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Abstract: Continuously growing of semiconductor technology makes the processor architectures more complicated to improve the
instruction level parallelism. In the mechanisms of improving instruction level parallelism, VLIW is an attractive technique to improve
parallelism without complicated instruction reordering mechanism for dynamic execution. The instruction scheduling is relied on
VLIW compiler to select and pack suitable instructions into a VLIW bundle. The programs have to be recompiled accordingly. This
drawback limits the popularity of VLIW processors. In this paper, a novel VLIW processor, Avatar, is proposed to overcome the above
incompatible problems. By integration with a novel scheduling/packing mechanism, DynaPack, this processor can directly execute
the legacy MIPS32 binary codes without recompilation, and fulfill the instruction level parallelism of Avatar VLIW processor. By
integrating a new instruction scheduling/packing hardware mechanism, DynaPack can analyze the dependence relations of instructions,
maintain their correctness, and pack suitable instructions into a VLIW bundle on-the-fly. The experimental result reveals that Avatar
processor with DynaPack mechanism can obtain up to 3.4 instructions per cycle. The chip fabrication results of DynaPack mechanism
can achieve 111 MHz by consuming 19343886µm2 under TSMC 0.13µm technology library.
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1. Introduction

Continuously growing of semiconductor technology makes
the processor architectures more complicated to improve
the instruction level parallelism. In these mechanisms for
improving instruction level parallelism, VLIW [8] is an at-
tractive technique to improve parallelism without compli-
cated instruction reordering mechanism for dynamic ex-
ecution, therefore it widely adopted in mathematical and
scientific computations. The major characteristic of VLIW
architectures is to pack independent instructions into a wider
instruction, aka instruction bundle. Since several paralleliz-
able instructions can be executed by the multiple func-
tional units simultaneously, the instruction level parallelism
can be improved. Different from conventional dynamic su-
perscalar that adopts complicated mechanisms, such as Toma-
sulo algorithm, reordering buffer, register renaming [7],
VLIW architectures rely on sophisticated compilers to an-
alyze and pack instructions into VLIW bundles in compile-
time. It can reduce the hardware cost of above hardware
scheduling mechanisms but induces another serious prob-
lem. Since the VLIW bundle and conventional instructions

are dramatically different, the programs have to be recom-
piled. This incompatible problem limits the popularity of
VLIW architectures. Some researcher proposed dynami-
cally trace scheduled VLIW architecture [1] to solve this
problem. It integrates a VLIW engine, a conventional su-
perscalar core into a processor, with a complicated hard-
ware scheduler to keep instruction trace and dispatch the
suitable instruction bundle/instructions to the VLIW en-
gine superscalar core, according to the profiling results of
scheduler. Due to its complex tracing/scheduling mecha-
nism, this hardware mechanism requires a huge amount of
hardware resources and executing time. Also, it can not
execute the legacy instructions. The problem of binary in-
compatibility still reduces its usage.

In this paper, a novel VLIW processor, Avatar, is pro-
posed to overcome the above incompatible problems. By
integration with a novel scheduling/packing mechanism,
DynaPack, this processor can directly execute the legacy
MIPS32 [4] binary codes without recompilation, and fulfill
the instruction level parallelism of Avatar VLIW proces-
sor. By integrating a new instruction scheduling/packing
hardware mechanism, DynaPack can analyze the depen-
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dence relations of instructions, maintain their correctness,
and pack suitable instructions into a VLIW bundle on-
the-fly. The detailed mechanism of DynaPack will be dis-
cussed in the following sections.

The rest of this paper is organized as follows. Section
2 briefly discusses related works of dynamic scheduling
mechanisms for VLIW architectures. Section 3 presents
the detailed architecture and execution flow of proposed
DynaPack architecture and corresponding scheduling/packing
mechanisms. Section 4 shows the experimental results of
DynaPack mechanism. Finally, the concluding remark is
proposed in Section 5.

2. Related Works

Dynamic scheduling mechanism is a possible solution to
overcome binary code compatibility problems in VLIW
architectures. Cyclone scheduler [3] is a kind of dynamic
instruction scheduler by using time estimation method. If
the real execution time of the program meets the estimated
time, the scheduler will issue those instructions into func-
tional units. If not, the scheduler will insert instructions
to replay queue. This scheduler is suitable for superscalar
architectures with out-of-order execution capabilities, be-
cause the replay penalty of superscalar with out-of-order
execution is less than VLIW architectures.

Dynamically Trace Scheduled VLIW [1] is another kind
of dynamic scheduling VLIW architectures. As mentioned
before, this VLIW architecture integrates trace scheduler,
VLIW engine and a superscalar. The trace scheduler resched-
ules original instructions and packs into VLIW instruc-
tions, and then saves VLIW instructions to VLIW cache.
Some original instructions that can’t be executed concur-
rently will save to primary instruction cache. Because of
these researches are simulator-based experiments, some
hardware latency penalty and extra logic cost is not men-
tioned. The feasibility of hardware implementation is also
hard to distinguish.

The other approach to overcome binary code compati-
bility problem is Dynamic rescheduling [5][6]. This mech-
anism translates the source code into new object code to
fulfill the requirement of binary compatible. Because dy-
namic rescheduling mechanism is integrates with operat-
ing system and memory management, the scheduling and
translating latency may be partially hidden by page fault,
but still delay the executing time.

3. The Architecture of Avatar Processor with
DynaPack Mechanism

The proposed VLIW processor, Avatar, is quad-issue VLIW
architecture with a sophisticated instruction scheduler/packer,
DynaPack, to execute the legacy MIPS32 binary codes on-
the-fly, without recompilation. The basic pipelined datap-
ath of Avatar processor is as shown in Fig. 1. The schedul-
ing/packing mechanism of DynaPack is discussed later.

The execution flow of Avatar processor is as below. All
of the legacy MIPS32 instruction stream are fetched from
instruction cache, and then stored into Instruction Buffer
for further scheduling and packing. The size of Instruction
Buffer in Avatar processor is limited to 16, due to the ba-
sic block size of general applications are rarely exceeded
16 instructions. Then DynaPack will schedule the instruc-
tions in Instruction Buffer by analyzing the dependence
relations of all 16 instructions, and then pack four instruc-
tions into a VLIW bundle, for executing on Avatar pro-
cessor. Since the scheduling and packing mechanism can
be reduced as simple hardware logic operations, the com-
plexity of DynaPack is less then the dynamic instruction
scheduler, such as Tomasulo algorithm, reorder buffer, in
conventional out-of-order superscalar processors. The fur-
ther execution of packed VLIW bundle can be issued by
conventional VLIW pipelined datapath, as showing in Fig.
1. Therefore, the major design objectives of Avatar proces-
sor and DynaPack mechanism are (1) improve instruction
level parallelism by using simple VLIW mechanism to re-
duce hardware cost, (2) execute legacy MIPS32 programs
by using simple hardware scheduling/packing mechanism
without recompilation.

3.1. The Concept of DynaPack Mechanism

In order to execute the legacy MIPS32 binary instructions
without recompilation, a hardware instruction scheduling
and packing mechanism, DynaPack, is proposed to fulfill
the above requirements. DynaPack is able to select four
candidate instructions from Instruction Buffer and then pack
them into a VLIW instruction bundle in a single cycle.
This mechanism is consisted of two major components,
Instruction Scheduler and Instruction Packer. The organi-
zation of DynaPack mechanism is as shown in Fig. 2.

Instruction Scheduler is composed by Instruction De-
pendence Analyzer and Instruction Dependence Checker,
to analyze the data dependence relations and choose the
suitable instructions, respectively. The Instruction Depen-
dence Analyzer determines all kinds of dependence rela-
tions of the instructions in the Instruction Buffer and stores
the results of the dependence relations into the Instruc-
tion Dependence Table. The Instruction Dependence Ana-
lyzer requires the detailed attributes of instructions, such
as instruction types, instruction formats, operand types,
and operand numbers, to identify all dependence relations
of the instructions in the Instruction Buffer. The follow-
ing stages can pack the suitable instructions in to a bundle
accordingly.

Before the instructions are stored into Instruction Buffer,
Basic Block Detector detects branch/jump instructions firstly.
If there is any branch/jump instruction, the following in-
structions will be marked as invalid and stop fetching in-
structions. Therefore the Instruction Buffer can keep up to
16 instructions or instructions within a basic block that are
bounded by two branch instructions.
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Figure 1 The basic pipelined stages of Avatar processor.

Figure 2 The organization of DynaPack mechanism.

Instruction Packer is composed by Instruction Se-
lector and Bundle Packer for selecting suitable instruc-
tions and packing instructions into an instruction bundle,
respectively. Each instruction bundle is composed by four
MIPS32 instructions that can execute simultaneously. The
Instruction Selector firstly analyzes the instructions and

picks up the independent instructions from Instruction Sched-
uler in-ordered. When four instructions are selected, these
instructions are sent into Bundle Packer to pack into an in-
struction bundle. Then the packed instruction bundle can
be executed by following pipelined stages of the VLIW
MIPS32 processor.
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3.2. The Scheduling Flow of DynaPack
Mechanism

The analyzing flow of DynaPack mechanism is as shown
in Fig. 3. The legacy, unpacked MIPS32 instructions are
fetched from instruction cache, and then Basic Block De-
tector is activated to determine the boundary of a basic
block by using two branch instructions. Then the instruc-
tions are ignored and stop to fetch consecutive instructions
from Instruction Cache to avoid the possible control haz-
ards. Then the screened instructions are stored into Instruc-
tion Buffer for the further dependence analysis by Instruc-
tion Dependence Analyzer. All the dependence relations
of the instructions are figured out, summarized, and stored
into Instruction Dependency Table within a single cycle.
Then Instruction Dependence Checker is applied to deter-
mine all of the candidate instructions according to the re-
sults in Instruction Dependency Table, to deal with the data
hazards of the instructions. The Instruction Packer can se-
lect suitable instructions according to the results in Instruc-
tion Dependency Table, and pack the suitable instructions
into a single VLIW bundle after considering the possibil-
ity of structure hazards. The detailed mechanisms of above
scheduling steps are mentioned below.

3.3. The Structure of Instruction Buffer in
DynaPack Mechanism

The organization of Instruction Buffer is as shown in Fig.
4. Instruction Buffer can store up to 16 conventional MIPS32
instructions in a single cycle, so it contains 16 entries,
which consists of 8 fields to the information of an instruc-
tion. In addition to the required fields of the instruction,
it also includes a Valid Bit to represent the current status
of the corresponding instruction for the following analy-
sis. The instruction marked as ”Invalid” will be ignored at
this time when scheduling and packing instructions. The
instructions stored in Instruction Buffer are in-order and
scheduled by first-in-first-out policy. When the Instruction
Buffer is empty, the instructions of next basic block are
processed and begin next round of instruction scheduling.

3.4. The Functionality of Basic Block Detector
in DynaPack Mechanism

Since the branch instructions can change the execution flow
of the program, the fetched and analyzed instructions in
Instruction Buffer will become invalid. Therefore a pre-
screened mechanism, Basic Block Detector, is required to
identify the boundary made by two branch instructions
(aka Basic Block), and reduces the redundant analysis of
invalid instructions.

Due to the characteristic of delay slot in MIPS32 in-
struction set, except Branch-likely instructions, the con-
secutive instruction of the branch instructions will be ex-
ecuted. The executed result of the instruction in the delay

Figure 4 The structure of Instruction Buffer in DynaPack mech-
anism.

slot is independent with the decision of the correspond-
ing branch instruction. However, the delay slot instruction
of the Branch-Likely instructions will be executed it the
branch is taken. Therefore the proposed Basic Block De-
tector has to be identified carefully.

According to the above description, the main function-
ality of Basic Block Detector is to determine the branch
instructions when fetch legacy MIPS32 binary instructions
into Instruction Buffer. If a branch instruction is found
in the fetched instruction stream, the consecutive instruc-
tions, include the instruction in the delay slot, are marked
as ”Invalid”, and the process of filling Instruction Buffer
will be terminated. Then Basic Block Detector will deter-
mine the correct instruction for the next round of filling
Instruction Buffer, according to the result of branch taken
and the branch target address (aka updated PC address).
The instruction in the branch delay slot will be arranged
to the first position of Instruction Buffer in the next round.
Fig. 5 illustrates the determination flow of Basic Block De-
tector.

3.5. The Analyzing Flow of Data Dependence
by Instruction Scheduler

When unpacked instructions filled into Instruction Buffer,
Instruction Scheduler begins the processes of analyzing,
scheduling, and packing. Firstly, Instruction Dependence
Analyzer is activated to analyze the dependence relations
of the instructions in the Instruction Buffer. There are three
kinds of possible data dependence relations: true depen-
dence, anti dependence, and output dependence. The ana-
lyzing mechanisms of these three dependence relations are
described below.

True data dependence, aka RAW (Read after Write)
data hazard, occurs when the following instruction(s) re-
quire data which is updated by the current instruction. When
Instruction Packer packs instructions into a VLIW bundle,
the instructions can not be packed in the same bundle if
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Figure 3 The analyzing/scheduling flow of DynaPack mechanism.

Figure 5 The manipulation steps of branch instruction by Basic Block Detector.
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there is any true dependence between them. These depen-
dent instructions must be arranged into different bundles
by their original lexicographical orders. The pending cy-
cles of these dependent instructions can be reduced by pro-
posed VLIW Forwarding Unit.

Anti data dependence, aka WAR (Write after Read)
data hazard, occurs when the following instruction(s) up-
dated data which has been read by the previous instruction.
Since the required data has been updated in the precious
bundles, packing anti dependent instructions into the same
bundle will not affect the correctness.

Output data dependence, aka WAW (Write after Write)
data hazard, occurs when the following instruction(s) and
current instruction update the same data. According to the
rule of ”last value assignment”, the last dependent instruc-
tion will affect the computing result. All of the previously
dependent instructions can be omitted. It can reduce the
total code size by removing these redundant instructions
in this situation.

Instruction Dependence Analyzer is basically based on
the comparison the register number fields of the instruc-
tions in Instruction Buffer. The comparison operations can
be reduced as a simple XNOR with reduced-and logical
operations. Therefore the analyzing operations of all 16
instructions in Instruction Buffer can be completed in a
cycle. The analyzing results are stored into Instruction De-
pendence Table for further analyzing stages.

3.6. The Organization of Instruction
Dependence Table

The analyzing results dependence relations by Instruction
Dependence Analyzer are stored into Instruction Depen-
dence Table. The organization of Instruction Dependence
Table is shown in Fig. 6. The number of the entry in the
table denotes the lexicographical order of the instruction,
and the less number denotes the higher execution order.
The cell cross by Instruction i (Instr i) and Instruction j
(Inst j) represents the dependence relations from Instruc-
tion i and the following Instruction j. Each cell consists of
three bits data to represent true dependence, anti depen-
dence, and output dependence, respectively. Therefore the
dependence determination can be reduced as simple logic
operations and can be completed within a clock cycle.

3.7. The Organization of Instruction
Dependence Table

The scheduling algorithms of DynaPack mechanism can
be divided into two parts, instruction scheduling algorithm
consists of two parts, Output Dependence Filter, and True
Dependence Detector, as listed in Fig. 7. They can deter-
mine the output dependence and true dependence of each
instruction and mark the corresponding flags of the in-
structions in Instruction Dependence Table.
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Figure 6 The structure of Instruction Dependence Table.

Figure 7 The algorithms of scheduling instructions in DynaPack
mechanism.

The functionality of algorithm 1 is to scan all the in-
structions in Instruction Buffer, and mark the correspond-
ing field as ”invalid” if the following instructions in the In-
struction Buffer have output dependence with instruction i.
After accumulating the counts of output dependences from
the following instructions, Ci will be stored into the cor-
responding field of instruction i in Instruction Buffer. All
instructions will be scanned and checked. If Ci is greater
than zero, it means some instruction have output depen-
dence with instruction i, Output Dependence Filter algo-
rithm will mark instruction i as ”invalid”.

c© 2012 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 6-3S, No. 3, 983-991 (2012) / www.naturalspublishing.com/Journals.asp 989

The objective of algorithm 2 is to detect the true de-
pendence and select the suitable instructions into Bundle
Packer stage. If an instruction j has true dependence with
other instructions, the exactly instructions that have true
dependence with the instruction j can be ignored, it only
needs to count the frequency of true dependence, as listed
in algorithm 2. It adopts simple reduce-or operation to cal-
culate the relationships between instruction j and instruc-
tion 0 to j-1, and use Tj saved the result. If Tj is great than
three (Tj’s 2nd bit is 1), it means some previous instruc-
tions have true dependence with instruction j. The instruc-
tion j would be scheduled in next bundle, and omitted in
current bundle.

4. Experimental Results

According to the above discussion, the Avatar VLIW pro-
cessor and DynaPack scheduler is composed by sequencer
units, scheduler units, detector units, buffering units, and a
lot of decision rules. These hardware modules require sev-
eral kinds of handshaking protocols, and make the design
and debug more difficult. According, a new data-oriented
design methodology is constructed to overcome these ques-
tions. This methodology focuses on manipulating data and
the dependence of source operands that generate the re-
sults, instead of controlling precise timing and signals. Con-
ventional hardware datapath that consist of control sig-
nals, multiplexor, and dedicated functional units can be re-
place by the data manipulating mechanism, called ”rule”,
and the simple handshaking mechanism, called ”interface
method”. Since the main consideration is the states of data,
instead of datapath timing, the difficulties of complex chip
design can be reduced by approaching the nature of algo-
rithm and shorten the design cycle. Conventional hardware
description languages, such as Verilog, and VHDL, are not
suitable for designing hardware by proposed data-oriented
methodology. Therefore, the proposed quad-issued VLIW
processor, Avatar, and accompanied a sophisticated hard-
ware instruction scheduler/packer, DynaPack is developed
by a new hardware design language, Bluespec SystemVer-
ilog [2].

Bluespec SystemVerilog (BSV), developed by MIT, is
based on a synthesizable subset of SystemVerilog. The ba-
sic building block of BSV is rule. Instead of synchronous
always blocks, rule can achieve correct concurrency and
eliminating race condition. Each rule can be viewed as a
declarative assertion expressing a potential atomic state
transition. The BSV compiler produces efficient synthe-
sizable RTL Verilog codes that manage all the potential
interactions between rules by inserting appropriate arbi-
tration and scheduling logic, called handshaking circuits.
The atomicity of rules can avoid unwanted race condition
in large designs. Therefore BSV is suitable for designing
complex algorithms by above data-oriented methodology
and can generate synthesizable Verilog design quickly.

After designing Avatar VLIW processor with Dyna-
Pack mechanism by using BSV, the improvement of in-

struction level parallelism can be evaluated. Fig. 8 illus-
trates the relation between varied sizes of loop body in the
program and effects of instructions per cycle (IPC), which
is an important metric of instruction level parallelism to
denote the concurrent instructions that Avatar VLIW pro-
cessor can complete. According to the experimental re-
sults, if the size of loop body is more than 4, the IPC can
larger than 1. The advantage of Avatar VLIW processor
can be obtained. Reminding that the input benchmark is
not compiled by VLIW compiler, the IPC improvement
is improved by DynaPack mechanism which analyzes and
packs conventional MIPS32 binary instructions on-the-fly.
The results also reveal that DynaPack can achieve overall
IPC up to 3.4 if the size of loop body is large enough. It
also demonstrates the capabilities of proposed DynaPack
mechanism that can improve the IPC of the conventional
VLIW processor; even the software programs haven’t been
recompiled.

The Avatar VLIW processor with DynaPack mecha-
nism is designed by Bluespec SystemVerilog, and then gen-
erated high quality synthesizable Verilog codes. The func-
tional correctness of Verilog version Avatar and DynaPack
has been verified by using Synopsys VCS Verilog sim-
ulator. After synthesizing by Synopsys Design Compiler
with TSMC 0.13µm technology library, the fabrication re-
sults show that DynaPack mechanism can obtain the work-
ing frequency of 111 MHz and consume 19343886µm2

area size. This fabrication results also show that DynaPack
mechanism can be integrated with any modern VLIW pro-
cessor to improve the IPC and binary compatibility, and
will not become the performance bottleneck or charge too
much chip area.

5. Conclusions

This paper proposes a novel VLIW processor, Avatar, which
can overcome the incompatible problems of conventional
VLIW architectures. By integration with a novel schedul-
ing/packing mechanism, DynaPack, this processor can di-
rectly execute the legacy MIPS32 binary codes without re-
compilation, and fulfill the instruction level parallelism of
Avatar VLIW processor. By integrating a new instruction
scheduling/packing hardware mechanism, DynaPack can
analyze the dependence relations of instructions, maintain
their correctness, and pack suitable instructions into a VLIW
bundle on-the-fly. The detailed mechanism of DynaPack
is discussed. According to the experimental result, Avatar
processor with DynaPack mechanism can obtain up to 3.4
instructions per cycle. The chip fabrication results of Dy-
naPack mechanism can achieve 111 MHz by consuming
19343886µm2 under TSMC 0.13µm technology library.
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Instructions per Cycle vs. Size of Loop Body
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Figure 8 The results of instructions per cycle vs. different size of loop body.
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