
Appl. Math. Inf. Sci. 6-3S, No. 3, 935-941 (2012) 935

Applied Mathematics & Information Sciences
An International Journal

c© 2012 NSP
Natural Sciences Publishing Cor.

Graceful Degradation for Top-Down Join Enumeration
via similar sub-queries measure on Chip Multi-Processor

YongHeng Chen1,2 and ChunYan Yin1

1 Zhangzhou Normal University, Zhangzhou 363000, China
2 Department of Computer Science and Engineering, Zhangzhou Normal University, Zhangzhou 363000, China

Received: Feb. 8, 2012; Revised Apr. 24, 2012; Accepted Jun. 6, 2012

Abstract: Most contemporary database systems query optimizers exploit System-R’s dynamic programming method (DP) to find the
optimal query execution plan (QEP) without evaluating redundant sub-plans. However, in the relational database setting today, large
queries containing many joins are becoming increasingly common. Based on this trend, it has become temping to improve the DP
performance. Chip Multi-Processor (CMP) present new opportunities for improving database performance on large queries. Based on
CMP, this paper realizes the partial execution plans among the identified similar sub-queries and global execution plan among the
constructed connected join pairs according to the generated partial solutions by uniform parallelizing top-down dynamic programming
query optimization. Our theoretical results and empirical evaluation show that our algorithm could gracefully degrade the complexity
degree for top-down join enumeration with large number of tables and impressive gains in the performance in terms of both output
quality and running time.

Keywords: chip multi-processor, parallel query processing, DP query optimization.

1. Introduction

On the hardware front, the development trend of processor
is transforming from high-speed single-core to Chip Multi-
Processor, and from instructions level parallel to thread
level parallel. Tomorrow’s computer will have more cores
rather than exponentially faster clock speeds, and software
designs must be restructured to fully exploit the new ar-
chitectures. The question for database researchers is this:
how best can we use this increasing multithreading capa-
bility to improve database performance in a manner that
scales well with machine size [4,11,12]?

Based on this trend, it has become temping to revisit
the concepts of database parallelism in the light of those
emerging hardware architectures. Recently, by exploiting
the new wave of multi-core processor architecture, Han et
al. first propose a novel algorithm PDPsva to parallelize
query optimization process to exploit multi-core proces-
sor architectures whose main memory is shared among all
cores [1]. PDPsva generated QEPs for all smaller quan-
tifiers’ sets (i.e. size-driven). On contrary, DP optimizers
such as DPcpp [2] and DPhyp [3], which directly traverse a
query graph to generate join pairs, i.e., only considers pairs

of connected sub-queries. Thus, plan generation mainly
use of join pair without cross products, reduce execution
time. Further, DPhyp is capable to handle complex join
predicates efficiently.

But these algorithms discussed above which all con-
structed based on bottom-up join enumeration method. By
contrast with the research about bottom-up method, the re-
search about top-down join enumeration is relative less re-
cently. Leonard D. Shapiro et al estimates the lower and
upper bounds of top-down query optimization [?,13]. Top-
down join enumeration dynamic programming method can
derive upper bounds for the cost of the plans it generated
which is not available to typical bottom-up DP method.

Dynamic programming methods, regardless of Top -
down or not, face a difficult for complex queries because
of its inherent exponential nature owing to the explosive
search space. Many works have been done to find a good
plan for a complex query by greedy and randomized meth-
ods of query optimization, e.g. iterative improvement (II)
[6], iterative Dynamic Programming (IDP) [5], simulated
annealing (SA), genetic algorithm (GA) and so on. These

∗ Corresponding author: e-mail:cyh771@163.com

c© 2012 NSP
Natural Sciences Publishing Cor.

936 YongHeng Chen et al : Graceful Degradation for Top-Down ...

algorithms are mostly resolving problem by the random-
ization method.

In order to improve quality of the output plan and con-
sider the characteristics of the query, the method based
on identifying similar sub-queries in the complex query
is proposed. John W. Raymond and Peter Willett give a
thorough survey of the various approaches towards the de-
tection of subgraph isomorphism [14]. Qiang Zhu et al.
aim at finding the largest common induced subgraph of
two graphs [9]. Meduri Venkata Vamsikrishna constructed
plan by re-using the query plans among the identified sim-
ilar sub-queries and avoided multiple plan construction for
each join candidate in order to make memory efficient [10,
8]. However these algorithms are proposed for single - core
CPUs.

In this paper, we firstly combine the measurement of
similar sub-queries with the constructing connected join
pairs. In order to take advantage of multi-cores architec-
ture, a comprehensive and practical framework for paral-
lelizing top-down dynamic programming query optimiza-
tion is further been proposed to achieve partial solutions
among the identified similar sub-queries and global ex-
ecution plan among the constructed connected join pairs
according to the generated partial similar sub-query plans.

The rest of this paper is organized as follows. We firstly
construct similar sub-queries SSQ and connected join pairs
set CSLQS. Then we generate query plan based on con-
structed SSQ and CSLQS. Finally we present the results
of performance evaluation and conclude this paper.

2. Generation of SSQ and CSLQS

2.1 Preliminary Concepts
A query structure graph G is denoted by G(V, E, T,

P, α, β), where V is the finite set of its vertices, E ∈
V ∗ V the set of edges, α a function assigning labels to
the vertices and β a function assigning labels to the edges.
T = {R1, R2 . . . Rn} is the set of tables referred in G and
P = {p1, p2 . . . pm} the set of all predicates referred in
G. α : x → R is a one-to-one function, where x ∈ V and
R ∈ T . sizeof (x) denotes the size of table α(x). In G, each
vertice v ∈ V is labeled with sizeof(α(x)). β : e → c is
a function, where e ∈ E and c ∈ 2P . selof (e) denotes
the selectivity of β(e). NumRel (T) denotes the number of
relations in T.

The edge e = (u, v) ∈ E is said to be incident with
vertices u and v, where u and v are the end of e. These two
vertices are called adjacent. The set of vertices adjacent to
v is presented as ad(v). vertices(e) denotes the set of (one
or two) vertices connected by edge e in a query graph.

For a subquery S(V ′, E′, T ′, P ′, α′, β′) of G(V, E, T,
P, α, β), the neighborhood of S is denoted as ad(S) =
{v ∈ (V − V ′)|(u, v) ∈ E and u ∈ V ′}. In order to
get the starting node form S, the operation of min(S) =
min{i|Vi ∈ V ′} is introduced. If S is empty, then min(S)
is also empty. If S is singleton set, then min(S) equals the

only element contained in S. verticesofall(S) denotes the
set of all vertices connected by each edge in S.

Definition 1: Let S1(V ′
1 , E′

1, T
′
1, P

′
1, α

′
1, β

′
1), S2(V ′

2 , E′
2,

T ′
2, P

′
2, α

′
2, β

′
2) are two connected sub-query of G(V, E, T,

P, α, β), if V ′
2 ⊆ (V − V ′

1) and existing a edge (u, v)∈ E
such that u⊆ V ′

1 and v⊆ V ′
2 , we call (S1, S2) a join pair.

In order to prevent duplicate join pairs from happen-
ing, we consider only join pair, (S1, S2), where S2 only
contain Vj With j large than any i with Vi ∈ V ′

1 . In order
to complete achieve this, the operation of Wi = {Vj |j ≤
i, Vj ∈ H} is introduced. H is a connected and non-empty
sub-query of V.

Every join pair is contained by CSLQS list. CSLQS
are grouped by the size of the larger quantifier set in the
join pair. We have CSLQS[∗,i] = {CSLQS[j,i]|j <i and
(i + j) ≤ NumRel (T)}. CSLQS [0,1] is used to rep-
resent a set of single quantifiers. The number of CSLQS
is 2*NumRel (T) when NumRel (T) is even number or
2 ∗ NumRel(T) + �NumRel(T)/2� when NumRel (T)
is odd number for a full connectivity query graph G.

There is dependence among CSLQS. The operation D
(CSLQS[x,y]) is introduced to solve the set of CSLQS de-
pended by CSLQS[x,y]. we can include D(CSLQS[x,y]) =
{CSLQS[a,b]|y ≥ a + b}. The number of D (CSLQS[∗,y])
denoted by num{D(CSLQS[∗,y])} that equals number
D(CSLQS[1,y]) is (y2/4) + 1 when y is even number or
(y+1)(y-1)/4 when y is odd number.

Definition 2: Let S1(V ′
1 , E′

1, T
′
1, P

′
1, α

′
1, β

′
1), S2 (V ′

2 ,
E′

2, T ′
2, P ′

2, α′
2, β′

2) be two connected subquery of G (V ,
E, T , P , α, β). Ev and Ee are two given error bounds for
relation table sizes and condition selectivities respectively.
The pair of S1, S2 is similar sub-queries, if it meets these
conditions as follows:

1. If there exists a one-to-one mapping f between S1

and S2, for any x ∈ V ′
1 and f(x) ∈ V ′

2 , we have ComV
(x,f(x)) = |sizeof(α′

1(x))-sizeof(α′
2(f(x)))| /min(sizeof(α′

1

(x)), sizeof(α′
2(f(x)))) < Ev.

2. If there exists a one-to-one mapping g between E′
1

and E′
2, for any e ∈ E′

1, g(e) ∈ E′
2, if vertices(e)={x,y},

then vertices(g(e))={f(x),f(y)}, we have ComE(e,g(e))=
|selof(e)-selof(g(e))|/min(selof(e),selof(g(e)))<Ee.

2.2 Graph-driven Traversal
The top-down algorithm begins with a group consist-

ing entirely of node, then considers generate all candi-
date logically equivalent multi-expression. This process-
ing is called as logical-to-logical transformations. The tra-
ditional strategy relies on transformation rules, which do
not consider the query graph to generate logical join pairs.
Since the enumeration of this method is very fast, this is a
very efficient strategy if the search space is dense, e.g. for
clique queries. However, if the search space is spare, e.g.
for chain queries, this method will product many logical
join pairs which are not connected or which contain un-
connected sub-queries, therefore, are not relevant for the
solution.

The following statement gives a hint on how to con-
struct the join pairs and similar sub-queries. Let S be a

c© 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 6-3S, No. 3, 935-941 (2012) / www.naturalspublishing.com/Journals.asp 937

Partition (G, Ev, Ee)
Output: similar connected sub-queries and join pairs.
1: initialize CSLQS= SSQ= iden=0
2: N=NumRel (T)
//determine the similar vertices
3: for i = 1 To N -1 do
4: for id =0 to i -1 do
5: if ComV(Vid, Vi)<Ev
6: if not existing Vi in SL of SSQ1
7: append Vi, Vid to SL and SR
8: else
9: append Vid to SR corresponding Vi
// determine the join pairs and similar sub-queries
10: for all i in [N-1…0] descending
11: append Vi to CSLQS [0, 1]
12: PairQueue + = {Vi}
13: PairQueue + = MinOptimistic(G, Vi, Wi, SSQ, iden)
14: iden=1
15: for each S 1 PairQueue
16: S2 S2+CmpSub (G, S 1, SSQ, iden)
17: for each S 2 S2
18: qs2=max (S 1, S 2)
19: qs1=min (S 1, S 2)
20: append (qs1, qs2) to CSLQS [NumRel(qs1), NumRel(qs2)]
MinOptimistic (G, S, T, SSQ, iden)
Output: minimum cuts extended from S
1: N= {ad(S) -T}
2: R=NumRel (s) +1
3: for all v N, v
//identifying if or not existing similar sub-query for S
4: if iden=0
5: for every similarity S of S in SSQR
6; if exists node u in ad (S) similarity to v and edge (v, x) x S edge
(u, y) y=f(x) S
7: ComE (edge (v, x), edge (u, y)) <Ee
8: S1 verticesofall (S) {v} and S1 verticesofall (S) {u}
9: if not existing S1 in SL and S1 in corresponding SR of SSQR+1
10: if not existing S1 in SL of SSQR+1
11: append (S1, S1) to SSQR+1
12: else
13: append S1 to SR corresponding S1
14: do S verticesofall (S) {v}
15: return (S)
16: MinOptimistic (G, S, N T, SSQ, AdjList, iden)
CmpSub (G, S, SSQ, iden)
Output: all connected subset S supplementing S
1: T= {Wmin(S) verticesofall(S)}
2: N= {ad(S)-T}
3: for all vi N descending by i
4: return (vi)
5: MinOptimistic(G, {vi}, N T, SSQ, iden)

connected sub-query of a graph G and S′ be any sub-query
of ad(S). Then S

⋃
S′ is connected. As a consequence, a

connected sub-query can be enlarged by adding any subset
of its neighborhood. Multiple similar sub-queries can also
be enlarged by estimating the similarity of their adjoining
vertices and edges.

Partition algorithm provides a skeleton framework how
to generate the non-empty connected join pairs based on
graph-traversal driven that accompany the measurement
of similar sub-queries. We will use the non-empty con-
nected join pairs to replace the logical-logical transfor-
mation through traditional transformational rule. The top-
down enumeration with the optimized logical-logical trans-
formation is called as TD−JP . The similar sub-queries
are employed to avoid multiple plan construction, and there-
fore degrade the complexity degree for top-down algorithm.

For all elements of V, Partition firstly determines the
similar vertices from line 3 to 9. Then it expands every
element {v} of V by calling a routine MinOptimistic that
extends a given connected sub-query to bigger connected
sub-query at line 13. For every constructed connected sub-
query, CmpSub generates all connected sub-queries ad-

Figure 1 Query Graph G

joining it at line 16. Line 17-20 adds every join pair con-
structed to CSLQS. MinOptimistic is an iteration function
and mainly expands the node S by calculating the neigh-
borhood ad(S). Line 5-13 in MinOptimistic expands the
current pair of similar sub-queries by adding the similar
adjoining edge.

Let us consider an example. Fig.1 shows a query graph
using error bound parameters (Ev=0.25, Ee=0.3) with the
table size and selectivity.

The similar sub-queries (SSQ) and connected join pairs
grouped by the size of the larger quantifier set in the join
pair (CSLQS) is given in Fig.2. SSQ1 contains the similar
vertices of G. Note that {(V2), (V5)} are similar vertices
in SSQ1 and there is existing similar vertices V1, V2 in ad
(V2) and ad(V5), respectively. The reason {(V2, V1), (V5,
V6)} is not contained by SSQ2 is because edge (V2, V1)
and edge (V5, V6) are not similar.

Through the graph in Fig.2 we also can see the struc-
ture of CSLQS constructed. The set of CSLQS connected
by oblique line denotes logically equivalent multi- expres-
sion and will been used to logical-to-logical transforma-
tions. For example, we use CSLQS[1,8], CSLQS[3,6] and
CSLQS[4,5] to logical express G with nine vertices. So the
solution of G can be split three parts. Parallel Execution
can be done on these devised parts. Note that CSLQS[2,7] is
not included in CSLQS[∗,7] , because there is not existing
connected join pair (S1, S2) where S1 and S2 have two and
seven vertices respectively by the concrete implementation
of Partition algorithm. So the CSLQS constructed by Parti-
tion algorithm makes the top-down dynamic programming
not relying on transformation rule of traditional. It is opti-
mal with respect to the join graph and avoids the Cartesian
products which can extremely decreasing the search space.
The set of CSLQS connected by horizontal line have same
dependence set of CSLQS. For example, the CSLQS set
comprised by triangle are depended by CSLQS[∗,4].

3. Construction of Query Plan

3.1 Parallel Top-down Enumeration on CSLQS
In order to solve the solution of a sub-query of G us-

ing parallelize the top-down enumeration, we need allo-
cate the set of CSLQS[x,y] that the sum of x and y equals
NumRel(T) of the query G to different threads. We use
the number of cores, num(cores), to denote the number of

c© 2012 NSP
Natural Sciences Publishing Cor.

938 YongHeng Chen et al : Graceful Degradation for Top-Down ...

Figure 2 SSQ and CSLQS of Query Graph G

threads. However num(D(CSLQS[∗,y])) that equals num-
ber num (D (CSLQS[1,y])) is (y2/4) +1 when y is even
number or (y + 1)(y − 1)/4 when y is odd number re-
duces with the decrease of y. we use D (CSLQS[∗,y]) to
denote the workload of CSLQS[∗,y]. Because it will cause
the imbalance workload among threads based on CSLQS
allocation, we need refined allocation granularity. The bal-
ance workload among threads can be completed by using
join pairs in CSLQS as allocation granularity. The concrete
way as follow:

Each CSLQS[xy] that the sum of x and y equals Num-
Rel(T) of the query G firstly is partitioned into num(cores)
groups. Then the different group[i] in each CSLQS[xy] are
allocated to thread[i]. The high-level description of paral-
lelize top-down enumeration with the optimized logical-
logical transformation with CSLQS is given by the follow-
ing TDP−CJP algorithm.

The function of AllocateT achieves the distribution with
balance workload among threads at line 5. The TD−CJP
algorithm has three parameters, CSLQS, group[i], Thread-
Memo i, and SSQMemo. CSLQS mainly be used to realize
the optimization of logical-logical transformation. Group[i]
is the allocated execution set of join pairs of threadi. Thread-
Memo i is applied to store the optimal query plan of group
[i]. SSQMemo contain the partial solution by SSQ. Merge-
AndPrunePlans function (line 9) selects the optimal query
plan among partial solutions.

3.2 Optimal TDP Algorithm Based on SSQ
In this subsection, we optimize TDP−CJP through con-

sidering SSQ. Our approach involves two steps:
a) Generating the sub-query plan of SL in SSQ by TD

− CJP algorithm
b) Re-using the sub-query plan of SL to the similar sub

- query SR in SSQ.
The structure of SSQ and CSLQS are different. In or-

der to construct the sub-query plan in SSQ by TD−CJP

TDP_CJP (G, Ev, Ee)
Output: the optimal query plan
1: N=num (cores)
2: CSLQS Partition (G, Ev, Ee)
3: SSQMemo=
4: for each CSLQS[x y] with x+y= NumRel (T)
5: AllocateT(CSLQS[x, y], N)
6: for i 1 to N // N thread parallel implement
7: pool.SubmitJob
8: TD_CJP (CSLQS, group[i], ThreadMemoi, SSQMemo)
9: pool.Sync ()
10:MergeAndPrunePlans(MEMO, {ThreadMemo1…ThreadMemoN
})
11:return MEMO

algorithm, we re-consider expressing the sub-query of SL

using connected join pairs. This process can achieve by
adding a JPSL column. JPSL column contains all the logi-
cal express of SL. When the sub-query of SL only contains
a node, the JPSL contains a node. Otherwise, the sub-query
q of SL in SSQi can be logical expressed via traveling ev-
ery sub-query qx and qy of SL in SSQx and SSQy respec-
tively that the sum of x and y equals i and verticesofall (q)
equals the sum of verticesofall(qx) and verticesofall (qy).
For example, the sub-query (V1, V2, V9) of SL in SSQ3

can be expressed (V1, V2V9) and (V9, V1V2). Through
this method, the constructed SSQ in Fig.2 can be recon-
structed as Fig.3.

Figure 3 Reconfigurable SSQ

The high-level description of the optimized TDP−CJP
with SSQ is given by the following OTDP−CJP algorithm.
Note that the major objective to first TD−CJP (line 13)
is to obtain the query plan of JPSL but the optimal plan
for SL. So the multiple logical express of SL can not be
executed in parallel. On the contrary, the second (line 22)
can be executed in parallel.

The function of Reconstruct mainly achieves all SL in
SSQ logical express by adding a JPSL column (line 3).
Line 4-7 uses CSSQ to preserve all join pairs in SSQ ac-
cording to the method of constructing CSLQS. The pur-
pose of this is mainly to fulfill a consistent approach of
two TD−CJP. MaxIndex (SSQ) solves the max index of

c© 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 6-3S, No. 3, 935-941 (2012) / www.naturalspublishing.com/Journals.asp 939

OTDP_CJP (G, B, Ev, Ee)
Output: the optimal query plan with cost not exceeding B
1: N=num (cores)
2: SSQ, CSLQS Partition (G, Ev, Ee)
3: SSQ Reconstruct(SSQ)
4: for each join pair (S 1, S 2) in JPSL
5: qs2=max (S 1, S 2)
6: qs1=min (S 1, S 2)
7: append (qs1, qs2) to CSSQ[NumRel(qs1), NumRel(qs2)]
8: m=MaxIndex (SSQ)
9: SSQMemo=
//Constructing the query plan for all join pairs in JPSL of SSQ
10: SSQm existing logical express JP without query plan in
SSQMemo
11: for each logical express JP
12: JPMemo=
13: TD_CJP (CSSQ, JP, JPMemo, SSQMemo)
14: SSQMemo SSQMemo JPMemo
15: m=m-1
16: SSQMemo SSQMemo Reuse_Plan(SSQ, SSQMemo)
//Constructing global solution
17: for each CSLQS[x y] with x+y= NumRel (T)
18: AllocateT(CSLQS[x y], N)
19: for i 1 to N // N thread parallel implement
20: pool.SubmitJob
21: ThreadMemoi=
22: TD_CJP (CSLQS, group[i], ThreadMemoi, SSQMemo)
23: pool.Sync ()
24: MergeAndPrunePlans (MEMO, {ThreadMemo1…
ThreadMemoN})
25: return MEMO

SSQ at line 8. Line 11-15 constructs the query plans for all
join pairs in JPSL of SSQ and uses SSQMemo to contain
the constructed query plans. SSQMemo will be reviewed
whether or not contain the plan before solving the plan of
anyone join pair. The function of Reuse−Plan completes
the reusing of query plans contained in SSQMemo through
the similar sub-query SL and SR at line 16.

4. Performance Analysis

All the experiments were performed on a Windows Vista
PC with two Intel Xeon Quad Core E540 1.6GHz CPUs
(=8 cores) and 8GB of physical memory. Each CPU has
two 4Mbyte L2 caches, each of which is shared by two
cores. The experimental parameters and their values are
illustrated by Table 1.

In the first experiment, we compares the running time
of TTD, TD−CJP and IDP algorithms by changing the
number of quantifiers for varying query graphs in Figure 4.
The running time consists of two parts, optimization time
used to construct query plan and execution time for query
plan. Execution time reflects the quality of constructed query
plan. None of these are parallel algorithms. We wanted to
answer that besides clique queries the algorithm TD−CJP

Type

Bottom-up DP

Top-down DP

Enumeration Style

Parallel Size-Driven

traditional logical-to-logical
transformation

logical-to-logical transformation
based CSLQS

PDPsva

TTP

TD_CJP

Iterative DP Randomized query IDP

paralleled TD_CJP TDP_CJP
optimized TDP_CJP based

SSQ OTDP_CJP

Table 1 Experimental Parameters

based on the optimization of CSLQS significantly outper-
forms the conventional TTD and IDP algorithms.

Figure 4 (a) compares the running time for clique queries.
As illustrated in Figure 4 (a), the total running time in-
creases as the number of relations is increased. TTD and
TD−CJP have the same execution time because they are
exhaustive search DP algorithms and can construct the best
query plan. Because the optimization of CSLQS for clique
queries is unnecessary, the optimization time for TD−CJP
is longer than TTD. IDP algorithm has the shortest opti-
mization time due to combining randomized and DP algo-
rithm. However, it cannot guarantee an optimal query plan.
So the execution time is the longest. Figure 4 (b) compares
the running time for star queries. Because the optimiza-
tion of CSLQS for star queries can avoid constructing log-
ical join pairs which are not connected, the optimization
time for TD−CJP is shorter than TTD. Figure 4 (c) shows
similar experiments with Figure 4 (b). Figure 4 shows that
TD−CJP algorithm is better than TTD and IDP, apart from
clique queries. This shows the optimization of CSLQS is
effective for star and cycle queries.

In the second experiment, we compared OTDP−CJP,
TDP−CJP and PDPsva algorithms in Figure 5. They are
parallel algorithms. From the running time of Figure 5,
it should be noted the parallel algorithms are superior to
TTD, IDP and TD−CJP algorithm. By Figure 5 we wanted
to answer that besides clique queries the algorithm OTDP
− CJP based on the optimization of CSLQS and SSQ sig-
nificantly outperforms the TDP−CJP and PDPsva algo-
rithms.

Figure 5(a) compares the running time of clique queries.
As illustrated in Figure 5 (a), the optimization time for
PDPsva is the shortest because the optimization of CSLQS
for clique queries is unnecessary. However, OTDP−CJP
cuts the optimization time by using SSQ. The optimization
of OTDP−CJP is shorter than TDP−CJP. For execution
time, PDPsva equals TDP−CJP. It should be noted that
the execution time of OTDP−CJP is longest. The query
plan constructed by OTDP−CJP is the ideal plan, not the
best plan. Figure 5 (b) compares the running time for star
queries. As it shown the running time of OTDP−CJP is the
shortest. Figure 5 (c) shows similar experiments with Fig-
ure 5 (b). Figure 5 shows OTDP−CJP algorithm is optimal
for star and cycle queries.

c© 2012 NSP
Natural Sciences Publishing Cor.

940 YongHeng Chen et al : Graceful Degradation for Top-Down ...

Figure 4 Total time for single thread algorithms by varying
number of quantifiers

Figure 5 Total time for single thread algorithms by varying
number of quantifiers

c© 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 6-3S, No. 3, 935-941 (2012) / www.naturalspublishing.com/Journals.asp 941

5. Conclusion and Future Work

In this paper, parallelizing top-down dynamic program-
ming query based on CMP is completed by three phases.
In the first phase, through graph-driven traversal we con-
structed connected join pairs used to optimal the tradi-
tional transformation rule of logical-to-logical and simul-
taneously similar sub-queries employed to reduce multiple
plan construction for connected join pairs. In the second
phase, based on the reconfigurable SSQ we use TD−CJP
algorithm to construct the query plan for all the logical ex-
press of SL in SSQ and re-use these constructed plan to
the similar sub-queries. Finally, TD−CJP algorithm is ap-
plied once more to solve the global solution based on the
CSLQS and query plans as a result of the second phase
in parallel. By implementing our framework and analyz-
ing the experiment results, OTDP−CJP gracefully degrade
the complexity degree for top-down join enumeration with
large number, impressive gains in the performance.

Future work is still needed in expanding our multi-
threaded cluster partition and join strategy to examine per-
formance on other multithreaded processors and to support
other operations.

References

[1] W.S. Han,W. Kwak, J. Lee, G. M. Lohman and V. Markl,
Proc. the VLDB Endowment, 188 (2008).

[2] G. Moerkotte and T. Neumann, Proc. the VLDB Endow-
ment, 930 (2006).

[3] G. Moerkotte and T. Neumann, Proc. of the ACM SIG-
MOD international conference on Management of data, 539
(2008).

[4] John L. Hennessy and J.L. Patterson, In: Computer Archi-
tecture: A Quantitative Approach, Nate McFadden (Eds.),
335 (ELSEVIER, New York, 2007).

[5] K. Donald and S. Konrad, Proc. ACM Trans. on Database
Systems, 2000 (1998).

[6] Arun N. Swami and G. Anoop, Proc. of the ACM SIGMOD
international conference on Management of data, 8 (1988).

[7] S. Michael, M. Guido and K.A lfons, Proc. the VLDB En-
dowment, 191 (1997).

[8] B. Kristin, C.F.Michael and E.I. Yannis, Proc. the Fourth In-
ternational Conference on Genetic Algorithms, 400 (1991).

[9] Q. Zhu, Y.Y. Tao, and Z. Calisto, Knowledge and Informa-
tion Systems, (Springer, New York, 2005).

[10] V.V. Meduri, http://scholarbank.nus.edu.sg/bitstream/handle
/10635/20999/report.pdf?sequence=1, (2011).

[11] M. B. Pam, Proc. the ACM/IEEE on SuperComputing, 15
(2008).

[12] P. Stenstrom, Proc. Parallel and Distributed Symposium, 14
(2007).

[13] L. Shapiro, Proc. the International Database Engineering &
Applications Symposium, 20 (2001).

[14] John W. Raymond and W. Peter, Computer-Aided Molecu-
lar Design, (Springer, New York, 2002).

First Author was born in Hei-
longjiang of China in Dec 1979
and received the Ph.D. degree at
the Department of Computer Sci-
ence and technology, Jilin Univer-
sity. His current main research in-
terests include Query Optimization,
Web Intelligence and Ontology En-
gineering and Information integra-
tion. He is a member of System

Software Committee of China’s Computer Federation. More
than 20 papers of him were published in key Chinese jour-
nals or international conferences, 10 of which are cited by
SCI/EI.

Second Author obtained her
B.Sc. degree from Harbin Normal
University. Currently she is a M.Sc.
candidate at the Department of Com-
puter Science and technology, Jilin
University. Main research area cov-
ers Database Theory, Machine Learn-
ing, Data Mining and Web Min-
ing, Web Search Engines, Web In-
telligence.

c© 2012 NSP
Natural Sciences Publishing Cor.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

