
Adv. Eng. Tec. Appl.5, No. 2, 35-39 (2016) 35

Advanced Engineering Technology and Application
An International Journal

http://dx.doi.org/10.18576/aeta/050203

Design and Implementation of Page Replacement
Algorithms based on an Inverted Page Table
Yeskendir Sultanov∗

Kazakh, British Technical University, Almaty, Kazakhstan

Received: 15 Mar. 2016, Revised: 20 Apr. 2016, Accepted: 22 Apr. 2016
Published online: 1 May 2016

Abstract: Main memory is one of the most important parts in a computer. Although amount of main memory has increased in recent
decades, it is very limited resource. This fact says us that it has demand, to optimize swapping of pages between main memory and
auxiliary memory. As is known, a performance of paged systems significantly depends on an efficiency of the transformation of virtual
address into a physical address. There are some well-known very fast and flexible algorithms in which paged systems are constructed.
The choice of data structure that supports these page replacement algorithms plays important role for paged systems. Inthis paper,
as such data structure is taken the Inverted Page Table (IPT). This data structure allows system to optimize memory occupied by the
page table and to ultimately reduce time to transform the virtual address into the physical address. In this work, we willdesign and
implement page replacement algorithms based on the inverted page table.

Keywords: Inverted page table (IPT), virtual memory, page replacement algorithms

1 Introduction

All memory of the computer as a virtual as well as a
physical divided into successive pages of same size[1].
Each element of the program receives a virtual address,
when the program is running. There’s certainly to be a
correspondence between the physical and virtual address
and this process is done automatically by the operating
system. The auxiliary and main memory exchanging is
realized by whole pages, and when this process is
running, CPU switches to execution of commands of
other programs (see Figure 1). If in the main memory a
link to page missing takes place during the execution of
the program, then the page faults occur (failure)[2]. The
program is interrupted for the time necessary to swap the
page. In this case, one or some of the pages of the
program is deleted from the main memory, that is, the
memory occupied by them is considered to be free. If the
content of the page to be deleted, distorted during her stay
in the main memory, then the system provides an
overwriting of modified pages in the auxiliary memory
while preserving the original content of the pages of the
original. Otherwise, the necessity to rewrite the page at
the auxiliary memory is not necessary. Select a page (or
group of pages) to be deleted from the main memory; the
system is carried out in accordance with a particular

algorithm called page replacement strategy. As processor
get faster rapidly, the impact of swapping between main
memory and auxiliary memory increases. It says us that
there is necessity to optimize transforming process of
virtual address into physical address, which significantly
effects on the performance of paged systems. There are
some well-known fast and flexible page replacement
algorithms, in which paged systems are constructed. In
this paper, we will first introduce general concepts of
virtual memory and paging, followed by proposed formal

Fig. 1: Figure 1. The exchange between auxiliary and main
memory

∗ Corresponding author e-mail:yeskendir.sultanov@gmail.com

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/aeta/050203


36 Y. Sultanov: Design and implementation of page replacement...

models for page replacement algorithms and program
behaviour. Then we will design and implement these page
replacement algorithms based on the inverted page table,
which allows system to optimize memory occupied by
page table and to ultimately reduce time to transforming
process. Also, we will compare their performance on
generated memory traces. The performance comparison is
made with help of page fault table, which show us the
page faults count.

2 Overview of Memory Management

Almost all modern operating systems those for general
purpose usually use virtual memory to solve overlay
problem[3]. In the virtual memory there may be lack of
the amount of main memory available in the system for
the combined size of program code, data and stack. The
operating system uses secondary memory, in addition to
main memory to keep active pages in main memory and
inactive pages in auxiliary memory. Pages located in
auxiliary memory can retrieved back to main memory,
when it is necessary[4]. The process of storing data from
main memory to secondary memory is called swapping
out, and retrieving data back to main memory is called
swapping in. These will be referred as swapping except
when distinction between the two is necessary. The part
of the secondary memory, that is reserved for virtual
memory, is called swap space, and is often implemented
as a swap partition or a swap file[5]. There are two
granularities in which swapping is commonly done in
multitasking operating systems. The simplest one is to
swap out a whole program when memory is needed. This
simple method can be used as a load balancing technique
[6]. Virtual memory provides processes a virtual address
space. Programs use virtual addresses to refer to their own
virtual address space. When virtual address space is used,
each program sees a flat continuous memory dedicated
for it alone. All memory, however, is not available for a
running program. The kernel usually maps its own
address to constant area of each programs address space.
In Linux the kernels space is normally mapped at the end
of the processes address space. As an example, on x86
architecture the last 1 GB of the 4 GB address space is
reserved for the kernel. This leaves 3 GB for the user
process[7]. Virtual address space simplifies compilers and
applications as the memory used by the operating system,
and other running programs, are not directly visible to a
running program.

2.1 Paging and Page fault handling

The operating system divides virtual address space into
units called pages. Main memory is also divided to fixed
size units called page frames[8]. Each used page can be
either in secondary memory or in a page frame in main

memory. A paging algorithm is needed to manage paging.
A paging algorithm consists of three algorithms:
placement algorithm, fetch algorithm and replacement
algorithm. The placement algorithm is used to decide on
which free page frame a page is placed. The fetch
algorithm decides on which page or pages are to be put in
main memory. Finally, the page replacement algorithm
decides on which page is swapped out. Further, paging
algorithms can be demand paging or prepaging. A
demand paging algorithm places a page to main memory
only when it is needed, while a prepaging algorithm
attempts to guess which pages are needed next by placing
them to main memory before they are needed. In general
cases, it is very difficult to make accurate guesses of page
usage and demand paging is generally accepted as a better
choice. It can also be proved, that for certain constraints,
optimal paging algorithm is a demand paging algorithm.
Exact constraints and proof is given in[9]. A virtual
address must be translated to corresponding physical
address before the memory can be used. As this address
translation is done with every memory reference, it is
important that it is very fast. Usually special hardware,
called Memory Management Unit (MMU), is used to
make this translation. MMU uses virtual-to-physical
address mapping information, located in operating
systems page table, to make the translation. Each process
has its own virtual address space and therefore page
tables are per process. If the given virtual address is not
mapped to main memory, the MMU traps the operating
system. This trap, called page fault, gives the operating
system an opportunity to bring the desired page from
secondary memory to main memory, and update to page
table accordingly[6].

2.2 Page replacement algorithm theory

Page replacement algorithms have been studied and some
formal models are proposed to be used as basis of
theoretical analysis. The following conventions are used.
Set of pages of a n-page program is defined as

N = {p1, ..., pn}; (1)

and
M = {p f1, ..., p fm}; (2)

is a set of page frames of main memory with space for m
pages. Function

f : N → M; (3)

gives current page map and can be defined as

f (pi) = p f j (4)

if pagepi ∈ p f j .
Otherwise it is undefined and page fault must occur[5].

c© 2016 NSP
Natural Sciences Publishing Cor.



Adv. Eng. Tec. Appl.5, No. 2, 35-39 (2016) /www.naturalspublishing.com/Journals.asp 37

3 Inverted Page Table

The presence of regular table scheme pages make such a
scheme is not sufficiently effective. Storing in the main
memory of the computer of excessive use information, so
information on inactive pages, which makes up most of
the page table, will slow down the entire storage
management system and negatively affect the
performance of the system as a whole. This leads to the
idea that it would be more economical, at any point in the
process of activity, stored in the main memory only
information regarding only those pages that are currently
in main memory. In this connection, instead of a regular
page tables, we will use the inverted page table (see
Figure 2).

Fig. 2: Inverted Page Table

Fig. 3: The design of the page replacement algorithm based on
the Inverted Page Table

An inverted page table, at any time of the program,
stores information about a virtual page part of the
process, namely those in which the copy currently in the
main memory, therefore it reduces the size of the memory
occupied by page table, in spite of fact that we search
through linked list elements[10]. Finally, if we get page

faults, it means that page does not exist in the main
memory and system should load it from the auxiliary
memory[11]. The Figure 3 shows the design of the page
replacement algorithm based on the inverted page table.

4 Implementation of page replacement
algorithms based on the Inverted Page Table

In this paragraph, we will introduce page replacement
algorithms theory and we will show the implementation
of those algorithms based on the inverted page table. One
of those algorithms is optimal page replacement
algorithm, which is easy to describe. When memory is
full, you always evict a page that will be unreferenced for
the longest time. This scheme, of course, is possible to
implement only in the second identical run, by recording
page usage on the first run. But generally the operating
system does not know which pages will be used,
especially in applications receiving external input. The
content and the exact time of the input may greatly
change the order and timing in which the pages are
accessed. But nevertheless it gives us a reference point for
comparing practical page replacement algorithms. This
algorithm is often called OPT or MIN[5]. Next algorithm
is First-In, First-Out (FIFO) algorithm is also applicable
to page replacement. All pages in main memory are kept
in a list where the newest page is in head and the oldest in
tail. When a page needs to be evicted, the oldest page is
selected, and the new page is inserted to head of the
list[5]. The third algorithm that we are going to
implement base on the inverted page table is random page
replacement algorithm. If a frequently used page is
evicted, the performance may suffer. For example, some
page, that contains program initialization code which may
never be needed again during the program execution,
could be evicted instead. So there are performance
benefits available with choosing the right page[5]. We
implement those algorithms based on the inverted page
table on programming language C++ and we have gotten
good results. Below we have given pseudocode of that
implementation with explanations.

4.1 Pseudocode of the page replacement
algorithms implementation based on the
inverted page table

The implementation has two tables:HASH TABLEand
IPT; functions: getHash(pageNum), find(pageNum),
search(pageNum), algoDesign(pageNum). Below we
have provided realization of those functions in form of
pseudocode.

struct ipt_row
begin

boolean isListOverflown;

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


38 Y. Sultanov: Design and implementation of page replacement...

integer pageNumber;
integer pageFrameNumber;
integer reference;
boolean isRowFree;

end;

DECLARATION:
integer HASH_TABLE[LENGTH];
ipt_row IPT[LENGTH];

FUNCTIONS:
integer getHash(pageNumber)
begin

return pageNumber mod LENGTH;
end

boolean find(pageNumber)
begin

integer hash = getHash(pageNumber);
if (hash NOT_EXIST in HASH_TABLE)

return false;
else

return true;
end

boolean search(pageNumber)
begin

integer hash = integer hash =
getHash(pageNumber);

integer startRow = HASH_TABLE[hash];

integer curRow = startRow;

while (curRow != NULL)
begin

if (IPT[curRow].pageNumber ==
pageNumber)
return true;

curRow = IPT[curRow].reference;
end;
return false;

end

procedure algoDesign(pageNumber)
begin

if (find(pageNumber))
begin

pageFault occurs
make pageLoading

end;
else
begin

boolean isPageFault =
search(pageNumber);

if (isPageFault)
begin

pageFault occurs;
make pageLoading;

end

else
begin

page was found in the inverted
page table;

end;
end

end;

We have usedp mod mfunction as a hash function,
wherep - is page number andm - is inverted page table
length. It is implemented in thegetHash(pageNumber)
function. Next function isfind(pageNumber). It looks for
page number’s hash in theHASH TABLE. If this function
returns true value, then next function
search(pageNumber)is called, otherwise, page fault
occurs and it must happen page loading. The
search(pageNumber)function looks for page with
necessary page number in a linked list with same hash
value in the inverted page table. If we get true result after
calling this function then we have found page frame of
our page; else page fault occurs and it must happen page
loading.

5 Empirical analysis

We have generated some reference string. Then give it as
input to the program. The program has executed and we
got results as shown in the Table 1. Table 1 shows us that

Data OPT FIFO RANDOM
Ref count 17566 17566 17566
Page count 8783 8783 8783
Page Faults 7150 9031 8679
Hit count 10416 8535 8887

Table 1: (Results on scan data)

optimal algorithm more fast than other two algorithms.
This result was taken by generated reference string. As
you see from the table in each page replacement
algorithm implementation reference and page counts have
the same value. Hit count of each algorithm are different
and it says us that usage of the inverted page table does
not change properties of page replacement algorithms.

6 Conclusion

In this paper we have explained design and
implementation of page replacement algorithms based on
the inverted page table. Usually, operating systems use
page table as a data structure, which uses memory
inefficiently. The inverted page table allows to ultimately
reduce memory occupied by pages. In this work, initially,
we have introduced theoretical concepts memory

c© 2016 NSP
Natural Sciences Publishing Cor.



Adv. Eng. Tec. Appl.5, No. 2, 35-39 (2016) /www.naturalspublishing.com/Journals.asp 39

management of operating systems, paging and page fault
handling. Also we have introduced the design of page
replacement algorithms based on the inverted page table.
The Inverted Page Table in contrast to the page table
stores only active pages, this leads to the idea that it
would be more economical, at any point in the process of
activity, stored in the main memory only information
regarding only those pages that are currently in main
memory. It optimizes the size of memory occupied by
page table and it reduces the time of transformation
virtual address into physical as system will not spend time
to record information about inactive pages. Then we have
implemented those page replacement algorithms and we
made empirical analysis. The result is shown as Table 1
and by analyzing that result we can see that page
replacement algorithm’s properties have been retained.
This implementation need further improvements and
additional tests. However, inverted page table
implementation ultimately optimizes the memory usage
and it increases the performance of operating system.

References

[1] XU Chao, HE Yan-xiang, CHEN Yong, WU Wei, Zeng
Xiao-ling. An Optimization Algorithm of Variable Allocation
Based on Block Architecture, Volume 7, No. 2 (Mar. 2013),
PP:691-699, Natural Science Publishing: International
Journal of Applied Mathematics and Information Sciences

[2] Slo-Li Chu, Min-Jen Lo, Novel Memory Access Scheduling
Algorithms for a Surveillance System, Volume 7, No. 2 (Mar.
2013), PP:801-808Natural Science Publishing: International
Journal of Applied Mathematics and Information Sciences

[3] S.L. Harris, D.M. Harris. Digital Design and Computer
Architecture. Elsevier Inc., 2nd Ed.2012

[4] Randal E. Bryant, David R. OHallaron, Carnegie Mellon
University. Computer Systems: A Programmers Perspective,
third edition. 2015

[5] Heikki Paajanen, Page replacement in operating system
memory management, 2007

[6] Song Jiang and Xiaodong Zhang, ”Token-ordered LRU: an
effective page replacement policy and its implementation in
Linux systems, Performance Evaluation” 60 529, 2005.

[7] Mel Gorman, ”Understanding the Linux Virtual Memory
Manager”, Bruce Perens Open Source Series, Prentice Hall,
2004.

[8] Andrew S. Tanenbaum and Albert S. Woodhull, ”Operating
Systems: Design and Implementation”, Third Edition,
Prentice Hall, 2006.

[9] Alfred V. Aho, Peter J. Denning and Jeffrey D. Ullman
Principals of Optimal Page Replacement Journal of the
Association for Computing Machinery, Volume 18, No. 1,
January 1971

[10] W. Stallings. Computer Organization and Archtecture.
Pearson Ed.,2006

[11] A.Duysembaev. Computer Architecture. Almaty, 2011

Yeskendir Sultanov
is master’s degree student
of Kazakh-British Technical
University. His main
research interests are:
algorithms, data structures,
operating systems, big data.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Overview of Memory Management
	Inverted Page Table
	Implementation of page replacement algorithms based on the Inverted Page Table
	Empirical analysis
	Conclusion

