the comparison resultsthe global minimum of the solution within an error of
between our DSFFA algorithm and the other algorithms10~* before the 20,000 function evaluation value. The
in order to verify of the efficiency of the proposed results in Table9, show that the proposed DSFFA

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

856 N SS 2

M. A. Tawhid, A. F. Ali: Direct search firefly algorithm for...

Table 9: Evaluation function for the minimax problerf; — FM1g

Algorithm Problem Avg SD %Suc
HPS2 FM1 1848.7 2619.4 99
FM2 635.8 114.3 94
FM3 141.2 28.4 37
FMy 8948.4 5365.4 7
FMs 772.0 60.8 100
FMg 1809.1  2750.3 94
FM7 4114.7 1150.2 100
FMg - - -
FMg 283.0 1239 64
FM1o 324.1 173.1 100
UPSOm FM1 1993.8 853.7 100
FM2 1775.6 241.9 100
FM3 1670.4 530.6 100
FMy 12,801.5 5072.1 100
FMs 1701.6 184.9 100
FMg 18,294.5 2389.4 100
FM7 3435.5 1487.6 100
FMg 6618.50 2597.54 100
FMg 2128.5 597.4 100
FM1o 3332.5 1775.4 100
RWMPSOg FM; 2415.3 12442 100
FMy - - -
FM3 3991.3 25452 100
FMy 7021.3 1241.4 100
FMs 2947.8 257.0 100
FMg 18,520.1 776.9 100
FM7 1308.8 505.5 100
FMg - - -
FMg - - -
FM1o 4404.0 3308.9 100
DSFFA FM1 334.61 28.30 100
FM, 369.39 37.98 100
FM3 44431 130.37 100
FMy 611.45 191.82 80
FMs 169.08 31.43 100
FMsg 8558.89 113.133 100
FM7 708.13 121.88 100
FMg 4388.71 212.09 50
FMg 5976.34 146.7 50
FM1o 294.22 98.38 90

algorithm succeeds in all runs and obtains the objectivefollowing subsection, we highlight the main steps of the
value of each function faster than the other algorithms,SQP method and how it works.

except for functiong=Ms, FMg and FMg, Although the

rate of success is 37%, 94% and 64% Fdvl3, FMg and

FMg in HPS2 algorithm, respectively, the proposed5.13.1 Sequential quadratic programming (SQP)
DSFFA algorithm can obtain its results with these
function with 100% rate of success. In 1963 K9, Wilson proposed the first sequential
guadratic programming (SQP) method for the solution of
constrained nonlinear optimization problems. Since then,
SQP methods have evolved into a powerful and effective
class of methods for a wide range of optimization
problems. SQP is one of the most effective methods for
The last test for our proposed algorithm is to compare thenonlinearly constrained optimization problems. SQP
DSFFA with another known method which is called generates steps by solving quadratic subproblems; it can
sequential quadratic programming method (SQP). In thébe used both in trust-region and line search approaches.

5.13 DSFFA and SQP method
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Table 10: Experimental results (mean, standard deviation and raga@afess) of function evaluation between SQP and DSFFA for
FM1 — FMq test problems

Function Algorithm Mean St.D Suc

FMy SQP 40445 81166 24
DSFFA  341.72 2425 30
FMy SQP 8035.7 9939.9 18
DSFFA 37362 4576 30
FM3 SQP 1355 211 30
DSFFA  469.12 130.75 30
FMa SQP 20,000 0.0 0.0
DSFFA  6089.02 186.52 30
FMs SQP 1406 385 30
DSFFA  177.84  44.49 30
FMs SQP 611.6 2006 30
DSFFA  8523.82 108.60 30
M7 SQP 15,684.0 7302.0 10
DSFFA  691.48 104.17 30
FMg SQP 20,000 0.0 00
DSFFA  4374.68 221.69 20
FMo SQP 20,000 0.0 0.0
DSFFA  6018.46 160.23 15
FM1o SQP 48865 8488.4 22

DSFFA 326.48 96.81 30

SQP is suitable for small and large problems and it is In Subsection5.8 we report the results of the two
appropriate to solving problems with significant comparative algorithms on 10 benchmark functions. We
nonlinearities. take the results of the SQP algorithm from papZd[In
The SQP method can be viewed as a generalization oTable 10, we report the average (Avg), standard deviation
Newton’s method for unconstrained optimization in that it (SD) and Success rate (%Suc) over 30 runs. The run
finds a step away from the current point by minimizing a succeeds if the algorithm reaches the global minimum of
quadratic model of the problem. the solution within an error of 1@ before the 20,000
We summarize the main steps of the SPQ method.  function evaluation value. The results in Taldle, show
. . ... that the proposed DSFFA algorithm outperforms the SQP
—Step' 1.The SQP 'allg'or!thm starts with an initial algorithm in 7 of 10 functions, while the results of SQP
SOI.Ut'O.nXO anq the initialized Hessian matrix of the algorithm are better than our proposed algorithm for
objective function. . . functionsFMs3, FMs andFM — 6. We can conclude from
—-Step 2. At each Iteration, the his comparison that the proposed DSFFA outperforms

t
Broyden—Fletcher—Goldfarb—Shanno (BFGS) method,, o SQP algorithm in most of tested minimax problems.
has been used to calculate a positive definite

quasi-Newton approximation of the Hessian matrix,
where the Hessian update is calculated as theB Conclusion

following
Gt HJHn In this paper, we propose a new hybrid algorithm, direct
Hni1=Hn+ aTsh  SHnsy (15)  search Firefly algorithm (DSFFA), by combining the
" " Firefly algorithm with the pattern search and the Nelder
wheres, = Xn+1—Xn andon = Of (Xn11) . Mead methods in order to solve integer programming and
—Step 3.Solve the QP problem inas the following minimax problems. In the proposed algorithm, we try to
mingz) =1/22'Hz+c'z (16)  balance between the exploration and exploitation process

. in the proposed algorithm. The Firefly algorithm has a
—~Step 4 Use Fhe solutionz, to calculate the new good capability of making the exploration and
potential solution exploitation process, however we increase the capability
Xn+1 = Xn + QnZn a7 of the exploitation process in the Firefly algorithm by
applying the pattern search algorithm as a local search
method and the Nelder Mead method in the final stage of
the algorithm in order to refine the best obtained solution
For more information about SQP algorithm, we refer theinstead of running the algorithm with more iterations
interested reader td.fl] and [16]. without any improvement in the results. Also, we

whereay, is a step length and determined through line
search.
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