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The present investigation is concerned with the reflection and transmission of plane
waves at an imperfect interface between two microstretch visoelastic half-spaces of
different properties. It is shown that there exist four waves which comprises of two
sets of coupled waves. The expressions for the reflection and transmission coefficients
which are the ratios of the amplitude of reflected and transmitted waves to the angle of
incident wave are obtained and deduced for normal force stiffness,transverse force stiff-
ness, transverse couple stiffness, microstress stiffness and perfect bonding. The numer-
ical results obtained have been illustrated graphically to understand the behavior of am-
plitude ratios versus angle of incidence of longitudinal displacement wave(LD-wave),
longitudinal microstretch wave(LMS-wave)and coupled transverse displacement and
microrotational wave(CD I-wave). It is found that the amplitude ratios of various re-
flected and transmitted waves are affected by the stiffness and viscosity of the media.
Some special cases of interest have been deduced from the present investigation.
Key Words : Microstretch viscoelastic Solid, Normal and Transverse Force Stiffness,
Transverse couple stiffness,Microstress stiffness, Perfect bonding, Amplitude Ratios.
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1 Introduction

Studies of propagation of elastic waves at an interface have long been of interest to re-
searchers in the fields of geophysics, acoustics and nondestructive evaluation. Common
to all these studies is the investigation of the degrees of interaction among the interface
that manifest themselves in the forms of reflection and transmission agents and give rise to
geometric dispersion. These interactions depend among other factors, upon the mechanical



322 N. Sharma, S. Kaushal and R. Kumar

properties,geometric arrangements,number and nature of the interfacial conditions and on
the loading conditions.
The theory of microstretch elastic solids has been introduced by Eringen(1971, 1991,
1999). This theory is a special case of the micromorphic theory. In the framework of
micromorphic theory a material point is endowed with three deformable directors. When
the directors are constrained to have only breathing-type microdeformations, then the body
is a microstretch continuum (1999). The material points of this continua can stretch and
contract independently of their translations and rotations. The theory is expected to find ap-
plications in the treatment of the mechanics of composite materials reinforced with chopped
fibers and various porous materials. The theory of microstrech continua is a generalization
of the theory of micropolar continua. The problem of micropolar viscoelastic waves has
been discussed by McCarthy and Eringen(1969). Manole(1988,1992) and Gale(2000) pre-
sented some theorems on viscoelastic medium. Source problems on micropolar viscoelas-
ticity is discussed by Kumar and Choudhary(2001,2005). Kumar(2000) investigated wave
propagation in micropolar viscoelastic generalized thermoelastic solid. Recently, Singh
and Kumar (2007) investigated reflection of wave at viscoelastic-micropolar elastic inter-
face.
An actual interface between two elastic solids is much more complicated and has physical
properties different from those of the substrates. There are two classical elastic boundary
conditions for solid/solid interface. One boundary condition for welded interface and other
is slip boundary condition. A generalization of this concept is that of an imperfectly bonded
interface for which displacement across a surface need not be continuous.
Imperfect bonding considered in the present investigation is to mean that the stress com-
ponents are continuous and small displacement field is not. The small vector difference
in the displacement is assumed to depend linearly on the traction vector. Significant work
has been done to describe the physical conditions on the interface by different mechanical
boundary conditions by different investigators. Notable among them are Jones and Whit-
ter(1967), Murty(1975), Nayfeh and Nassar(1978), Rokhlin et.al.(1980), Rokhlin(1984),
Baik and Thomson(1984), Achenbach et.al.(1985), Lavrentyev and Rokhlin(1998). Re-
cently various authors have used the imperfect conditions at an interface to study various
types of problems(2001,2006(a),2006(b)).
In the present investigation, we studied the reflection and transmission of microstretch vis-
coelastic plane waves between two microstretch viscoelastic half-spaces and deduced the
different cases.



Effects of viscosity and stiffness on amplitude ratios in microstretch viscoelastic media 323

2 Basic equations

Following Eringen(1999), the constitutive relations and field equations in microstretch
solid in absence of body forces and body couples are given by

(λI+2µI+KI)∇(∇·−→u )−(µI+KI)∇×∇×−→u +KI∇×
−→
ϕ +λ0I∇ϕ∗ = ρ

∂2−→u
∂t2

, (2.1)

(αI + βI + γI)∇(∇ ·
−→
ϕ )− γI∇× (∇×

−→
ϕ ) +KI∇×−→u − 2KI

−→
ϕ = ρj

∂2
−→
ϕ

∂t2
, (2.2)

α0I∇2ϕ∗ − λ1Iϕ
∗ − λ0I∇ · −→u =

ρj0
2

∂2ϕ∗

∂t2
, (2.3)

tij = λI ur,rδij + µI(ui,j + uj,i) +KI(uj,i − ϵijrϕr) + λ0Iδijϕ
∗, (2.4)

mij = αIϕr,rδij + βIϕi,j + γIϕj,i + b0Iϵmjiϕ
∗
,m (i, j, k, l = 1, 2, 3), (2.5)

λk = α0Iϕ
∗
,k + b0Iϵklmϕl,m (2.6)

Assuming the viscoelastic nature of the material, described by Voigt(1987)
model of linear viscoelasticity, by replacing the microstretch elastic constants,
λ, µ,K, α, β, γ, α0, λ0, λ1, b0 with λI , µI ,KI , αI , βI , γI , α0I , λ0I , λ1I , b0I

λI = λ+
∂

∂t
λv, µI = µ+

∂

∂t
µv, KI = K +

∂

∂t
Kv, αI = α+

∂

∂t
αv,

βI = β +
∂

∂t
βv, γI = γ +

∂

∂t
γv, λ0I = λ0 +

∂

∂t
λ0v, µI = µ+

∂

∂t
µv,

λ1I = λ1 +
∂

∂t
λ1v, b0I = b0 +

∂

∂t
b0v, (2.7)

where λ, µ,K, α, β, γ, α0, b0, λ1, λ0, λv, µv,Kv, αv, βv, γv, α0v, b0v, λ1v, λ0v- material
constants, ρ-density, −→u - displacement vector,

−→
ϕ -microrotation vector, λk-microsretch ten-

sor, ϕ∗-scalar point microstretch function, j-microinteria, j0-microinteria of microcom-
ponents, ϵklr- alternate tensor, tij-components of force stress tensor, mij-components of
couple stress tensor, δij- Kronecker delta.

3 Formulation and Solution of the Problem

We consider two homogeneous, isotropic microstretch viscoelastic half-spaces being in
contact with each other at the plane surface which we designate as the plane z=0 of rect-
angular cartesian co-ordinate system OXYZ.We consider microstretch viscoelastic plane
waves in xz-plane with wave front parallel to y-axis and all the field variables depend only
on x,z,t.
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For the two dimensional problem,the components of displacement and microrotation are
given by

−→u = (u1, 0, u3),
−→
ϕ = (0, ϕ2, 0), (3.1)

The components of displacement u1, u3 are related by the potential functions q(x, z, t) and
ψ(x, z, t) as

u1 =
∂q

∂x
− ∂ψ

∂z
, u3 =

∂q

∂z
+
∂ψ

∂x
. (3.2)

Making use of equations (3.1)-(3.2)in equations (2.1)-(2.3), assuming the time harmonic
behavior as exp(iωt) and eliminating ϕ∗ and ϕ2 from the resulting equations,we obtain

(∇4 +Aω2∇2 +Bω4)q = 0 (3.3)

(∇4 + Cω2∇2 +Dω4)ψ = 0 (3.4)

where

A =
−λI
α0Iω2

+
ρj0
2α0I

+
ρα0Iω

2 + λ20I
(λI +KI)α0Iω2

, B =
−ρλ1I

(λI +KI)α0I
+

ρ2j0
2(λI +KI)α0I

,

C =
ρ

µI +KI
+
ρj

γI
+

(pI − 2)qI
ω2

, D =
ρ

µI +KI
[
ρj

γI
− 2qI
ω2

],

pI =
KI

µI +KI
, qI =

KI

γI
.

The general solution of equation (3.3) and (3.4) can be written as

q = q1 + q2, ψ = ψ1 + ψ2 (3.5)

where the potentials q1, q2,ψ1, ψ2 are solutions of wave equations:

[∇2 +
ω2

V 2
j

]qj = 0, j = 1, 2, [∇2 +
ω2

V 2
j

]ψj = 0, j = 3, 4 (3.6)

V −2
j =

[A+ (−1)j(A2 − 4B)
1
2 ]

2
, j = 1, 2 (3.7)

V −2
j =

[C + (−1)j(C2 − 4D)
1
2 ]

2
, j = 3, 4 (3.8)

The roots of equations (3.7) correspond to longitudinal displacement wave(LD)and longi-
tudinal microstretch wave(LMS) whereas roots of equations (3.8) correspond to transverse
shear wave and transverse microrotaional wave(CD-I and CD-II).
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4 Reflection and Transmission

We consider microstretch viscoelastic wave(LD-or LMS-or-CD I-or CD II-)
propagating through the medium M , which we designate as the regionz > 0 and incident
at the plane z = 0 with its direction of propagating with angle θ0 normal to the surface.
Corresponding to each incident wave, we get waves in the medium M as reflected waves
and transmitted in medium M ′. We write all the variables without a prime in the region
z > 0 (medium M ) and attach a prime to denote the variables in the region z < 0 (medium
M ′)as shown in Fig.(a)(geometry of the problem) is given in Appendix I.

5 Boundary Conditions

We consider two bonded microstretch viscoelastic half-spaces as shown in Fig(a).
(Appendix I). If the bonding is imperfect and the size and spacing between the imper-
fections is much smaller than the wave-length then at the interface, these can be described
by using boundary conditions at z = 0 (Lavrentyev and Rokhlin(1998)) as

(i)(t33)Ḿ = Kn[(u3)M − (u3)Ḿ ], (5.1)

(ii)(t31)Ḿ = Kt[(u1)M − (u1)Ḿ ], (5.2)

(iii)(m32)Ḿ = Kc[(ϕ2)M − (ϕ2)Ḿ ], (5.3)

(iv)λ3 = Kλ[(ϕ
∗)M − (ϕ∗)Ḿ ] (5.4)

(v)(t33)M = (t33)Ḿ , (5.5)

(v)(t31)M = (t31)Ḿ , (5.6)

(vi)(m32)M = (m32)Ḿ , (5.7)

(vi)(λ3)M = (λ3)Ḿ , (5.8)

where Kn, Kt, Kc and Kλ are the normal force stiffness,transverse force stiffness, trans-
verse couple stiffness and microstress stiffness and coefficients of a unit layer thickness and
having dimension N

m3 (normal force stiffness, transverse force stiffness) and N
m (transverse

couple stiffness, microstress stiffness).
Appropriate potentials satisfying the boundary conditions (5.1) - (5.8)in medium M

and M ′ can be written as
Medium M :

q = B0 exp(−
−→
A0 · −→r ) exp[i(ωt−

−→
P0 · −→r )] +B1 exp(−

−→
A1 · −→r ) exp[i(ωt−

−→
P1 · −→r )]

+B2 exp(−
−→
A2 · −→r ) exp[i(ωt−

−→
P2 · −→r )] (5.9)
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ϕ∗ = a1B0 exp(−
−→
A0 · −→r ) exp[i(ωt−

−→
P0 · −→r )] + a1B1 exp(−

−→
A1 · −→r ) exp[i(ωt−

−→
P1 · −→r )]

+a2B2 exp(−
−→
A2 · −→r ) exp[i(ωt−

−→
P2 · −→r )] (5.10)

ψ = B0 exp(−
−→
A0 · −→r ) exp[i(ωt−

−→
P0 · −→r )] +B3 exp(−

−→
A3 · −→r ) exp[i(ωt−

−→
P3 · −→r )]

+B4 exp(−
−→
A4 · −→r ) exp[i(ωt−

−→
P4 · −→r )] (5.11)

ϕ2 = EB0 exp(−
−→
A0 · −→r ) exp[i(ωt−

−→
P0 · −→r )] + EB3 exp(−

−→
A3 · −→r ) exp[i(ωt−

−→
P3 · −→r )]

+EB4 exp(−
−→
A4 · −→r ) exp[i(ωt−

−→
P4 · −→r )] (5.12)

Medium Ḿ :

q′ = B′
1 exp(−

−→
A1

′ · −→r ) exp[i(ωt−−→
P1

′ · −→r )] +B′
2 exp(−

−→
A2

′ · −→r ) exp[i(ωt−−→
P2

′ · −→r )]
(5.13)

ϕ∗
′
= a′1B

′
1 exp(−

−→
A1

′ ·−→r ) exp[i(ωt−
−→
P1

′ ·−→r )]+a′2B′
2 exp(−

−→
A2

′ ·−→r ) exp[i(ωt−
−→
P2

′ ·−→r )]
(5.14)

ψ′ = B′
3 exp(−

−→
A3

′ · −→r ) exp[i(ωt−
−→
P3

′ · −→r )] +B′
4 exp(−

−→
A4

′ · −→r ) exp[i(ωt−
−→
P4

′ · −→r )]
(5.15)

ϕ′2 = E′B′
3 exp(−

−→
A3

′ ·−→r ) exp[i(ωt−
−→
P3

′ ·−→r )]+F ′B′
4 exp(−

−→
A4

′ ·−→r ) exp[i(ωt−
−→
P4

′ ·−→r )]
(5.16)

The propagation vector
−→
Pj ,

−→
Pj

′ and attenuation vector
−→
Aj ,

−→
Aj

′ are given by

−→
Aj = −KI x̂− dVjI ẑ,

−→
Pj = KRx̂+ dVjRẑ, j = 1, 2, 3, 4 (5.17)

−→
Aj

′ = −KI x̂+ dV ′
jI ẑ,

−→
Pj

′ = KRx̂− dV ′
jRẑ, j = 1, 2, 3, 4 (5.18)

where

dVj = dVjR + idVjI = p.v.(
ω2

V 2
j

− k2)
1
2 j = 1, 2, 3, 4 (5.19)

dV ′
j = dV ′

jR + idV ′
jI = p.v.(

ω2

V́ 2
j

− k2)
1
2 j = 1, 2, 3, 4 (5.20)

and K = KR + iKI is the complex wave number.
The subscript R and I denote the real and imaginary parts of the corresponding complex
number and p.v. stands for the principal value of the complex number.

(i)For incident LD-wave and LMS-wave:

−→
A0 = −KI x̂+ dV1I ẑ,

−→
P0 = KRx̂− dV1Rẑ, ]

and B0 = 0 in equation (5.11)and (5.12).
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(ii)For incident CD I-wave and CD II-wave:

−→
A0 = −KI x̂+ dV2I ẑ,

−→
P0 = KRx̂− dV2Rẑ,

and B0 = 0 in equation (5.9) and (5.10).
The phase velocities of coupled longitudinal displacement and longitudinal mi-

crostretch wave and coupled transverse displacement and microrotational wave can be writ-
ten as

−→cj =

−→
Pj

|
−→
Pj |2

, j = 1, 2, 3, 4

where

|
−→
Pj | = [

1

2
{ Re(K2

pj) + {(Re(K2
pj))

2 +
(Im(K2

pj))
2

cos2 γ⋆j
}}],

where

K2
pj =

ω2

V 2
j

.

The complex wave number k in microstretch viscoelastic medium (M) is given by

k = |
−→
Pj | sin θj − i|

−→
Aj | sin(θj − γ⋆j ), j = 0, 1, 2, 3, 4

where

|
−→
Aj | = [

1

2
{ −Re(K2

pj) + {(Re(K2
pj))

2 +
(Im(K2

pj))
2

cos2 γ⋆j
}}] 12 .

where γ⋆j is the angle between propagation and attenuation vector. Similar results hold for
microstretch viscoelastic medium Ḿ .
Coupling constants are given by

a1 = − ρ

λ0I
[(
λI +KI

ρ
)(1 + dV 2

1 ) + c2], a2 = − ρ

λ0I
[(
λI +KI

ρ
)(1 + dV 2

2 ) + c2],

E =
k2

c23
[b2(1 + dV 2

3 )− c2], F =
k2

c23
[b2(1 + dV 2

4 )− c2],

Similarly,coupling constants for microstretch viscoelastic medium M ′ are obtained.
Making use of potentials (5.9)-(5.16) in boundary conditions (5.1)-(5.8) and with the help
of eqs. (2.4)-(2.6) and (3.1)-(3.2), we get a system of eight non-homogeneous equations,
which can be written as

8∑
m=1

amnZn = Ym(n = 1, 2...8), (5.21)
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where

a1i = iKndVi(i = 1, 2), a1i = iKnk(i = 3, 4),

a15 = −λ′I(k2 + ´dV 2
1 )− (2µ́I + ḰI)

´dV 2
1 + iKn

´dV1 + λ′0Ia
′
1

a16 = −λ′I(k2 + ´dV 2
2 )− (2µ́I + ḰI)

´dV 2
2 + iKn

´dV2 + λ′0Ia
′
2

a1i = (2µ́I + ḰI)k ´dVi − ikKn(i = 7, 8), a2i = iKtk(i = 1, 2),

a2i = −iKtdVi(i = 3, 4), a2i = (2µ́I + ḰI)k ´dVi − ikKt(i = 5, 6),

a27 = (µ́I + ḰI) ´dV3
2
− µ́Ik

2 − ḰIÉ − iKt
´dV3

a28 = (µ́I + ḰI) ´dV4
2
− µ́Ik

2 − ḰI F́ − iKt
´dV4

a31 = 0, a32 = −KcE, a33 = −KcF, a34 = 0 a35 = −ib′0Ika′1,

a36 = −ib′0Ika′2, a37 = (iγ́I ´dV3 +Kc)É, a38 = (iγ́I ´dV4 +Kc)F́ ,

a41 = −Kλa1, a42 = −Kλa2, a43 = 0 a44 = 0, a45 = (iα′
0IdV

′
1 +Kλ)a

′
1,

a46 = (iα′
0IdV

′
1 +Kλ)a

′
2, a47 = 0, a48 = 0,

a51 = −λIk2 − (λI + 2µI +KI)dV
2
1 + λ0Ia1,

a52 = −λIk2 − (λI + 2µI +KI)dV
2
2 + λ0Ia2,

a5i = −(2µI +KI)kdVi(i = 3, 4),

a55 = [−λ́I(k2 + ´dV 2
1 ) + (2µ́1 + Ḱ1)

´dV 2
1 − λ́0I á1]

a56 = [−λ́I(k2 + ´dV 2
2 ) + (2µ́1 + Ḱ1)

´dV 2
2 − λ́0I á2]

a5i = −(2µ́I + ḰI)k ´dVi(i = 7, 8), a6i = −(2µI +KI)kdVi(i = 1, 2)
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a63 = (µI +KI)dV
2
3 − µIk

2 −KIE, a64 = (µI +KI)dV
2
4 − µIk

2 −KIF,

a6i = −(2µ́I + ḰI)k ´dVi(i = 5, 6) a67 = [−(µ́I + ḰI)
´dV 2
3 + µ́Ik

2 + ḰIÉ]

a68 = [−(µ́I + ḰI)
´dV 2
4 + µ́Ik

2 + ḰI F́ ], a71 = −ib0Ika1, a72 = −ib0Ika2,

a73 = −iγIdV3E, a74 = −iγIdV4F, a75 = ´b0I iká1, a76 = ´b0I iká2,

a77 = −iγ́I ´dV3É, a78 = −iγ́I ´dV4F́ , a81 = −iα0IdV1a1, a82 = −iα0IdV2a2,

a83 = 0, a84 = 0, a85 = −iά0I
´dV1á1, a86 = −iά0I

´dV2á2, a87 = 0, a88 = 0.

For incident longitudinal displacement wave (LD-wave):

Y1 = a11, Y2 = −a21, Y3 = 0, Y4 = 0, Y5 = −a51, Y6 = a61, Y7 = −a71, Y8 = 0,

(5.22)
For incident longitudinal microstretch wave (LMS-wave):

Y1 = a12, Y2 = −a22, Y3 = 0, Y4 = 0, Y5 = −a52, Y6 = a62, Y7 = −a72, Y8 = 0,

(5.23)
For incident coupled transverse displacement and microrotaional wave(CD I-wave):

Y1 = −a13, Y2 = a23, Y3 = 0, Y4 = 0, Y5 = a53, Y6 = −a63, Y7 = a73, Y8 = 0, (5.24)

For incident coupled transverse displacement and microrotaional wave(CD II-wave):

Y1 = −a14, Y2 = a24, Y3 = 0, Y4 = 0, Y5 = a54, Y6 = −a64, Y7 = a74, Y8 = 0, (5.25)

Z1 =
B1

B0
, Z2 =

B2

B0
, Z3 =

B3

B0
, Z4 =

B4

B0
, Z5 =

B́1

B0
, Z6 =

B́2

B0
, Z7 =

B́3

B0
, Z8 =

B́4

B0
(5.26)

where Z1, Z2, Z3, Z4, are amplitudes ratios’s of reflected longitudinal displacement and
longitudinal microstretch wave(LD-wave and LMS-wave) making an angle θ1, θ2, a set
of coupled transverse displacement and transverse microrotational waves (CDI-wave and
CD-II)making an angle θ3, θ4 and Z5, Z6, Z7, Z8 are amplitudes ratios’s of transmitted
longitudinal displacement wave and longitudinal microstretch wave(LD-wave and LMS-
wave) making an angle θ́1, θ́2, a set of coupled transverse displacement and transverse
microrotational waves (CD I-wave and CD II-wave) θ́3, θ́4.
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Figure (1) shows the angle of incidence with (a) Amplitude Ratio 1Z , (b) Amplitude Ratio 2Z , (c) 

Amplitude Ratio 3Z , (d) Amplitude Ratio 4Z  for LD-Wave 

 

 

 

 6 Particular Cases

CASE I: Normal Force Stiffness Kn ̸= 0,Kt −→ ∞,Kc −→ ∞,Kλ −→ ∞
correspond to the case of normal force stiffness and we obtain a system of eight non-
homogeneous equations as given by (5.21) with the changed values of amn as

a21 = k, a22 = k, a23 = −dV3, a24 = −dV4, a25 = −k, a26 = −k,

a27 = − ´dV3, a28 = − ´dV4, a31 = 0, a32 = 0, a33 = −E, a34 = −F,

a35 = 0, a35 = 0, a37 = É, a38 = F́ , a41 = −a1, a42 = −a2,

a43 = 0, a44 = 0, a45 = á1, a46 = á2, a47 = 0, a48 = 0.

CASE II: Transverse Force Stiffness
Kn −→ ∞,Kt ̸= 0,Kc −→ ∞,Kλ −→ ∞,
boundary conditions reduces to the transverse force stiffness, obtaining a system of

eight non-homogeneous equations as given by equation (5.21) with modified values of
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amn as

a11 = dV1, a12 = dV2, a13 = k, a14 = k, a15 = ´dV1, a16 = ´dV2,

a17 = −k, a18 = −k, a31 = 0, a32 = 0, a33 = −E, a34 = −F,

a35 = 0, a35 = 0, a37 = É, a38 = F́ , a41 = −a1, a42 = −a2,

a43 = 0, a44 = 0, a45 = á1, a46 = á2, a47 = 0, a48 = 0.

CASE III: Transverse couple Stiffness
Kn −→ ∞,Kt −→ ∞,Kc ̸= 0,Kλ −→ ∞, boundary conditions reduces to the

transverse couple stiffness, obtaining a system of eight non-homogeneous equations as
given by equation (5.21) with modified values of amn as

a11 = dV1, a12 = dV2, a13 = k, a14 = k, a15 = ´dV1, a16 = ´dV2,

a17 = −k, a18 = −k, a21 = k, a22 = k, a23 = −dV3, a24 = −dV4,

a25 = −k, a26 = −k, a27 = − ´dV3, a28 = − ´dV4, a41 = −a1,

a42 = −a2, a43 = 0, a44 = 0, a45 = á1, a46 = á2, a47 = 0, a48 = 0.

CASE IV: Microstress Stiffness
Kn −→ ∞,Kt −→ ∞,Kc −→ ∞,Kλ ̸= 0 boundary conditions reduces to the

microstress stiffness, obtaining a system of eight non-homogeneous equations as given by
equation (5.21)with modified values of amn as

a11 = dV1, a12 = dV2, a13 = k, a14 = k, a15 = ´dV1, a16 = ´dV2,

a17 = −k, a18 = −k, a21 = k, a22 = k, a23 = −dV3, a24 = −dV4,

a25 = −k, a26 = −k, a27 = − ´dV3, a28 = − ´dV4, a31 = 0, a32 = 0,

a33 = −E, a34 = −F, a35 = 0, a36 = 0, a37 = É, a38 = F́ .

CASE V:Perfect Bonding
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Kn −→ ∞,Kt −→ ∞,Kc −→ ∞,Kλ −→ ∞ correspond to the case of perfect
bonding and we obtain a system of eight non-homogeneous equations as given by equation
(5.21) with the changed values of amn as

a14 = k, a15 = ´dV1, a16 = ´dV2, a17 = −k, a18 = −k, a21 = k, a22 = k,

a23 = −dV3, a24 = −dV4, a25 = −k, a26 = −k, a27 = − ´dV3, a28 = − ´dV4,

a31 = 0, a32 = 0, a33 = −E, a34 = −F, a35 = 0, a36 = 0, a37 = É,

a38 = F́ , a41 = −a1, a42 = −a2, a43 = 0, a44 = 0, a45 = á1,

a46 = á2, a47 = 0, a48 = 0.

7 Special Cases

(i)If we neglect the effect of viscosity,that is ,when χ1 = χ,where χ = λ, µ,K, α, β, γ,

α0, λ0, λ1, b0, we obtain the expressions for reflection coefficients |Zi|, i = 1, 2...8 in mi-
crostretch elastic medium for (a )normal force stiffness (b) transverse force stiffness (c)
transverse couple stiffness (d) microstress stiffness (e) perfect bonding.

(ii)If we neglect stretch and micropolarity effect in medium M , Ḿ i.e.
λ0, λ́0, α0, ά0, λ1,

λ́1 → 0 and K,Ḱ → 0 ,we obtain the expressions of reflection and transmission coeffi-
cients at viscoelastic /viscoelastic media at imperfect interface.

8 Numerical results and discussion

In order to illustrate theoretical results obtained in the proceeding sections, we
now present some numerical results. Materials chosen for this purpose are Magnesium
crystal(microstretch solid)(medium M )and Aluminum-epoxy composite(microstretch
solid)(medium M

′
),the physical data for which are given as
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Figure (2) shows the angle of incidence with (e) Amplitude Ratio 5Z , (f) Amplitude Ratio 6Z , (g) 

Amplitude Ratio 7Z , (h) Amplitude Ratio 8Z  for LD-Wave 

 

 

 MAGNESIUM

λ = 9.4× 1010Nm−2, µ = 4.0× 1010Nm−2,K = 1.0× 1010Nm−2, ρ = 1.74× 103Kgm−3,

α = 0.89× 10−9N, β = 0.7× 10−9N, γ = 0.779× 10−9N, j = 0.2× 10−19m2,

j0 = 0.185× 10−19m2, b0 = 0.6× 105N,λ1 = 0.5× 1010Nm−2,

λ0 = 0.5× 1010Nm−2, α0 = 0.72× 10−9N

ALUMINUM

λ́ = 7.59× 109Nm−2, µ́ = 1.89× 109Nm−2, Ḱ = 0.0149× 109Nm−2,

ρ́ = 2.19× 103Kgm−3, ά = 0.03× 105N, β́ = 0.026× 105N, γ́ = .0268× 105N,

j́0 = .00189× 10−4m2, b0 = 0.5× 105N,λ1 = 0.037× 109Nm−2,
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λ0 = 0.037× 109Nm−2, α0 = 0.61× 105N, j́ = 0.00196× 10−4m2, .

with non-dimensional interface parameters as

Kn

kλ
= 5,

Kt

kλ
= 10,

Kc

kγ
= 15,

Kλ

kγ
= 12,

ω

ώ0
= 10, and ώ0 =

√
Ḱ

ρ́j́
.
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Figure (3) shows the angle of incidence with (i) Amplitude Ratio 1Z , (j) Amplitude Ratio 2Z , (k) 

Amplitude Ratio 3Z , (l) Amplitude Ratio 4Z  for LMS-Wave 

 

 

For a particular model of microstretch viscoelastic solid the relevant parameters are ex-
pressed as

λI = λ(1 + iQ−1
1 ), µI = µ(1 + iQ−1

2 ), KI = K(1 + iQ−1
3 ), γI = γ(1 + iQ−1

4 ),

αI = α(1 + iQ−1
5 ), βI = β(1 + iQ−1

6 ), b0I = b0(1 + iQ−1
7 ), λ0I = λ0(1 + iQ−1

8 ),

α0I = α0(1 + iQ−1
9 ), λ1I = λ1(1 + iQ−1

10 ), .

where Qi and Q́i (1,...,10) are chosen as

Q1 = 5, Q2 = 10, Q3 = 12, Q4 = 15, Q5 = 20, Q6 = 14, Q7 = 16,

Q8 = 20, Q9 = 14, Q10 = 16.

same are chosen for Q́i.
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Figure (4) shows the angle of incidence with (m) Amplitude Ratio 5Z , (n) Amplitude Ratio 6Z , (o) 

Amplitude Ratio 7Z , (p) Amplitude Ratio 8Z  for LMS-Wave 

 

 

 

 

 

 

A computer programme has been developed and amplitude ratios of various reflected and
transmitted waves has been computed. The variations of amplitude ratios for normal
force stiffness (NFS),transverse couple stiffness(TCS) and microstretch stiffness (MSS)
for microstretch viscoelasticity (MSV) and microstretch elasticity (MS)have been shown
.The solid line ,small dashed line,dash dot dash line is for MSV and solid line with cen-
ter symbol ’triangle’, small dashed line with center symbol ’diamond’,dash dot dash line
with center symbol ’plus’for MS respectively. The variations of the amplitude ratios for
MSV(NFS),MSV(TCS),MSV(MSS), MS(NFS),MS(TCS)and MS(MSS) with angle of
incidence of the incident LD-wave, LMS-wave and CD I-wave are shown graphically in
figures 1-6.These variations are shown from normal incidence to grazing incidence i.e.
θ0 = 00 to θ0 = 900.

8.1 Incident LD-wave

Fig.1(a) and 1(b) show the variations of amplitude ratios |Zi| (i=1,2) with the angle
of incidence. In the initial range,the variations of amplitude ratios |Zi| (i=1,2) for both
MVS and MS in case of all boundary stiffnesses look similar with difference in their mag-
nitude. On reaching the grazing incidence,|Z1| attain maximum value whereas |Z2| attain
minimum value and almost stable in the intermediate.
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Figure (5) shows the angle of incidence with (q) Amplitude Ratio 1Z , (r) Amplitude Ratio 2Z , (s) 

Amplitude Ratio 3Z , (t) Amplitude Ratio 4Z  for CD-I Wave 

 

 

 

 

 

 

The trend of variations of |Zi| (i=3,...,8)for both microstrecth viscoelastic medium and
microstrecth medium is almost same i.e the distribution of curves for both media in case
of NFS,TCS, MSS moving with hand-to-hand and ups and downs.It is evident from figures
1(c,d) and 2(e,f,g,h) that in range 450 ≤ θ0 ≤ 900 |Zi| (i=3,...,8) follow the stable which
shows that with the increase in the angle of incidence the amplitude ratios |Zi| (i=3,...,8) is
stable or stationary irrespective of the properties of media.

8.2 Incident LMS-wave

The variations of amplitude ratios |Z1| and |Z2| from the normal incidence i.e.θ0 = 00

start with sharp decrease in case of both NFS and TCS whereas for MSS it start with small
decrease for both media. With further increase in angle of incidence,all curves show small
variations upto θ0 = 540 and increase in the remaining.(fig. 3(i,j)).

It is depicted from figs. 3(k) and 3(l) that in the initial range, the values of ampli-
tude ratios |Zi| (i=3,4)for both MVS(NFS) and MS(NFS)are greater than other boundary
stiffnesses. As the angle of incidence increases further |Z3| and |Z4| for MVS(MSS)and
MS(MSS) are greater than other boundary stiffnesses in the range 540 ≤ θ0 ≤ 900 except
in the certain pockets all curves are close to each other which shows the effect of stiffness
is more prominent incomparable to effect of viscosity of medium.
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Figures 4(m) and 4(n) look as mirror image of each other. As the disturbances trav-
els through different constituents of the medium, it suffers sudden changes, resulting in an
inconsistent/non-uniform pattern of curves. Therefore, trend of curves exhibits the proper-
ties of of the medium.

The variations of |Z7| and |Z8| for both media in case of NFS are greater than TCS
and MSS in 00 ≤ θ0 ≤ 210 and attain peak value for MVS(NFS),reveals the effect of
viscosity along with the stiffness effect.In the range 450 ≤ θ0 ≤ 900, the values of |Z7| are
increasing whereas decreasing for |Z8| and are shown in figures 4(o,p)

8.3 Incident CD I-wave
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Figure (6) shows the angle of incidence with (u) Amplitude Ratio 5Z , (v) Amplitude Ratio 6Z , (w) 

Amplitude Ratio 7Z , (x) Amplitude Ratio 8Z  for CD-I Wave 

 

Figures 5(q,r,s,t) and 6(u,v,w,x) shows the variations of amplitude ratios |Zi|
(i=1,...,8)with angle of incidence for CD I-wave. The impact of TCS for both microstrecth
viscoelatic and microstrecth media is more than NFS and MSS from normal incidence to
θ0 = 400. For CD I-wave, the values of all distribution curves from θ0 = 450 to the graz-
ing incidence seems constant (very small)near the zero value. This inturn shows that with
increase in angle of incidence the behavior of variations of |Zi| (i=1,...,8) are almost stable
depicting almost negligible effect of stiffnesses and viscosity on the modulus of reflection
and transmission coefficients in the range 450 ≤ θ0 ≤ 900 .
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9 Conclusion

It is observed that the viscosity and stiffness is appreciable on reflection and transmis-
sion coefficients.The behavior and trend of variations for both microstretch viscoelastic
and microstretch media is almost same for all boundary stiffnesses.Near the grazing inci-
dence,the variations seems to be almost stable for all waves i.e.LD-wave,LMS-wave and
CD I-wave.The research work is supposed to be useful in further studies,both theoretical
and observational of wave propagation in more realistic models of the microstretch vis-
coelastic solids present in the earth’s interior. The problem is of geophysical interest ,par-
ticularly investigations concerned with earthquake and other phenomenon in seismology.

Appendix A

System’s geometry

References

[1] T.C. Angel and J.D.(1985), Achenbach,Reflection and transmission of elastic waves
by a periodic array of crack,J App Mech,52,33-41.

[2] J. M.Baik and R.B.Thompson(1984),Ultrasonic Scattering from imperfect interfaces
a quasi-static model,J Nondestr Eval,4,177-196.

[3] A.C. Eringen(1971), Micropolar elastic solids with stretch,in:Prof. Dr.Mustfafa Inan
Anisina, Ari kitaberi Matbaasi Istanbul,1971,1-18.

[4] A.C.Eringen(1991) ,Theory of thermo-microstretch elastic solid, Int.J.Engng.Sci,
281291-1301.



Effects of viscosity and stiffness on amplitude ratios in microstretch viscoelastic media 339

[5] A.C. Eringen(1999), Microcontinuum field theories.I:Foundationsand solids,
Springer-Verlag,New-York,Berlin,Heidelberg,.

[6] H. Fan and K.Y. Sze(2001),A micro-mechanics model for imperfect interface in di-
electric materials,Mechanics of Materials,33,363-370.

[7] C. Gale (2000),On Saint-Venant’s problem in micropolar viscoelasticity,An.
Stiin.Univ.Al I Cuza. Iasi. Mat,46,131-148.

[8] J.P.Jones and J.S.Whittier(1967),Waves in a flexible bounded interface,J.Appl.Mech
,34,905-909.

[9] R.Kumar and S.Choudhary (2001),Dynamical Problem of micropolar viscoelastic-
ity,Proc Indian Acad Sci(Earth planet Sci),110,215-223.

[10] R.Kumar and S.Choudhary (2005), Disturbance due to time harmonic source in or-
thotropic micropolar viscoelastic medium,Georgian Mathematical Journal,12,261-
272.

[11] R.Kumar(2000),Wave propagation in micropolar viscoelastic generalized thermoelas-
tic solid,Int. J. Engng. Sci. ,38,1377-1395.

[12] A.I. Lavrentyev and S.I. Rokhlin(1998),Ultrasonic spectroscopy of imperfect contact
interfaces between a layer and two solids,J.Acoust.Soc.Am.,103(2),657-664.

[13] D. Manole(1988),Theoreme d’unicite dans la theorie de la viscoelasticite lineaire avec
microstructure en utilisant la transformation de Laplace,Rev. Roumaine. Sci.Tech. Ser.
Mee. Appl.,33,209-214.

[14] D. Manole (1992),Variational theorems in linear theoryof micropolar viscoelastic-
ity,But.Inst.Politehn.Iasi.Sect. ,38,75-83.

[15] M.F. McCharthy and A.C.Eringen(1969),Micropolar vscoelastic waves,Int. J. Engng.
Sci.,7,447-458.

[16] G.S. Murty(1975),A theoretical model for the attenuation and dispersion of stonely
waves at the loosely bounded interface of elastic half-spaces,Phys.Earth and plane-
tary interiors,11,65-79.

[17] A.H. Nayfeh and E.M. Nassar(1978), Simulation of the influence of bonding materials
on the dynamic behaviour of laminated composites,J.Appl.Mech.,45,822-828.

[18] S.I. Rokhlin ,M.Hefets and M. Rosen(1980), An elastic interface waves guided by
thin film between two solids,J.Appl.Phys.,51,3579-3582.



340 N. Sharma, S. Kaushal and R. Kumar

[19] S.I.Rokhlin(1984) ,Adhesive joint characterization by ultrasonic surface and inter-
face waves,Adhesive joints: Formation, Characteristics and testing.Edited by K.L
.Mittal (plenum, New York),307-345.

[20] B.A. Samsam Shariat and M.R.Eslami(2006),Thermal buckling of imperfect unction-
ally graded plates, International Journal of Solids and Structures,43,4082-4096.

[21] H.M.Shodja,S.M.Tabatabaei and H.T. Kamali (2006),A Piezoelectric-inhomogenity
system with imperfect interface,International Journal of Engineering Science,44,291-
311.

[22] B. Singh and R.Kumar(2007), Wave reflection at viscoelastic-micropolar elastic in-
terface,Applied Mathematics and Mechanics,185(1),421-431.

[23] W.Voight(1987),Theoretische studien uber die elasticitats verhaltnisse der krystalle-
Braunschweig,Abh.Wiss.Ges.Gottingen,34,3-51.

[24] X.Wang and Z.Zhong(2003), Three-dimensional solution of smart laminated
anisotropic circular cylindrical shellswith imperfect bonding,International Journal of
Solids and Structures,40,5901-5921.

R. Kumar Born on 08-06-1958, received his M.Sc. (1980)

 

from Guru Nanak Dev University (G.N.D.U.), Amritsar (Punjab),
M Phill (1982) from Kurukshetra University Kurukshetra (K.U.K.)
and Ph. D. (1986) in Applied Mathematics from Guru Nanak Dev
University (G.N.D.U.), Amritsar. Guided 52 Mphill students, 9
students awarded Ph.D. degree and 8 students are doing Ph.D.

under his supervision. He has 200 papers published in Journal of international repute.
His area of research work is Continuum Mechanics(Micropolar elasticity, thermoelasticity,
poroelasticity, magnetoelasticity, micropolar porous couple stress theory, viscoelasticity,
mechanics of fluid.)

N. Sharma Born on 26th Oct 1980, did post M. Sc (2004) from

 

Kurukshetra University, Kurukshetra (Haryana, India) and done
her B.Ed from University of Jammu (Jammu, India) in 2005. Com-
pleted her Ph.D. from NIT Kurukshetra in 2009 on the topic of
”Dynamics problems of Micropolar Thermoelasticity”. I have got
best poster presentation award during national conference (10th
Punjab Science Congress). I have 15 published papers in International Journals and 1 in



Effects of viscosity and stiffness on amplitude ratios in microstretch viscoelastic media 341

National Journal and 4 others are communicated in the Journals of International repute. I
am a life time member of Punjab Science Congress.

S. Kaushal Born on 27th Apr 1984, did M. Sc (2006)

 

from Guru Nanak Dev University (G.N.D.U.), Amritsar (Punjab).
Presently pursuing Ph. D. on the topic of ”Some Dynamic prob-
lems in micropolar thermoelastic media”, from C.D.L. University
(Sirsa). I have 6 published papers in International Journal and 3
are ready to published in the Journals of International repute and 4
other communicated in the various journals of international repute.


