
Appl. Math. Inf. Sci.10, No. 3, 841-860 (2016) 841

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100304

Direct Search Firefly Algorithm for Solving Global
Optimization Problems

Mohamed A. Tawhid1,2,∗ and Ahmed F. Ali3,4

1 Department of Mathematics and Statistics, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
2 Department of Mathematics and Computer Science, Faculty ofScience, Alexandria University, Moharam Bey 21511, Alexandria,

Egypt
3 Department of Computer Science, Faculty of Computers & Informatics, Suez Canal University, Ismailia, Egypt
4 Department of Mathematics and Statistics, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada

Received: 5 Oct. 2015, Revised: 5 Jan. 2016, Accepted: 6 Jan.2016
Published online: 1 May 2016

Abstract: In this paper, we propose a new hybrid algorithm for solving global optimization problems, namely, integer programming
and minimax problems. The main idea of the proposed algorithm, Direct Search Firefly Algorithm (DSFFA), is to combine thefirefly
algorithm with direct search methods such as pattern searchand Nelder-Mead methods. In the proposed algorithm, we try to balance
between the global exploration process and the local exploitation process. The firefly algorithm has a good ability to make a wide
exploration process while the pattern search can increase the exploitation capability of the proposed algorithm. In the final stage of the
proposed algorithm, we apply a final intensification processby applying the Nelder-Mead method on the best solution found so far,
in order to accelerate the search instead of letting the algorithm running with more iterations without any improvementof the results.
Moreover, we investigate the general performance of the DSFFA algorithm on 7 integer programming problems and 10 minimax
problems, and compare it against 5 benchmark algorithms forsolving integer programming problems and 4 benchmark algorithms for
solving minimax problems. Furthermore, the experimental results indicate that DSFFA is a promising algorithm and outperforms the
other algorithms in most cases.

Keywords: Firefly algorithm, Direct search methods, pattern search method, Nelder-Mead method, integer programming problems,
Minimax problems

1 Introduction

Our goal of this paper is to solve minimax and integer
programming problems via a metaheuristic algorithm.

Metaheuristic algorithms have been applied to solve
many NP-hard optimization problems. Recently, there are
new metaheuristic algorithms which are inspired from the
behaviour of a group of social organisms. These
algorithms are called nature inspired algorithm or swarm
intelligence algorithms, such as Ant Colony Optimization
(ACO) [13], Artificial Bee Colony (ABC) [25], Particle
Swarm Optimization (PSO) [26], Bacterial foraging [38],
Bat algorithm (BA) [54], Bee Colony Optimization
(BCO) [46], Wolf search [45], Cat swarm [11], Cuckoo
search [53], Firefly algorithm (FA) [51], [53], Fish
swarm/school [29], etc.

Firefly algorithm (FA) is one of the most promising
swarm intelligence algorithm inspired by the flashing
behaviour of fireflies [51]. Due to the powerful of firefly
algorithm, many researchers have applied it to solve
various applications, for example, Horng et al. [19], [20]
applied FA for digital image compression and
demonstrated that FA used least computation time. In [5],
Banati and Bajaj used FA for feature selection and
showed that firefly algorithm produced consistent and
better performance in terms of time and optimality than
other algorithms. In [15] and Azad [2], the authors used
FA to solve engineering design problems. Basu and
Mahanti [7] as well as Chatterjee et al. [10] applied FA
for antenna design optimization. Sayadi et al. [43]
developed a discrete version of FA which can efficiently
solve NP-hard scheduling problems, also in [1], [53],
[55], the authors used FA efficiently to solve

∗ Corresponding author e-mail:Mtawhid@tru.ca

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/100304

842 M. A. Tawhid, A. F. Ali: Direct search firefly algorithm for...

multi-objective load dispatch problems. Furthermore, in
[37], [43], [56], FA have been applied for scheduling and
traveling salesman problem in a promising way.

The above-mentioned algorithms have been widely
used to solve unconstrained and constrained problems and
their applications. However these algorithms have been
applied in a few works to solve minimax and integer
programming problems, although the variety of many real
life applications for these two problems such as
warehouse location problem, VLSI (very large scale
integration) circuits design problems, robot path planning
problems, scheduling problem, game theory, engineering
design problems, [12], [35], [57].

An integer programming problem is a mathematical
optimization problem in which all of the variables are
restricted to be integers. The unconstrained integer
programming problem can be defined as follow.

min f(x), x∈ S⊆ Z
n, (1)

whereZ is the set of integer variables,Sis a not necessarily
bounded set.

One of the most famous exact integer programming
algorithms is Branch and Bound (BB). However it suffers
from high complexity, since it explores a hundred of
nodes in a big tree structure when we solve a large scale
problems. Recently, there are some efforts to apply some
of swarm intelligence algorithms to solve integer
programming problems such as ant colony algorithm
[23], [24], artificial bee colony algorithm [3], [47],
particle swarm optimization algorithm [39], cuckoo
search algorithm [48] and firefly algorithm[4].

We consider another optimization problem in this
paper, namely, minimax problem. The general form of the
minimax problem [50] can be defined as

min F(x) (2)

where

F(x) = max fi(x), i = 1, . . . ,m (3)

with fi(x) : S⊂ R
n →R, i = 1, . . . ,m.

The nonlinear programming problems, with inequality
constraints, of the form

min F(x),

gi(x)≥ 0, i = 2, . . . ,m,

can be transformed into the following minimax problem

min max fi(x), i = 1, . . . ,m (4)

where

f1(x) = F(x),

fi(x) = F(x)−αigi(x), (5)

αi > 0, ; i = 2, . . . ,m.

It has been proved that for sufficiently largeαi , the
optimum point of the minimax problem, coincides with
the optimum point of the nonlinear programming problem
[6].

One of the common gradient based approaches for
solving minimax problems is Sequential Quadratic
Programming (SQP). Starting from an initial
approximation of the solution, a Quadratic Programming
(QP) problem is solved at each iteration of the SQP
method, yielding a direction in the search space.

There are other algorithms based on a smooth
techniques have been applied for solving minimax
problems. These techniques are solving a sequence of
smooth problems, which approximate the minimax
problems in the limit [30], [40], [50]. The algorithms
based in theses techniques aim to generate a sequence of
approximations, which converges to Kuhn-Tucker point
of the minimax problem, for a decreasing sequence of
positive smoothing parameters. However, the drawback of
theses algorithms is these parameters are small too fast
and the smooth problems become significantly
ill-conditioned.

Some swarm intelligence algorithms have been
applied to solve minimax problems such as PSO [39].
The main drawback of applying swarm intelligence
algorithms for solving minimax and integer programming
problems is that they are a population based methods
which are computationally expensive.

The main objective of this paper is to produce a new
hybrid swarm intelligence algorithm by combining the
direct search methods with the firefly algorithm in order
to solve minimax and integer programming problems
[18]. In the proposed algorithm, we try to overcome the
expensive computation time of applying other swarm
intelligence algorithms. Invoking the pattern search
method can accelerate the search, while applying the
Nelder-Mead method can avoid running the algorithm
more iterations around the optimal solution without any
improvements.

Moreover, we investigate the general performance of
the proposed FA on well-known benchmark functions and
compare its results against different algorithms. We call
the proposed algorithm, Direct Search Firefly Algorithm
(DSFFA). In this algorithm, we try to combine the firefly
algorithm, with its good capability of exploring the search
space, and two of the most promising direct search
methods, pattern search and Nelder-Mead methods as
local search methods.

We investigate the general performance of the DSFFA
algorithm on 7 integer programming problems and 10
minimax problems and compare it against 5 benchmark
algorithms for solving integer programming problems and
4 benchmark algorithms for solving minimax problems.
The experimental results indicate that DSFFA is a
promising algorithm and outperforms the other
algorithms in most cases.

The rest of this paper is organized as follows. In
Section2, we highlight the applied direct search methods.
In Section3, we present the standard firefly algorithm and
its main components. We describe the proposed algorithm
and its main structure in Section4. In Section5, we

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 3, 841-860 (2016) /www.naturalspublishing.com/Journals.asp 843

Table 1: The parameters of the pattern search algorithm.
parameter definition
∆0 Initial mesh size
d Variable dimension
σ Reduction factor of mesh size
m Pattern search repetition number
ε Tolerance

present the numerical experimental results. Finally, we
give the conclusion of the paper in Section6.

2 Definition of the problems and an overview
of the applied algorithms

In this section and its subsections, we give an overview the
pattern search method and the Nelder-Mead method.

2.1 Pattern search method

Direct search method is a method for solving optimization
problem that dose not require any information about the
gradient of the objective function. Pattern search method
is one of the most applied direct search methodS to solve
global optimization problems. The pattern search method
(PS) was proposed by Hook and Jeeves (HJ) [21]. In PS
method, there are two type of moves, the exploratory
moves and the pattern moves. In the exploratory moves a
coordinate search is applied around a selected solution
with a step length of∆ as shown in Algorithm1. If the
function value of the new solution is better than the
current solution, the exploratory move is successful.
Otherwise, the step length is reduced as in (6). If the
exploratory move is successful, then the pattern search is
applied in order to generate the iterate solution. If the
iterate solution is better than the current solution, the
exploratory move is applied on the iterate solution and the
iterate solution is accepted as a new solution. Otherwise,
if the exploratory move is unsuccessful, the pattern move
is rejected and the step length∆ is reduced. The operation
is repeated until termination criteria are satisfied. The
algorithm of HJ pattern search and the main steps of it are
presented in Algorithm2. The parameters in Algorithms1
and2 are reported in Table1.

We can summarize the pattern search algorithm in the
following steps.

–Step 1.The algorithm starts by setting the initial values
of the mesh size∆0, reduction factor of mesh sizeσ
and termination parameterε.

–Step 2. Apply exploratory search as shown in
algorithm1 by calculatingf (xk) in order to obtain a
new base point

–Step 3.If the exploratory move is successful, perform
pattern search move, otherwise check the value of the

Algorithm 1 Exploratory search

INPUT: Get the values ofx0, k, ∆0, d
OUTPUT: New base pointxk

1: Seti = 1
2: Setk= 1
3: repeat
4: Setxk

i = xk−1
i +∆k−1xk−1

i

5: if f (xk
i)< f (xk−1

i) then
6: Setxk+1

i = xk
i

7: end if
8: Seti = i+1
9: Setk= k+1

10: until i ≤ d

Algorithm 2 The basic pattern search algorithm
INPUT: Get the values ofx
OUTPUT: best solutionx∗

1: Set the values of the initial values of the mesh size∆0,
reduction factor of mesh sizeσ and termination parameter
ε

2: Setk= 1 {Parameter setting}
3: Set the starting base pointxk−1 {Initial solution }
4: repeat
5: Perform exploratory search as shown in Algorithm1
6: if exploratory move successthen
7: Go to 16
8: else
9: if ‖∆k‖< ε, then

10: Stop the search and the current point isx∗

11: else
12: Set∆k = σ∆k−1 {Incremental change reduction}

13: Go to 5
14: end if
15: end if
16: Perform pattern move, wherexk+1

p = xk+(xk−xk−1)
17: Perform exploratory move withxp as the base point
18: Setxk+1 equal to the output result exploratory move
19: if f (xk+1

p)< f (xk) then
20: Setxk−1 = xk

21: Setxk = xk+1 {New base point}
22: Go to 16
23: else
24: Go to 9{The pattern move fails}
25: end if
26: Setk= k+1
27: until k≤ m

mesh size∆ , if ∆ < ε, whereε is a very small value,
stop the search and produces the current solution.

–Step 4.If the exploratory move fails and∆ is not less
thanε, reduce the mesh size as shown in the following
equation

∆k = σ∆k−1 (6)

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

844 M. A. Tawhid, A. F. Ali: Direct search firefly algorithm for...

–Step 5.Apply pattern move by calculatingxp, where
xk+1

p = xk+(xk− xk−1).
–Step 6. Set xp as a new base point and apply
exploratory move on it.

–Step 7.If the pattern move is successful, repeat the
pattern search move on the new point, otherwise the
pattern search fails and reduces the mesh size as in (6).

–Step 8.The steps are repeated until the termination
criteria are satisfied (number of iterations).

2.2 Nelder Mead method

Nelder and Mead in 1965 [34] proposed the Nelder-Mead
algorithm (NM). NM algorithm is one of the most
popular derivative-free nonlinear optimization algorithms.
It starts withn+ 1 points (vertices)x1,x2, . . . ,xn+1. The
vertices are evaluated, ordered and re-labeled in order to
assign the best point and the worst point. In minimization
problems, thex1 is considered as the best vertex or point
if it has the minimum value of the objective function,
while the worst pointxn+1 with the maximum value of the
objective function. At each iteration, new points are
computed, along with their function values, to form a new
simplex. Four scalar parameters must be specified to
define a complete Nelder-Mead algorithm: coefficients of
reflectionρ , expansionχ , contractionτ, and shrinkageφ .
These parameters are chosen to satisfyρ > 0, χ > 1,
0 < τ < 1, and 0< φ < 1. The main steps of the
Nelder-Mead algorithm are presented as shown below in
Algorithm 3. The Nelder-Mead algorithm starts with
n+ 1 verticesxi , i = 1, . . . ,n+ 1, which are evaluated by
calculation their fitness function values. The vertices are
ordered according to their fitness functions. The reflection
process starts by computing the reflected point
xr = x̄+ρ(x̄− x(n+1)), where ¯x is the average of all points
except the worst. If the reflected pointxr is lower than the
nthpoint f (xn) and greater than the best pointf (x1), then
the reflected point is accepted and the iteration is
terminated. If the reflected point is better than the best
point, then the algorithm starts the expansion process by
calculating the expanded pointxe = x̄+ χ(xr − x̄). If xe is
better than the reflected pointnth, the expanded point is
accepted, Otherwise the reflected point is accepted and
the iteration is terminated. If the reflected pointxr is
greater than thenth point xn the algorithm starts a
contraction process by applying an outsidexoc or inside
contractionxic depending on the comparison between the
values of the reflected pointxr and thenth point xn. If the
contracted pointxoc or xic is greater than the reflected
point xr , the shrink process is starting. In the shrink
process, the points are evaluated and the new vertices of
simplex at the next iteration will bex′2, . . . ,x

′
n+1, where

x′ = x1+φ(xi − x1), i = 2, . . . ,n+1.
In Figure1, we present an example in order to explain

the main steps of the Nelder-Mead algorithm in two
dimensions.

–Step 1. Given the current solution x, two
neighbourhood trial pointsy1 andy2 are generated in
a neighbourhood ofx as shown in Figure1 (a).

–Step 2.A simplex is constructed in order to find a local
trial point as shown in Figure1 (b).

–Step 3.If y2 is a worst point, we apply the Nelder-
Mead algorithm to find a better movement, as shown
in Figure1 (c). If we find a better movement, we refer
to this point as a local trial point.

3 Overview of the firefly algorithm

In the following subsection, we will give an overview of
the main concepts and structure of the firefly algorithm as
follows.

3.1 Main concepts

The firefly algorithm (FA) is a population based
metaheuristic algorithm. FA was proposed by Xin-She
Yang in late 2007 and 2008 [52], [53]. FA has been
inspired from the behaviour of the swarm such as bird
folks, insects, fish schooling in nature. According to many
recent publications, FA is a promising algorithm and
outperforms other metaheuristic algorithms such as
genetic algorithm [32], [51], [52], [53]. FA has three
flashing characteristics and idealized rules, which are
inspired from the real fireflies. We can summarize these
rules as follows:

1.All fireflies are unisex and they will move to other
fireflies regardless of their sex.

2.The attractiveness of the firefly is proportional to its
brightness and it decreases as the distance from the
other firefly increases. The less brighter firefly will
move towards the brighter one. The firefly will move
randomly if there is no brighter firefly than a
particular one.

3.The brightness of a firefly is determined by the value
of the objective function.

3.2 Attractiveness and brightness

In the firefly algorithm, the attractiveness of a firefly is
determined by its brightness which is associated with the
objective function. The firefly with the less bright is
attracted to the brighter firefly. The brightness (light
intensity)I of firefly decreases with the distance from its
source, and light is absorbed by the environment. It is
known that light intensity I(r) varies following the
inverse square law as follows

I(r) =
I0
r2 , (7)

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 3, 841-860 (2016) /www.naturalspublishing.com/Journals.asp 845

Fig. 1: Nelder-Mead search strategy in two dimensions.

where I0 is the light intensity at the source,r is the
distance between any two fireflies. With the fixed light
absorption coefficientγ and in order to avoid singularity
at r = 0 in the expression in (7). The combined effect of
both the inverse square low and absorption can be
approximated to Gaussian form, i.e.,

I(r) = I0e−γr2
, (8)

Since a firefly attractiveness is proportional to the light the
intensity, the attractiveness function of the firefly can be
defined as

B(r) = B0e−γr2
, (9)

whereB0 is the initial attractiveness atr = 0

3.3 The distance between two fireflies

At the positionxi and x j , the distance between any two
fireflies i and j can be defined as Euclidian or Cartesian
distance as in [32], [52], [53], i.e.,

r i j = ‖xi − x j‖=

√

√

√

√

d

∑
k=1

(xi,k− x j ,k)2, (10)

wherexi,k is thekthcomponent of spatial coordinatesxi of
ith firefly andd is the number of dimensions. Ford = 2,
(10) can be written as

r i j =
√

(xi − x j)2+(yi − y j)2. (11)

3.4 Firefly movement

The firefly i is attracted and moved to the fireflyj if the
firefly j is brighter than fireflyi. The movement of the
firefly i to firefly j can be defined as

xi = xi +β0exp(−γr2
i j)(x j − xi)+α(rand−0.5). (12)

In (12), the first term is the current position of a firefly,
the second term is the attractiveness of the firefly to light
intensity seen by neighbour fireflies and the third term is
the random movement of firefly when there are no
brighter firefly. The coefficientα is a randomization
parameter, whereα ∈ [0,1], while rand is a random
number,rand∈ [0,1].

3.5 Special cases

The firefly algorithm has two special cases based on the
absorption coefficientγ. The first case whenγ = ∞, in this
case, the attractiveness to light intensity is almost zero and
the fireflies cannot see each other. Therefore, the firefly
algorithm behaves like a random walk method.

The second case, whenγ = 0, the light intensity does
not decreases as the distancer between two fireflies
increases and the attractive coefficient is constantβ = β0.
In this case the firefly algorithm corresponds to the
standard particle swarm optimization algorithm (PSO).

3.6 Firefly algorithm

In this subsection, we highlight the main steps of the
standard Firefly algorithm (FFA)as shown in Algorithm4
as follows.

–Step 1.The algorithm starts with the initial values of
the most important parameters such as the
randomization parameterα, firefly attractivenessβ0,

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

846 M. A. Tawhid, A. F. Ali: Direct search firefly algorithm for...

Algorithm 3 The Nelder-Mead Algorithm
1. Let xi denote the list of vertices in the current simplex,i =
1, . . . ,n+1.
2. Order. Order and re-label then+ 1 vertices from lowest
function valuef (x1) to highest function valuef (xn+1) so that
f (x1)≤ f (x2)≤ . . .≤ f (xn+1).
3. Reflection. Compute the reflected pointxr by
xr = x̄+ ρ(x̄− x(n+1)), where ¯x is the centroid of then best
points,
x̄= ∑(xi/n), i = 1, . . . ,n.
if f (x1)≤ f (xr)< f (xn) then

replacexn+1 with the reflected pointxr and go to Step 7.
end if
4. Expansion.
if f (xr)< f (x1) then

Compute the expanded pointxe by xe = x̄+χ(xr − x̄).
end if
if f (xe)< f (xr) then

Replacexn+1 with xe and go to Step 7.
else

Replacexn+1 with xr and go to Step 7.
end if
5. Contraction.
if f (xr)≥ f (xn) then

Perform a contraction between ¯x and the best amongxn+1
andxr .

end if
if f (xn)≤ f (xr)< f (xn+1) then

Calculatexoc = x̄+ τ(xr − x̄) { Outside contract.}
end if
if f (xoc)≤ f (xr) then

Replacexn+1 with xoc and go to Step 7.
else

Go to Step 6.
end if
if f (xr)≥ f (x(n+1) then

Calculatexic = x̄+ τ(xn+1− x̄). {Inside contract}
end if
if f (xic)≥ f (x(n+1) then

replacexn+1 with xic and go to Step 7.
else

go to Step 6.
end if
6. Shrink. Evaluate then new vertices
x′ = x1+φ(xi −x1), i = 2, . . . ,n+1.
Replace the verticesx2, . . . ,xn+1 with the new vertices
x′2, . . . ,x

′
n+1.

7. Stopping Condition. Order and re-label the vertices of the
new simplex asx1,x2, . . . ,xn+1 such thatf (x1)≤ f (x2)≤ . . .≤
f (xn+1)
if f (xn+1)− f (x1)< ε then

Stop, whereε > 0 is a small predetermined tolerance.
else

Go to Step 3.
end if

media light absorption coefficientγ, population sizeP
and finally the maximum generation numberMGN
which is the standard termination criterion in the
algorithm.

–Step 2. The initial populationxi , i = {1, . . . ,P} is
randomly generated and the fitness function of each
solution f (xi) in the population is evaluated by
calculating its corresponding objective function.

–Step 3. The following steps are repeated until the
termination criterion satisfied which is to reach the
desired number of iterationsMGN

Step 3.1.For eachxi andx j , i = {1, . . . ,P} and
j = {1, . . . , i}, if the objective function of fireflyj is
better than the objective function of fireflyi, then
firefly i will move towards the fireflyj as in (12).

Step 3.2.Obtain attractive varies with distancer
via exp(−γr2) as in (9).

Step 3.3. Evaluate each solutionxi in the
population and update the corresponding light
intensityIi of each solution.

Step 3.4.Rank the fireflies and find the current
best solutionxbest.

–Step 4.Produce the best found solution so far.

Algorithm 4 Firefly algorithm
1: Set the initial values of the randomization parameterα,

firefly attractivenessβ0, media light absorption coefficientγ ,
population sizeP and maximum generation numberMGN.

2: Generate the initial populationxi randomly, i = {1, . . . ,P}
{Initialization }

3: Evaluate the fitness functionf (xi) of all solutions in the
population

4: Light intensityIi at xi is determined byf (xi)
5: Sett = 0
6: repeat
7: for (i = 1;i < P; i++) do
8: for (j = 1; j < i; j++) do

9: if I (t+1)
i)< I (t+1)

j) then
10: Move fireflyi towards j
11: end if
12: Obtain attractivenessβ , whereβ (r) = β0e−γr2

13: Evaluate the fitness functionf (xi) of all solutions in
the population

14: Update light intensityIi
15: end for
16: end for
17: Rank the solutions and keep the best solutionxbest found

so far in the population
18: t = t +1
19: until t < MGN
20: Produce the optimal solution.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 3, 841-860 (2016) /www.naturalspublishing.com/Journals.asp 847

4 The proposed DSFFA algorithm

In this section, we present the proposed DSFFA algorithm
in details and report all DSFFA parameters and their best
values in Table2.

Algorithm 5 DSFFA algorithm
1: Set the initial values of the randomization parameterα,

firefly attractivenessβ0, media light absorption coefficientγ ,
population sizeP and maximum generation numberMGN.

2: Generate the initial populationxi randomly, i = {1, . . . ,P}
{Initialization }

3: Evaluate the fitness functionf (xi) of all solutions in the
population

4: Light intensityIi atxi is determined byf (xi)
5: Sett = 0
6: repeat
7: for (i = 1;i < P; i++) do
8: for (j = 1; j < i; j++) do

9: if I (t+1)
i)< I (t+1)

j) then
10: Move fireflyi towards j
11: end if
12: Obtain attractivenessβ , whereβ (r) = β0e−γr2

13: Evaluate the fitness functionf (xi) of all solutions in
the population

14: Update light intensityIi
15: end for
16: end for
17: Rank the solutions and keep the best solutionxbest found

so far in the population
18: Apply pattern search method on the best solutionxbest as

shown in Algorithm2 {Pattern search algorithm}
19: t = t +1
20: until t < MGN
21: Apply Nelder-Mead method on theNelite best solutions as

shown in Algorithm3 {Final intensification}

We present the main steps of the proposed DSFFA
algorithm in Algorithm5 and list it as follows.

–Step 1.The algorithm starts with the initial values of
the randomization parameterα, firefly attractiveness
β0, media light absorption coefficientγ, population
sizeP and maximum generation numberMGN.

–Step 2.The initial population is randomly generated
xi , i = {1, . . . ,P}.

–Step 3.Each solution in the population is evaluated by
calculating its corresponding fitness valuef (xi).

–Step 4.The light intensityIi of each solutionxi in the
population is determined by its corresponding fitness
value f (xi).

–Step 5. The following steps are repeated until the
termination criterion is satisfied which is to reach the
desired number of iterationsMGN.

Step 5.1.For eachxi andx j , i = {1, . . . ,P} and
j = {1, . . . , i}, if the objective function of fireflyj is
better than the objective function of fireflyi, The firefly
i will move towards the fireflyj as in (12).

Step 5.2.Obtain attractive varies with distancer
via exp(−γr2) as in (9).

Step 5.3. Evaluate each solutionxi in the
population and update the corresponding light
intensityIi of each solution.

Step 5.4.Rank the fireflies and find the current
best solutionxbest.

Step 5.5.Apply the pattern search method as
shown in Algorithm2 on the best found solution so
far. The PS method is used in order to increase the
exploitation capability of the proposed algorithm.

–Step 6. In order to accelerate the search and avoid
running the algorithm with more iterations without
any improvement in the results, we apply the
Nelder-Mead method on the best found solution in the
previous stage as a final intensification process.

5 Numerical experiments

In order to investigate the efficiency of the DSFFA , we
present the general performance of it with different
benchmark functions and compare the results of the
proposed algorithm against variant algorithms. We
program DSFFA via MATLAB and take the results of the
comparative algorithms from their original papers. In the
following subsections, we report the parameter setting of
the proposed algorithm with more details and the
properties of the applied test functions. Also, we present
the performance analysis of the proposed algorithm with
the comparative results between it and the other
algorithms.

5.1 Parameter setting

In Table2, we summarize the parameters of the DSFFA
algorithm and their assigned values. These values are

Table 2: Parameter setting.
Parameters Definitions Values
P Population size 20
α Randomization parameter 0.5
β0 Firefly attractiveness 0.2
γ Light absorption coefficient 1
ε Step size for checking descent directions 10−3

m Local PS repetition number 5
∆0 Initial mesh size (Ui −Li)/3
σ Reduction factor of mesh size 0.01
MGN Maximum generation number 2d
Nelite No. of best solution for final intensification 1

based on the common setting in the literature and
determined through our preliminary numerical
experiments.

–Population sizeP. The experimental tests show that
the best population size isP = 20, increasing this

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

848 M. A. Tawhid, A. F. Ali: Direct search firefly algorithm for...

number will increase the evaluation function values
without any improvement in the obtained results.

–Randomization parameter α. The randomization
parameterα is one of the most important parameters
in the firefly algorithm. In our proposed algorithm, we
find that the quality of the solution is related to the
value of α parameter and obtain the best solution
when we reduce the parameterα with a geometric
progression reduction as the cooling schedule of
simulated annealing. In this paper, the experimental
tests show that the best initial value ofα is α0 = 0.5
and the value ofα is updated as the following.

delta= 1−
(10(−4)

0.9

)(1/MGN)
,

α = (1−delta)α. (13)

–Firefly attractivenessβ0. Firefly movement is based
on the value of the attractiveness parameterβ and
updated as in (9). We set the initial value of
attractiveness parametersβ0 = 0.2.

–Media light absorption coefficient γ. The firefly
algorithm is very sensitive to media light absorption
coefficient parameterγ. It turns out the best initial
value ofγ is 1.

–Pattern search parameters. DSFFA uses PS as a
local search algorithm in order to refine the obtained
solution from the firefly algorithm at each iteration. In
PS the mesh size is initialized as∆0, in our
experiments we set∆0 = (Ui − Li)/3 and when no
improvement achieved in the exploration search
process, the mesh size is deducted by using shrinkage
factor σ . The experimental results show that the best
value ofσ is 0.1. The PS steps are repeatedm times,
in order to increase the exploitation process of the
algorithm. In our experiment, we setm = 3 as a
pattern search iteration number.

–Stopping condition parameters. DSFFA terminates
the search when the number of iterations reaches to
the desired maximum number of iterations or any other
terminations depending on the comparison with other
algorithms. In our experiment, we set the value of the
maximum iteration numberMGN= 2d, whered is the
dimension of the problems.

–Final intensification. The best obtained solutions
from the firefly algorithm and the pattern search
method are collected in list in order to apply the
Nelder-Mead method on them, the number of the
solutions in this list is calledNelit . We setNelit = 1 in
order to avoid increasing in the function evaluation
value, .

5.2 Integer programming optimization test
problems

We test the efficiency of the DSFFA algorithm on 7
benchmark integer programming problems (FI1−FI7). In

Table 3: The properties of the Integer programming test
functions.

Function Dimension (d) Bound Optimal
FI1 5 [-100 100] 0
FI2 5 [-100 100] 0
FI3 5 [-100 100] -737
FI4 2 [-100 100] 0
FI5 4 [-100 100] 0
FI6 2 [-100 100] -6
FI7 2 [-100 100] -3833.12

Table3, we list the properties of the benchmark functions
(function number, dimension of the problem, problem
bound and the global optimal of each problem) and report
the functions with their definitions.

Test problem 1[42]. This problem is defined by

FI1(x) = ‖x‖1 = |x1|+ . . .+ |xn|.

Test problem 2[42]. This problem is defined by

FI2 = xTx=
[

x1 · · · xn
]







x1
...

xn






.

Test problem 3[17]. This problem is defined by

FI3 =
[

15 27 36 18 12
]

x

+xT











35 −20−10 32 −10
−20 40 −6 −31 32
−10 −6 11 −6 −10
32 −31 −6 38 −20
−10 32 −10−20 31











x.

Test problem 4[17]. This problem is defined by

FI4(x) = (9x2
1+2x2

2−11)2+(3x1+4x2
2−7)2

Test problem 5[17]. This problem is defined by

FI5(x) = (x1+10x2)
2+5(x3− x4)

2+(x2−2x3)
4

+10(x1− x4)
4.

Test problem 6[41]. This problem is defined by

FI6(x) = 2x2
1+3x2

2+4x1x2−6x1−3x2.

Test problem 7[17]. This problem is defined by

FI7(x) = −3803.84−138.08x1−232.92x2+123.08x2
1

+203.64x2
2+182.25x1x2.

5.3 The efficiency of the proposed DSFFA
algorithm with integer programming problems

We verify the powerful of the proposed DSFFA with
integer programming problems and compare the standard
firefly algorithm with the proposed DSFFA algorithm
without applying the final intensification process

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 3, 841-860 (2016) /www.naturalspublishing.com/Journals.asp 849

(Nelder-Mead method). We set the same parameter values
for both algorithms in order to make a fair comparison.

We show the efficiency of the proposed algorithm by
selecting the functionsFI1, FI2 andFI3 and plotting the
values of function values versus the number of iterations
as shown in Figure2. In Figure2, the solid line refers to
the proposed DSFFA results, while the dotted line refers
to the standard firefly results after 100 iterations. Figure2
shows that the function values rapidly decrease as the
number of iterations increases for DSFFA results than
those of the standard firefly algorithm. We can conclude
from Figure2 that the combination between the standard
firefly algorithm with pattern search method can improve
the performance of the standard firefly algorithm and
accelerate the convergence of the proposed algorithm.

5.4 The general performance of the DSFFA
algorithm with integer programming problems

In this subsection, we investigate the general performance
of the proposed algorithm on the integer programming
problems by plotting the values of function values versus
the number of iterations as shown in Figure3 for four test
functions FI4, FI5, FI6 and FI7. Figure 3 depicts the
results of the proposed algorithm without applying the
Nelder-Mead method in the final stage of the algorithm
after 100 iterations. We can conclude from Figure3 that
the function values of the proposed DSFFA rapidly
decrease as the number of iterations increases and the
hybridization between the firefly algorithm and the
pattern search method can accelerate the search and help
the algorithm to obtain the optimal or near optimal
solution in reasonable time.

5.5 The efficiency of applying the Nelder-Mead
method in the proposed DSFFA algorithm with
integer programming problems

We apply Nelder-Mead method in the final stage of the
proposed DSFFA algorithm in order to accelerate the
convergence of the proposed algorithm and avoid running
the algorithm with more iterations without any
improvement or slow convergence in the obtained results.
The results in Table4 show the mean evaluation function
values of the proposed DSFFA without and with applying
Nelder-Mead method, respectively. We report the best
results inboldface text. The results in Table4 show that
invoking the Nelder-Mead method in the final stage can
accelerate the search and help the algorithm to reach to
the optimal or near optimal solution faster than the
proposed algorithm without applying the Nelder-Mead
method.

5.6 DSFFA and other algorithms

We compare DSFFA with four benchmark algorithms
(particle swarm optimization with different variants
algorithms) in order to verify of the efficiency of the
proposed algorithm. Before we discuss the comparison
results of all algorithms, we present a brief description
about the comparative four algorithms [39].

–RWMPSOg. RWMPSOg is Random Walk Memetic
Particle Swarm Optimization (with global variant),
which combines the particle swarm optimization with
random walk with direction exploitation.

–RWMPSOl. RWMPSOl is Random Walk Memetic
Particle Swarm Optimization (with local variant),
which combines the particle swarm optimization with
random walk with direction exploitation.

–PSOg. PSOg is standard particle swarm optimization
with global variant without local search method.

–PSOl. PSOl is standard particle swarm optimization
with local variant without local search method.

5.6.1 Comparison between RWMPSOg, RWMPSOl,
PSOg, PSOl and DSFFA for integer programming
problems.

In this subsection, we present the comparison results
between our DSFFA algorithm and the other algorithms
in order to verify of the efficiency of our proposed
algorithm. We test the five comparative algorithms on 7
benchmark functions and report the results in Subsection
5.2. We take the results of the comparative algorithms
from their original paper [39]. In Table 5, we report the
minimum (min), maximum (max), average (Mean),
standard deviation (St.D) and Success rate (%Suc) of the
evaluation function values over 50 runs. We consider the
run succeeds if the algorithm reaches to the global
minimum of the solution within an error of 10−4 before
the 20,000 function evaluation value. We report the best
results between the comparative algorithms inboldface
text. The results in Table5 show that the proposed
DSFFA algorithm succeeds in all runs and obtains the
desired objective value of each function faster than the
other algorithms.

5.7 DSFFA and the branch and bound method

In order to verify of the powerful of the proposed
algorithm, we apply another investigation on the integer
programming problems by comparing the DSFFA
algorithm against the branch and bound (BB) method [8],
[9], [28], [33]. Before we discuss the comparative results
between the proposed algorithm and the BB method, we
present the BB method and the main steps of its algorithm
for the sake of completeness.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

850 M. A. Tawhid, A. F. Ali: Direct search firefly algorithm for...

Fig. 2: The efficiency of the proposed DSFFA algorithm with integer programming problems

Fig. 3: The general performance of DSFFA algorithm with integer programming problems

Table 4: The efficiency of invoking the Nelder-Mead method in the finalstage of DSFFA forFI1−FI7 integer programming problems
Function DSFFA DSFFA

without NM with NM
FI1 1716.23 533.64
FI2 924.58 126.8
FI3 1315.24 629.12
FI4 378.15 157.34
FI5 1105.63 801.52
FI6 245.67 96.45
FI7 615.47 154.84

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 3, 841-860 (2016) /www.naturalspublishing.com/Journals.asp 851

Table 5: Experimental results (min, max, mean, standard deviation and rate of success) of function evaluation forFI1 − FI7 test
problems

Function Algorithm Min Max Mean St.D Suc
FI1 RWMPSOg 17,160 74,699 27,176.3 8657 50

RWMPSOl 24,870 35,265 30,923.9 2405 50
PSOg 14,000 261,100 29,435.3 42,039 34
PSOl 27,400 35,800 31,252 1818 50
DSFFA 512 540 533.64 5.59 50

FI2 RWMPSOg 252 912 578.5 136.5 50
RWMPSOl 369 1931 773.9 285.5 50
PSOg 400 1000 606.4 119 50
PSOl 450 1470 830.2 206 50
DSFFA 122 132 126.8 2.42 50

FI3 RWMPSOg 361 41,593 6490.6 6913 50
RWMPSOl 5003 15,833 9292.6 2444 50
PSOg 2150 187,000 12,681 35,067 50
PSOl 4650 22,650 11,320 3803 50
DSFFA 553 699 629.12 33.87 50

FI4 RWMPSOg 76 468 215 97.9 50
RWMPSOl 73 620 218.7 115.3 50
PSOg 100 620 369.6 113.2 50
PSOl 120 920 390 134.6 50
DSFFA 141 210 157.34 15.36 50

FI5 RWMPSOg 687 2439 1521.8 360.7 50
RWMPSOl 675 3863 2102.9 689.5 50
PSOg 680 3440 1499 513.1 43
PSOl 800 3880 2472.4 637.5 50
DSFFA 624 1024 801.52 96.82 50

FI6 RWMPSOg 40 238 110.9 48.6 50
RWMPSOl 40 235 112 48.7 50
PSOg 80 350 204.8 62 50
PSOl 70 520 256 107.5 50
DSFFA 90 110 96.45 6.11

FI7 RWMPSOg 72 620 242.7 132.2 50
RWMPSOl 70 573 248.9 134.4 50
PSOg 100 660 421.2 130.4 50
PSOl 100 820 466 165 50
DSFFA 128 234 154.84 16.60 50

5.7.1 Branch and bound method

The branch and bound method (BB) is one of the most
widely used method for solving optimization problems.
The main idea of BB method is the feasible region of the
problem is partitioned subsequently into several sub
regions, this operation is called branching. The lower and
upper bounds values of the function can be determined
over these partitions, this operation is called bounding.
We report the main steps of BB method in Algorithm6,
and summarize the BB algorithm in the following steps.

–Step 1.The algorithm starts with a relaxed feasible
regionM0 ⊃ S, whereS is the feasible region of the
problem. This feasible regionM0 is partitioned into
finitely many subsetsMi .

–Step 2.For each subsetMi , the lower boundβ and the
upper boundα will be determined, where

Algorithm 6 The branch and bound algorithm
1: Set the feasible regionM0, M0 ⊃ S
2: Seti = 0
3: repeat
4: Seti = i+1
5: Partition the feasible regionM0 into many subsetsMi
6: For each subsetMi , determine lower boundβ , whereβ =

min β (Mi)
7: For each subsetMi , determine upper boundα, whereα =

min α(Mi)
8: if (α = β)||(α −β ≤ ε) then
9: Stop

10: else
11: Select some of the subsetMi and partition them
12: end if
13: Determine new bound on the new partition elements
14: until (i ≤ m)

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

852 M. A. Tawhid, A. F. Ali: Direct search firefly algorithm for...

β (Mi) ≤ inf f (Mi
⋂

S) ≤ α(Mi), f is the objective
function.

–Step 3.The algorithm is terminated, if the bounds are
equal or very close, i.eα = β (or α −β ≤ ε), ε is a
predefined positive constant.

–Step 4.Otherwise, if the bounds are not equal or very
close, some of the subsetsMi are selected and
partitioned in order to obtain a more refined partition
of M0.

–Step 5.The procedure is repeated until termination
criteria are satisfied.

5.7.2 Comparison between the BB method and DSFFA
for integer programming problems

In Table 6, we give the comparison results between the
BB method and the proposed DSFFA. We take the results
of the BB method from its original paper [27]. In [27], the
BB algorithm transforms the initial integer problem
programming problem to a continuous problem. For the
bounding, the BB uses the sequential quadratic
programming method to solve the generated sub
problems. While for branching, BB uses depth first
traversal with backtracking. We report the average
(Mean), standard deviation (St.D) and rate of success
(Suc) over 30 runs. We report the best mean evaluation
values between the two algorithms inboldface text. The
results in Table6 show that the proposed algorithm results
are better than the results of the BB method in all tested
functions. The overall results in Table6 show that the
proposed algorithm is faster and more efficient than the
BB method.

After applying the proposed algorithm on the integer
programming problems and comparing it with different 5
algorithms, we conclude that the proposed DSFFA
algorithm is a promising algorithm and can obtain the
optimal or near optimal solution of the integer
programming functions faster than the other comparative
algorithms.

5.8 Minimax optimization test problems

In order to investigate the efficiency of the proposed
algorithm, we consider another type of optimization
problem, namely, minimax problem. We apply DSFFA
algorithm on 10 benchmark minimax functions and report
their properties in Table7. We list the form of each
function as follows.
Test problem 1 [50]. This problem is defined by

min FM1(x),

FM1(x) = max fi(x), i = 1,2,3,

f1(x) = x2
1+ x4

2,

f2(x) = (2− x1)2+(2− x2)
2,

f3(x) = 2exp(−x1+ x2).

Test problem 2[50]. This problem is defined by

min FM2(x),

FM2(x) = max fi(x), i = 1,2,3,

f1(x) = x4
1+ x2

2,

f2(x) = (2− x1)2+(2− x2)
2,

f3(x) = 2exp(−x1+ x2).

Test problem 3 [50]. This problem is a nonlinear
programming problem and transformed to minimax
problem according to (4) and (5). It is defined by

FM3(x) = x2
1+ x2

2+2x2
3+ x2

4−5x1−5x2−21x3+7x4,

g2(x) = −x2
1− x2

2− x3
3− x2

4− x1+ x2− x3+ x4+8,

g3(x) = −x2
1−2x2

2− x2
3−2x4+ x1+ x4+10,

g4(x) = −x2
1− x2

2− x2
3−2x1+ x2+ x4+5.

Test problem 4 [50]. This problem is a nonlinear
programming problem and it is defined by

min FM4(x),

FM4(x) = maxfi(x) i = 1, . . . ,5

f1(x) = (x1−10)2+5(x2−12)2+ x4
3+3(x4−11)2+

+10x6
5+7x2

6+ x4
7−4x6x7−10x6−8x7,

f2(x) = f1(x)+10(2x2
1+3x4

2+ x3+4x2
4+5x5−127),

f3(x) = f1(x)+10(7x1+3x2+10x2
3+ x4− x5−282),

f4(x) = f1(x)+10(23x1+ x2
2+6x2

6−8x7−196),

f5(x) = f1(x)+10(4x2
1+ x2

2−3x1x2+2x2
3+5x6−11x7.

Test problem 5[44]. This problem is defined by

min FM5(x),

FM5(x) = max fi(x), i = 1,2,

f1(x) = |x1+2x2−7|,

f2(x) = |2x1+ x2−5|.

Test problem 6[44]. This problem is defined by

min FM6(x),

FM6(x) = max fi(x),

fi(x) = |xi |, i = 1, . . . ,10.

Test problem 7[31]. This problem is defined by

min FM7(x),

FM7(x) = max fi(x), i = 1,2,

f1(x) = (x1−
√

(x2
1+ x2

2)cos
√

x2
1+ x2

2)
2+0.005(x2

1+ x2
2)

2,

f2(x) = (x2−
√

(x2
1+ x2

2)sin
√

x2
1+ x2

2)
2+0.005(x2

1+ x2
2)

2.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 3, 841-860 (2016) /www.naturalspublishing.com/Journals.asp 853

Table 6: Experimental results (mean, standard deviation and rate ofsuccess) of function evaluation between BB and DSFFA for
FI1−FI7 test problems

Function Algorithm Mean St.D Suc
FI1 BB 1167.83 659.8 30

DSFFA 534.86 3.77 30
FI2 BB 139.7 102.6 30

DSFFA 127.16 3.31 30
FI3 BB 4185.5 32.8 30

DSFFA 648.3 25.93 30
FI4 BB 316.9 125.4 30

DSFFA 157.46 17.01 30
FI5 BB 2754 1030.1 30

DSFFA 667.67 103.21 30
FI6 BB 211 15 30

DSFFA 140.53 11.36 30
FI7 BB 358.6 14.7 30

DSFFA 156.36 13.99 30

Test problem 8[31]. This problem is defined by

min FM8(x),

FM8(x) = max fi(x), i = 1, . . . ,4,

f1(x) =
(

x1− (x4+1)4)2
+
(

x2−
(

x1− (x4+1)4)4
)2

+

2x2
3+ x2

4−5
(

x1− (x4+1)4)−5
(

x2−
(

x1−

(x4+1)4)4
)

−21x3+7x4,

f2(x) = f1(x)+10
[

(

x1− (x4+1)4)2
+
(

x2−
(

x1−

(x4+1)4)4
)2

+ x2
3+ x2

4+
(

x1− (x4+1)4)−
(

x2−
(

x1− (x4+1)4)4
)

+ x3− x4−8
]

,

f3(x) = f1(x)+10
[

(

x1− (x4+1)4)2
+2

(

x2−
(

x1−

(x4+1)4)4
)2

+ x2
3+2x2

4−
(

x1− (x4+1)4)−

x4−10
]

,

f4(x) = f1(x)+10
[

(

x1− (x4+1)4)2
+
(

x2−
(

x1−

(x4+1)4)4
)2

+ x2
3+2

(

x1− (x4+1)4)−
(

x2−
(

x1− (x4+1)4)4
)

− x4−5
]

.

(14)

Test problem 9 [31]. This problem is a nonlinear
programming problem and transformed to minimax

Table 7: Minimax test functions properties.
Function Dimension (d) Desired error goal

FM1 2 1.95222245
FM2 2 2
FM3 4 -40.1
FM4 7 247
FM5 2 10−4

FM6 10 10−4

FM7 2 10−4

FM8 4 -44
FM9 7 680
FM10 4 0.1

problem according to (4) and (5). It is defined by
min FM9(x),

FM9(x) = max fi (x), i = 1, . . . ,5,

f1(x) = (x1−10)2+5(x2−12)2+x4
3+3(x4−11)2

+10x6
5+7x2

6 +x4
7−4x6x7−10x6−8x7,

f2(x) = −2x2
1−2x4

3 −x3−4x2
4−5x5+127,

f3(x) = −7x1−3x2−10x2
3 −x4+x5+282,

f4(x) = −23x1−x2
2 −6x2

6+8x7+196,

f5(x) = −4x2
1−x2

2 +3x1x2−2x2
3 −5x6+11x7.

Test problem 10[31]. This problem is defined by

min FM10(x),

FM10(x) = max| fi(x)|, i = 1, . . . ,21,

fi(x) = x1exp(x3ti)+x2exp(x4ti)−
1

1+ ti
,

ti = −0.5+
i−1
20

.

5.9 The efficiency of the proposed DSFFA
algorithm with minimax problems

After verifying from the efficiency of the proposed
algorithm with the integer programming problems, we

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

854 M. A. Tawhid, A. F. Ali: Direct search firefly algorithm for...

Fig. 4: The efficiency of the proposed DSFFA algorithm with minimax problems

investigate the efficiency of combining the firefly
algorithm with the pattern search method to solve
minimax problems. This test is applied without invoking
the final intensification process (Nelder-Mead method).
The parameter setting values for both algorithms are the
same for both algorithms in order to make a fair
comparison. We select the functionsFM2, FM6, FM7,
FM8 and FM10 to show the efficiency of the proposed
algorithm and plot the values of function values versus
the number of iterations as shown in Figure4. In Figure4,
the solid line refers to the proposed DSFFA results, while
the dotted line refers to the standard firefly results after 50
iterations. Figure4 shows that the function values rapidly
decrease as the number of iterations increases for DSFFA
results than those of the standard firefly algorithm. The
results in Figure4 show that the combination between the
standard firefly algorithm and the pattern search method
can improve the performance of the standard firefly
algorithm and accelerate the convergence of the proposed
algorithm.

5.10 The general performance of the DSFFA
algorithm with minimax problems

We verify of the general performance of the proposed
DSFFA on the minimax problems by plotting the values
of function values versus the number of iterations as
shown in Figure5 for five test functionsFM1, FM3, FM4,
FM5 andFM9.

Figure5 depicts the results of the proposed algorithm
without applying the Nelder-Mead method in the final
stage of the algorithm after 50 iterations. The results in
Figure 5 show that the function values of the proposed
DSFFA rapidly decrease as the number of iterations
increases. We conclude that the hybridization between the
firefly algorithm and the pattern search method can
accelerate the search and help the algorithm to obtain the
optimal or near optimal solution in a few iterations.

5.11 The efficiency of applying the Nelder-Mead
method in the proposed DSFFA algorithm with
minimax problems

We investigate the general performance of the proposed
algorithm in order to verify the importance of invoking
the Nelder-Mead method in the final stage as a final
intensification process. The results in Table8 show the
mean evaluation function values of the proposed DSFFA
without and with applying Nelder-Mead method,
respectively. We report the best results inboldface text
and show that invoking the Nelder-Mead method in the
final stage enhance the general performance of the
proposed algorithm and can accelerate the search to reach
to the optimal or near optimal solution faster than the
proposed algorithm without applying the Nelder-Mead
method.

5.12 DSFFA and other algorithms

We compare DSFFA with three benchmark algorithms in
order to verify of the efficiency of the proposed algorithm
on minimax problems. Before we discuss the comparison
results of all algorithms, we present a brief description
about the comparative three algorithms.

–HPS2 [22]. HPS2 is Heuristic Pattern Search
algorithm. In [22], the authors applied it for solving
bound constrained minimax problems by combining
the Hook and Jeeves (HJ) pattern and exploratory
moves with a randomly generated approximate
descent direction.

–UPSOm [36]. UPSOm is a Unified Particle Swarm
Optimization algorithm, which combines the global
and local variants of the standard PSO and
incorporates a stochastic parameter to imitate
mutation in evolutionary algorithms.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 3, 841-860 (2016) /www.naturalspublishing.com/Journals.asp 855

Fig. 5: The general performance of DSFFA algorithm with minimax problems

Table 8: The efficiency of invoking the Nelder-Mead method in the finalstage of DSFFA forFM1−FM10 minimax problems
Function DSFFA DSFFA

without NM with NM
FM1 1115.26 334.61
FM2 690.45 369.39
FM3 687.56 444.31
FM4 1587.63 611.45
FM5 438.59 169.08
FM6 13,589 8558.89
FM7 2568.25 708.13
FM8 7569.15 4388.71
FM9 7148.47 5976.34
FM10 614.89 294.22

–RWMPSOg [39]. RWMPSOg is Random Walk
Memetic Particle Swarm Optimization (with global
variant), which combines the particle swarm
optimization with random walk with direction
exploitation.

5.12.1 Comparison between HPS2, UPSOm, RWMPSOg
and DSFFA for minimax problems

In this subsection, we give the comparison results
between our DSFFA algorithm and the other algorithms
in order to verify of the efficiency of the proposed

algorithm. We test the four comparative algorithms on 10
benchmark functions and report the results in Subsection
5.8. We take the results of the comparative algorithms
from their original paper [22]. In Table 9, we report the
average (Avg), standard deviation (SD) and Success rate
(%Suc) over 100 runs. The mark (-) forFM8 in HPS2
algorithm and FM2, FM8 and FM9 in RWMPSOg
algorithm in Table9 means that the results of these
algorithms for these functions are not reported in their
original paper. The run succeeds if the algorithm reaches
the global minimum of the solution within an error of
10−4 before the 20,000 function evaluation value. The
results in Table9, show that the proposed DSFFA

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

856 M. A. Tawhid, A. F. Ali: Direct search firefly algorithm for...

Table 9: Evaluation function for the minimax problemsFM1−FM10

Algorithm Problem Avg SD %Suc
HPS2 FM1 1848.7 2619.4 99

FM2 635.8 114.3 94
FM3 141.2 28.4 37
FM4 8948.4 5365.4 7
FM5 772.0 60.8 100
FM6 1809.1 2750.3 94
FM7 4114.7 1150.2 100
FM8 - - -
FM9 283.0 123.9 64
FM10 324.1 173.1 100

UPSOm FM1 1993.8 853.7 100
FM2 1775.6 241.9 100
FM3 1670.4 530.6 100
FM4 12,801.5 5072.1 100
FM5 1701.6 184.9 100
FM6 18,294.5 2389.4 100
FM7 3435.5 1487.6 100
FM8 6618.50 2597.54 100
FM9 2128.5 597.4 100
FM10 3332.5 1775.4 100

RWMPSOg FM1 2415.3 1244.2 100
FM2 - - -
FM3 3991.3 2545.2 100
FM4 7021.3 1241.4 100
FM5 2947.8 257.0 100
FM6 18,520.1 776.9 100
FM7 1308.8 505.5 100
FM8 - - -
FM9 - - -
FM10 4404.0 3308.9 100

DSFFA FM1 334.61 28.30 100
FM2 369.39 37.98 100
FM3 444.31 130.37 100
FM4 611.45 191.82 80
FM5 169.08 31.43 100
FM6 8558.89 113.133 100
FM7 708.13 121.88 100
FM8 4388.71 212.09 50
FM9 5976.34 146.7 50
FM10 294.22 98.38 90

algorithm succeeds in all runs and obtains the objective
value of each function faster than the other algorithms,
except for functionsFM3, FM6 and FM9, Although the
rate of success is 37%, 94% and 64% forFM3, FM6 and
FM9 in HPS2 algorithm, respectively, the proposed
DSFFA algorithm can obtain its results with these
function with 100% rate of success.

5.13 DSFFA and SQP method

The last test for our proposed algorithm is to compare the
DSFFA with another known method which is called
sequential quadratic programming method (SQP). In the

following subsection, we highlight the main steps of the
SQP method and how it works.

5.13.1 Sequential quadratic programming (SQP)

In 1963 [49], Wilson proposed the first sequential
quadratic programming (SQP) method for the solution of
constrained nonlinear optimization problems. Since then,
SQP methods have evolved into a powerful and effective
class of methods for a wide range of optimization
problems. SQP is one of the most effective methods for
nonlinearly constrained optimization problems. SQP
generates steps by solving quadratic subproblems; it can
be used both in trust-region and line search approaches.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 3, 841-860 (2016) /www.naturalspublishing.com/Journals.asp 857

Table 10: Experimental results (mean, standard deviation and rate ofsuccess) of function evaluation between SQP and DSFFA for
FM1−FM10 test problems

Function Algorithm Mean St.D Suc
FM1 SQP 4044.5 8116.6 24

DSFFA 341.72 24.25 30
FM2 SQP 8035.7 9939.9 18

DSFFA 373.62 45.76 30
FM3 SQP 135.5 21.1 30

DSFFA 469.12 130.75 30
FM4 SQP 20,000 0.0 0.0

DSFFA 6089.02 186.52 30
FM5 SQP 140.6 38.5 30

DSFFA 177.84 44.49 30
FM6 SQP 611.6 200.6 30

DSFFA 8523.82 108.60 30
FM7 SQP 15,684.0 7302.0 10

DSFFA 691.48 104.17 30
FM8 SQP 20,000 0.0 0.0

DSFFA 4374.68 221.69 20
FM9 SQP 20,000 0.0 0.0

DSFFA 6018.46 160.23 15
FM10 SQP 4886.5 8488.4 22

DSFFA 326.48 96.81 30

SQP is suitable for small and large problems and it is
appropriate to solving problems with significant
nonlinearities.

The SQP method can be viewed as a generalization of
Newton’s method for unconstrained optimization in that it
finds a step away from the current point by minimizing a
quadratic model of the problem.

We summarize the main steps of the SPQ method.

–Step 1. The SQP algorithm starts with an initial
solution x0 and the initialized Hessian matrix of the
objective function.

–Step 2. At each iteration, the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
has been used to calculate a positive definite
quasi-Newton approximation of the Hessian matrix,
where the Hessian update is calculated as the
following

Hn+1 = Hn+
qnqT

n

qT
n sn

−
HT

n Hn

sT
n Hnsn

, (15)

wheresn = xn+1− xn andqn = ∇ f (xn+1)
–Step 3.Solve the QP problem inzas the following

min q(z) = 1/2zTHz+ cTz. (16)

–Step 4. Use the solutionzn to calculate the new
potential solution

xn+1 = xn+αnzn (17)

whereαn is a step length and determined through line
search.

For more information about SQP algorithm, we refer the
interested reader to [14] and [16].

In Subsection5.8, we report the results of the two
comparative algorithms on 10 benchmark functions. We
take the results of the SQP algorithm from paper [27]. In
Table10, we report the average (Avg), standard deviation
(SD) and Success rate (%Suc) over 30 runs. The run
succeeds if the algorithm reaches the global minimum of
the solution within an error of 10−4 before the 20,000
function evaluation value. The results in Table10, show
that the proposed DSFFA algorithm outperforms the SQP
algorithm in 7 of 10 functions, while the results of SQP
algorithm are better than our proposed algorithm for
functionsFM3, FM5 andFM−6. We can conclude from
this comparison that the proposed DSFFA outperforms
the SQP algorithm in most of tested minimax problems.

6 Conclusion

In this paper, we propose a new hybrid algorithm, direct
search Firefly algorithm (DSFFA), by combining the
Firefly algorithm with the pattern search and the Nelder
Mead methods in order to solve integer programming and
minimax problems. In the proposed algorithm, we try to
balance between the exploration and exploitation process
in the proposed algorithm. The Firefly algorithm has a
good capability of making the exploration and
exploitation process, however we increase the capability
of the exploitation process in the Firefly algorithm by
applying the pattern search algorithm as a local search
method and the Nelder Mead method in the final stage of
the algorithm in order to refine the best obtained solution
instead of running the algorithm with more iterations
without any improvement in the results. Also, we

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

858 M. A. Tawhid, A. F. Ali: Direct search firefly algorithm for...

intensely test DSFFA algorithm on 17 benchmark
functions 7 integer programming problems and 10
minimax problems. Moreover, we compare the proposed
algorithm against other 5 algorithms to investigate its
performance for solving integer programming problems
and 4 algorithms to test its performance for solving
minimax problems. Furthermore, the numerical results
indicate that the proposed DSFFA algorithm is a
promising algorithm and suitable to find a global optimal
solution or near optimal solution of the tested functions
with their different properties in reasonable time.

Acknowledgments

The research of the 1st author is supported in part by the
Natural Sciences and Engineering Research Council of
Canada (NSERC). The postdoctoral fellowship of the 2nd
author is supported by NSERC.

References

[1] T. Apostolopoulos and A. Vlachos, Application of the firefly
algorithm for solving the economic emissions load dispatch
problem, International Journal of Combinatorics, Volume
2011, 2011.

[2] S. K. Azad and S. K. Azad, Optimum design of structures
using an improved firefly algorithm, International Journal of
Optimization in Civil Engineering, Vol. 1, No. 2, pp. 327–
340, 2011.

[3] N. Bacanin and M. Tuba, Artificial Bee Colony (ABC)
algorithm for constrained optimization improved with
genetic operators, Studies in Informatics and Control, Vol.
21, Issue 2, pp. 137–146, 2012.

[4] N. Bacanin, I. Brajevic and M. Tuba, Firefly algorithm
applied to integer programming problems, Recent Advances
in Mathematics, 2013.

[5] H. Banati and M. Bajaj, Firefly based feature selection
approach, Int. J. Computer Science Issues, Vol. 8, No. 2, pp.
473–480, 2011.

[6] J.W. Bandler, and C. Charalambous, Nonlinear
programming using minimax techniques. Journal of
Optimization Theory and Applications, Vol. 13, pp.
607–619, 1974.

[7] B. Basu and G. K. Mahanti, Firefly and artificial bees colony
algorithm for synthesis of scanned and broadside linear
array antenna, Progress in Electromagnetic Research B.,
Vol. 32, pp.169–190, 2011.

[8] B. Borchers and J.E. Mitchell, Using an interior point
method in a branch and bound algorithm For integer
programming, Technical Report, Rensselaer Polytechnic
Institute, July 1992.

[9] B. Borchers and J.E. Mitchell, A computational comparison
of branch and bound and outer approximation methods
for 0-1 mixed integer nonlinear programs, Computers and
Operations Research, Vol. 24, No. 8, pp. 699–701, 1997.

[10] A. Chatterjee, G. K. Mahanti, and A. Chatterjee, Design
of a fully digital controlled reconfigurable switched beam

conconcentric ring array antenna using firefly and particle
swarm optimization algorithm, Progress in Electromagnetic
Research B., Vol. 36, pp. 13–131, 2012.

[11] S. A. Chu, P.-W. Tsai, and J.-S. Pan. Cat swarm
optimization. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Vol. 4099, LNAI, pp.
854–858, 2006.

[12] D. Z. Du and P.M. Pardalose, Minimax and applications,
Kluwer, 1995.

[13] M. Dorigo, Optimization, Learning and Natural Algorithms,
Ph.D. Thesis, Politecnico di Milano, Italy, 1992.

[14] R. Fletcher, Practical method of optimization, Vol.1 &2,
John Wiley and Sons, 1980.

[15] A. H. Gandomi, X. S. Yang, and A. H. Alavi, Cuckoo search
algorithm: a metaheuristic approach to solve structural
optimization problems, Engineering with Computers, Vol.
27, article DOI 10.1007/s00366-011-0241-y, 2011.

[16] P. E. Gill, W. Murray and M.H. Wright, Practical
Optimization, Academic Press, London, 1981.

[17] A. Glankwahmdee, J.S. Liebman and G.L. Hogg,
Unconstrained discrete nonlinear programming.
Engineering Optimization, Vol. 4, pp. 95–107, 1979.

[18] F.S. Hillier and G. J. Lieberman, Introduction to operations
research, MCGraw-Hill, 1995.

[19] M.H. Horng, Y.X. Lee, M.C. Lee and R.J. Liou, Firefly
metaheuristic algorithm for training the radial basis function
network for data classification and disease diagnosis, in:
Theory and New Applications of Swarm Intelligence
(Edited by R. Parpinelli and H. S. Lopes), pp. 115–132,
2012.

[20] M. H. Horng, Vector quantization using the firefly algorithm
for image compression, Expert Systems with Applications,
Vol. 39, pp. 1078–1091, 2012.

[21] R. Hooke and T. A. Jeeves, Direct search , Solution
of numerical and statistical problems, J. Assoc. Comput.
Mach., pp. 212–229, 1961.

[22] A. C. P. Isabel, E. Santo and E. Fernandes, Heuristics
pattern search for bound constrained minimax problems,
computational science and its applications- Vol. 6784, pp.
174–184, ICCSA 2011.

[23] R. Jovanovic and M. Tuba, An ant colony optimization
algorithm with improved pheromone correction strategy for
the minimum weight vertex cover problem, Applied Soft
Computing, Vol. 11, Issue 8, pp. 5360–5366, 2011.

[24] R. Jovanovic and M. Tuba, Ant colony optimization
algorithm with pheromone correction strategy for minimum
connected dominating set problem, Computer Science and
Information Systems (ComSIS), Vol. 9, Issue 4, Dec 2012.

[25] D. Karaboga and B. Basturk. A powerful and efficient
algorithm for numerical function optimization: artificialbee
colony (abc) algorithm. Journal of global optimization, Vol.
39, No. 3, pp. 459–471, 2007.

[26] J. Kennedy and R. C. Eberhart, Particle swarm optimization,
Proceedings of the IEEE International Conference on Neural
Networks, Vol. 4, pp. 1942–1948, 1995.

[27] E.C. Laskari, K.E. Parsopoulos and M.N. Vrahatis, Particle
swarm optimization for integer programming, Proceedings
of the IEEE 2002 Congress on Evolutionary Computation,
Honolulu (HI), pp. 1582–1587, 2002.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 3, 841-860 (2016) /www.naturalspublishing.com/Journals.asp 859

[28] E. L. Lawler and D. W. Wood, Branch and bound methods:
A Survey, Operations Research, Vol. 14, pp. 699–719, 1966.

[29] X. L. Li, Z.J. Shao, and J.X. Qian, Optimizing method based
on autonomous animats: Fish-swarm algorithm. Xitong
Gongcheng Lilun yu Shijian/System Engineer- ing Theory
and Practice, Vol. 22, No. 11, pp. 32, 2002.

[30] G. Liuzzi, S. Lucidi and M. Sciandrone, A derivative-free
algorithm for linearly constrained finite minimax problems.
SIAM Journal on Optimization, Vol. 16, pp. 1054–1075,
2006.

[31] L. Lukan and J. Vlcek, Test problems for nonsmooth
unconstrained and linearly constrained optimization,
Technical report 798, Institute of Computer Science,
Academy of Sciences of the Czech Republic, Prague, Czech
Republic, 2000.

[32] S. Lukasik and S. Zak, Firefly algorithm for continuous
constrained optimization tasks, in Proceedings of the
International Conference on Computer and Computational
Intelligence (ICCCI 09), N.T. Nguyen, R. Kowalczyk, and
S.-M. Chen, Eds., Vol. 5796 of LNAI, pp. 97–106, Springer,
Wroclaw, Poland, October 2009.

[33] V.M. Manquinho, J.P. Marques Silva, A.L. Oliveira and
K.A. Sakallah, Branch and bound algorithms for highly
constrained integer programs, Technical Report, Cadence
European Laboratories, Portugal, 1997.

[34] J. A. Nelder and R. Mead, A simplex method for function
minimization, Computer journal, Vol. 7, pp. 308–313, 1965.

[35] G. L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd,
editor. Handbooks in OR & MS, volume 1, Elsevier, 1989.

[36] K. E. Parsopoulos and M.N. Vrahatis, Unified particle
swarm optimization for tackling operations research
problems. in Proceeding of IEEE 2005 swarm Intelligence
Symposium, Pasadena, USA, pp. 53–59, 2005.

[37] S. Palit, S. Sinha, M. Molla, A. Khanra and M. Kule, A
cryptanalytic attack on the knapsack cryptosystem using
binary Firefly algorithm, in: 2nd Int. Conference on
Computer and Communication Technology (ICCCT), 15-17
Sept 2011, India, pp. 428–432, 2011.

[38] M. K. Passino, Biomimicry of bacterial foraging for
distributed optimization and control, Control Systems,
IEEE, Vol. 22, No. 3, pp. 52–67, 2002.

[39] Y. G. Petalas, K.E. Parsopoulos and M. N. Vrahatis,
Memetic particle swarm optimization, Ann Oper Res, Vol.
156, pp. 99–127, 2007.

[40] E. Polak, J.O. Royset and R.S. Womersley, Algorithms with
adaptive smoothing for finite minimax problems, Journal of
Optimization Theory and Applications, Vol. 119, pp. 459–
484, 2003.

[41] S. S. Rao, Engineering optimization-theory and practice.
Wiley, New Delhi, 1994.

[42] G. Rudolph, An evolutionary algorithm for integer
programming. In: Davidor Y, Schwefel H-P, Mnner R (eds),
pp. 139–148. Parallel Problem Solving from Nature Vol. 3,
1994.

[43] M.K. Sayadi M. K., R. Ramezanian and N. N. Ghaffari,
A discrete firefly meta-heuristic with local search for
makespan minimization in permutation flow shop
scheduling problems, Int. J. of Industrial Engineering
Computations, Vol. 1, pp. 1–10, 2010.

[44] H. P. Schwefel, Evolution and optimum seeking, New York,
Wiley, 1995.

[45] R. Tang, S. Fong, X.S. Yang, and S. Deb, Wolf search
algorithm with ephemeral memory. In Digital Information
Management (ICDIM), 2012 Seventh International
Conference on Digital Information Management, pp.
165–172, 2012.

[46] D. Teodorovic and M. DellOrco, Bee colony optimization
cooperative learning approach to complex transportation
problems. In Advanced OR and AI Methods in
Transportation: Proceedings of 16th MiniEURO
Conference and 10th Meeting of EWGT (13-16 September
2005).Poznan: Publishing House of the Polish Operational
and System Research, pp. 51–60, 2005.

[47] M. Tuba, N. Bacanin and N. Stanarevic, Adjusted artificial
bee colony (ABC) algorithm for engineering problems,
WSEAS Transaction on Computers, Vol. 11, Issue 4, pp.
111–120, 2012.

[48] M. Tuba, M. Subotic and N. Stanarevic, Performance
of a modified cuckoo search algorithm for unconstrained
optimization problems, WSEAS Transactions on Systems,
Vol. 11, Issue 2, pp. 62–74, 2012.

[49] B. Wilson, A simplicial Algorithm for Concave
Programming, PhD thesis, Harvard University, 1963.

[50] S. Xu, Smoothing method for minimax problems,
Computational Optimization and Applications, Vol.
20, pp. 267–279, 2001.

[51] X. S. Yang, Firefly algorithm, stochastic test functions and
design optimization, International Journal of Bio-Inspired
Computation, Vol. 2, No. 2, pp. 78–84, 2010.

[52] X. S. Yang, Nature-Inspired Metaheuristic Algorithms,
Luniver Press, UK, 2008.

[53] X. S. Yang, Firefly algorithms for multimodal optimisation,
Proc. 5th Symposium on Stochastic Algorithms,
Foundations and Applications, (Eds. O. Watanabe and
T. Zeugmann), Lecture Notes in Computer Science, Vol.
5792: pp. 169–178, 2009.

[54] X. S. Yang. A new metaheuristic bat-inspired algorithm.
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2010), pages 6574, 2010.

[55] X. S. Yang, Swarm-based metaheuristic algorithms and no-
free-lunch theorems, in: Theory and New Applications of
Swarm Intelligence (Eds. R. Parpinelli and H. S. Lopes),
Intech Open Science, pp. 1–16, 2012.

[56] A. Yousif, A. H. Abdullah, S. M. Nor, and A. A. Abdelaziz,
Scheduling jobs on grid computing using firefly algorithm,
J. Theoretical and Applied Information Technology, Vol. 33,
No. 2, pp. 155–164, 2011.

[57] S. Zuhe, A. Neumaier and M.C. Eiermann, Solving minimax
problems by Interval Methods, BIT, Vol. 30, pp. 742–751,
1990.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

860 M. A. Tawhid, A. F. Ali: Direct search firefly algorithm for...

Mohamed A. Tawhid
got his PhD in Applied
Mathematics from the
University of Maryland
Baltimore County, Maryland,
USA. From 2000 to 2002, he
was a Postdoctoral Fellow at
the Faculty of Management,
McGill University, Montreal,
Quebec, Canada. Currently,

he is a full professor at Thompson Rivers University. His
research interests include nonlinear/stochastic/heuristic
optimization, operations research, modelling and
simulation, data analysis, and wireless sensor network.
He has published in journals such as Computational
Optimization and Applications, J. Optimization and
Engineering, Journal of Optimization Theory and
Applications, European Journal of Operational Research,
Journal of Industrial and Management Optimization,
Journal Applied Mathematics and Computation, etc.
Mohamed Tawhid published more than 40 referred papers
and edited 5 special issues in J. Optimization and
Engineering (Springer), J. Abstract and Applied
Analysis, J. Advanced Modeling and Optimization, and
International Journal of Distributed Sensor Networks.
Also, he has served on editorial board several journals.
Also, he has worked on several industrial projects in BC,
Canada.

Ahmed F. Ali Received
the B.Sc., M.Sc. and
Ph.D. degrees in computer
science from the Assiut
University in 1998, 2006 and
2011, respectively. Currently,
he is a Postdoctoral Fellow at
Thompson Rivers University,
Kamloops, BC Canada.
In addition, he is an Assistant

Professor at the Faculty of Computers and Informatics,
Suez Canal University, Ismailia, Egypt. He served as a
member of Computer Science Department Council from
2014-2015. He worked as director of digital library unit at
Suez Canal University; he is a member in SRGE
(Scientific Research Group in Egypt). He also served as a
technical program committee member and reviewer in
worldwide conferences. Dr. Ali research has been focused
on meta-heuristics and their applications, global
optimization, machine learning, data mining, web mining,
bioinformatics and parallel programming. He has
published many papers in international journals and
conferences and he has uploaded some meta-heuristics
lectures in slidshare website.

c© 2016 NSP
Natural Sciences Publishing Cor.

	Introduction
	Definition of the problems and an overview of the applied algorithms
	Overview of the firefly algorithm
	The proposed DSFFA algorithm
	Numerical experiments
	Conclusion

