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Abstract: In this paper, we deal with the oscillatory behavior of forced second order nonlinear functional integro-dynamic equations
of the form

(r(t)x∆ (t))∆ = e(t)± p(t)xγ (τ(t))+
∫ t

0
k(t,s) f (s,x(τ(s)))∆s,

and

(r(t)x∆ (t))∆ = e(t)+ p(t)x(τ(t))−
∫ t

0
k(t,s) f (s,x(τ(s)))∆s,

on time scalesT, wherer(t), p(t) ande(t) are right dense continuous (rd-continuous) functions onT. Oscillation behavior of these
equations dose not studied before. Our results improve and extend some results established by Grace et al. [13]. We also give some
examples to illustrate our main results.
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1 Introduction

In recent years, there has been an increasing interest in
studying the oscillation and nonoscillation of dynamic
equations on time scales Hilger introduced the theory of
time scale which was expected to unify continuous and
discrete calculus. We refer the reader to the books [8,9],
papers [1-3], [5-7], and the references cited therein.

Research on oscillation theory for integro-dynamic
equations is limited due to lack of techniques available on
time scales (see [4] and [11-13]).

The main goal of this paper is to establish some new
criteria for the oscillatory behavior of forced second order
nonlinear functional integro-dynamic equations on time
scalesT of the form

(r(t)x∆ (t))∆ = e(t)±p(t)xγ(τ(t))+
∫ t

0
k(t,s) f (s,x(τ(s)))∆s,

(1.1)
and

(r(t)x∆ (t))∆ = e(t)+p(t)x(τ(t))−
∫ t

0
k(t,s) f (s,x(τ(s)))∆s.

(1.2)
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2 Some Preliminaries on time scales

A time scaleT is an arbitrary nonempty closed subset
of the real numbersR. On any time scaleT, the forward
and backward jump operators are defined by

σ(t) =inf{s∈ T,s> t} and
ρ(t) =sup{s∈ T,s< t}.

A point t ∈ T is said to be left-dense ifρ(t) = t,
right-dense ifσ(t) = t, left-scattered ifρ(t) < t, and
right-scattered ifσ(t)> t. The graininess functionµ for a
time scaleT is defined byµ(t) = σ(t)− t. The setTk is
defined byTk = T−m if T has a left-scattered maximum
m, Otherwise,Tk = T.

A function f : T → R is called rd-continuous
provided that it is continuous at right-dense points ofT

and its left-sided limits exist at left-dense points ofT. The
set of all rd-continuous functions is denoted byCrd(T,R).
By C1

rd(T,R), we mean the set of functions whose delta
derivative belong toCrd(T,R).

A function f : T→R is regressive provided that

1+ µ(t) f (t) 6= 0 for all t ∈ T
k,

holds. The set of all regressive and rd-continuous functions
f : T→ R is denoted by

R = R(T) = R(T,R).

If q∈ R, then we define the exponential functioneq(t,s)
by

eq(t,s) = exp(
t∫
s

ξµ(τ)(q(τ))∆τ) for s, t ∈ T,

where the cylinder functionξh(z) is defined by

ξh(z) =
1
hLog(1+ zh).

For a functionf :T→R (the rangeR of f may be actually
replaced by any Banach space), the delta derivativef ∆ is
defined by

f ∆ (t) = f (σ(t))− f (t)
σ(t)−t ,

provided f is continuous at t and t is right-scattered. If t is not
right-scattered, then the delta derivativef ∆ (t) is defined by

f ∆ (t) = lim
s→t+

f (σ(t))− f (t)
t −s

= lim
s→t+

f (t)− f (s)
t −s

provided that this limit exists.
A function f : [a,b] → R is said to be differentiable if its
derivative exists. The derivativef ∆ and the shift f σ of a
function f are related by

f σ = f (σ(t)) = f (t)+µ(t) f ∆ (t).

The delta derivative rules of the product and the quotient oftwo
differentiable functionsf andg are given by

( f .g)∆ (t) = f ∆ (t)g(t)+ f σ (t)g∆ (t) = f (t)g∆ (t)+ f ∆ (t)gσ (t)

( f
g)

∆ (t) = f ∆ (t)g(t)− f (t)g∆ (t)
g(t)gσ (t) , ggσ 6= 0.

The integration by parts formula reads
b∫
a

f (t)g∆ (t)∆ t = [ f (t)g(t)]ba−
b∫
a

f ∆ (t)gσ (t)∆ t

or,

b∫
a

f σ (t)g∆ (t)∆ t = [ f (t)g(t)]ba−
b∫
a

f ∆ (t)g(t)∆ t

and the infinite integral is defined by

∞∫

b

f (s)∆s= lim
t→∞

t∫

b

f (s)∆s.

3 Basic Lemmas

Lemma 3.1([14]) If X and Y are nonnegative, then

Xλ − (1−λ )Yλ −λXYλ−1 ≤ 0, λ < 1,

and

Xλ +(λ −1)Yλ −λXYλ−1 ≥ 0, λ > 1,

with equality holding iff X=Y .

Lemma 3.2([10]) Let y, f ∈Crd(T,R), z∈ R+(T,R), z≥ 0 and

α ∈ R.
If

y(t)≤ α +
∫ t
t0[ f (s)

∫ s
t0 z(ξ )y(ξ )∆ξ ]∆s for all t ∈ T,

then

y(t)≤ αep(t, t0) for all t ∈ T,

where p(t) = f (t)
∫ t
t0 z(s)∆s.

4 Main results

In this section, we give some new oscillation criteria for
equations (1.1) and (1.2). We begin by introducing the class of
functionsℑ which will be used in the proof of the first part of
this section. Let
D = {(t,s) ∈ T × T : t > s ≥ t0},
D0 = {(t,s) ∈ T× T : t ≥ s ≥ t0}. A function H ∈ Crd(D,R)

belongs to the classℑ, if it satiesfies the following conditions:

(C1)H(t, t) = 0, t ≥ t0, H(t,s)> 0 onD0,
(C2)H has a non positive continuous∆ -partial derivative

H∆s(t,s) and a non negative continuous second-order

∆ -partial derivativeH∆2
s2 (t,s).

(C3)H∆s(t, t) = 0, limt→∞
H∆s(t,t0)
H(t,to)

= O(1).
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4.1 Oscillation criteria for Eq. (1.1):

In the following, we establish oscillation criteria for Eq.(1.1)
subject to the following conditions:

(H1)r,e, p :T→R andk :T×T→R are rd-continuous,k(t,s)≥
0 for t > sand there exist rd-continuous functionsa,m : T→

(0,∞) such that

k(t,s)≤ a(t)m(s) for all t ≥ s.

(H2)γ is a quotient of odd positive integers such that 0< γ < 1.
(H3) f : T×R → R is continuous and there exist rd-continuous

function q : T → (0,∞) and real numberβ with 0 < β < 1
such that

0< x f(t,x)≤ q(t)|x|β+1 for x 6= 0, t ≥ 0. (4.1)

(H4)τ : T→ T and limt→∞ τ(t) = ∞.

In the following, we denote

A(t) = e(t)+(1−β )β β/(1−β )a(t)
∫ t
0 gβ/(β−1)(s)m1/(1−β ) (s)q1/(1−β )(s)∆s,

(4.2)

where g : [0,∞)T → (0,∞) is a given rd- continuous
function.

A solutionx(t) of (1.1) or (1.2) is said to be oscillatory
if, for everyt0 > 0, we have

inf
t≥t0

x(t)< 0< sup
t≥t0

x(t).

Otherwise, it is said to be nonoscillatory .

Theorem 4.1Assume thatτ(t) ≤ t, H1-H4 hold and there
exists a kernel function H(t,s) such that

(H∆s(t,s)r(s))∆s ≥ 0, (4.3)

limsup
t→∞

1
H(t, t1)

∫ t

t1
[H(t,σ(s))a(s)

∫ s

t1
τ(u)g(u)∆u]∆s<∞,

(4.4)

limsupt→∞
1

H(t,t1)
[
∫ t
t1

H(t,σ(s))[A(s)− k2a(s)]∆s+
∫ τ(t)
t1

G(t,s)∆s] = ∞,

(4.5)

lim inf t→∞
1

H(t,t1)
[
∫ t
t1

H(t,σ(s))[A(s)− k2a(s)]∆s−
∫ τ(t)
t1

G(t,s)∆s] =−∞,

(4.6)
where,
G(t,s) = [(γ −1)γγ/(1−γ)[(H∆s(t,σ∗(s))r(σ∗(s)))∆s(σ∗(s))∆ ]γ/(γ−1)(H(t,σ(τ∗(s)))p∗(τ∗(s))(τ∗(s))∆ )1/(1−γ)],
σ∗(s) andτ∗(s) are the inverse functions ofσ(s) andτ(s)
respectively, and p∗(t) = max{±p(t),0}. Then every
solution x(t) = O(t) of Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). We
may assume thatx(t) > 0, x(τ(t)) > 0 for all t ≥ t1 > 0.
UsingH1 andH3 in (1.1), we have

e(t) = (r(t)x∆ (t))∆ ∓ p(t)xγ (τ(t))

−

∫ t1
0

k(t ,s) f (s,x(τ(s)))∆s

≥ (r(t)x∆ (t))∆ − p∗(t)xγ (τ(t))

−

∫ t1
0

k(t ,s) f (s,x(τ(s)))∆s

−

∫ t

t1
k(t ,s) f (s,x(τ(s)))∆s, (4.7)

wherep∗(t) = max{±p(t),0}. Hence

e(t)≥ (r(t)x∆ (t))∆ − p∗(t)xγ (τ(t))

−a(t)
∫ t1
0

m(s)| f (s,x(τ(s)))|∆s−a(t)
∫ t

t1
m(s) f (s,x(τ(s)))∆s. (4.8)

Setting,

k1 = max{| f (t,x(τ(t)))|, t ∈ [0, t1]T}< ∞ and
k2 =−k1

∫ t1
0 m(s)∆s,

then,

e(t)≥ (r(t)x∆ (t))∆ − p∗(t)xγ (τ(t))+k2a(t)

−a(t)
∫ t

t1
m(s)q(s)xβ (τ(s))∆s

≥ (r(t)x∆ (t))∆ − p∗(t)xγ (τ(t))+k2a(t)

+a(t)
∫ t

t1
[g(s)x(τ(s))

−m(s)q(s)xβ (τ(s))]∆s−a(t)
∫ t

t1
g(s)x(τ(s))∆s. (4.9)

Using Lemma3.1, we get

g(s)x(τ(s))−m(s)q(s)xβ (τ(s)) ≥ (β −1)β β/(1−β )gβ/(β−1)(s)m1/(1−β )(s)q1/(1−β )(s).

(4.10)
Now, From (4.10) in (4.9), we obtain

A(t)≥ (r(t)x∆ (t))∆ − p∗(t)xγ(τ(t))+k2a(t)−a(t)
∫ t

t1

g(s)x(τ(s))∆s. (4.11)

Multiplying (4.11) by H(t,σ(s)) and integrating fromt to
t1, we have

∫ t

t1
H(t ,σ(s))A(s)∆s≥

∫ t

t1
H(t ,σ(s))(r(s)x∆ (s))∆ ∆s−

∫ t

t1
H(t ,σ(s))p∗(s)xγ (τ(s))∆s

+k2

∫ t

t1
H(t ,σ(s))a(s)∆s−

∫ t

t1
[H(t ,σ(s))a(s)

∫ s

t1
g(u)x(τ(u))∆u]∆s. (4.12)

Using integration by parts two times, we have

∫ t

t1

H(t,σ(s))(r(s)x∆(s))∆ ∆s=−H(t, t1)r(t1)x
∆ (t1)−

∫ t

t1

H∆s(t,s)r(s)x∆(s)∆s

=−H(t, t1)r(t1)x
∆ (t1)+H∆s(t, t1)r(t1)x(t1)

+
∫ t

t1

(H∆s(t,s)r(s))∆sx(σ(s))∆s

= A(t, t1)+
∫ t

t1

(H∆s(t,s)r(s))∆sx(σ(s))∆s, (4.13)

where
A(t, t1) =−H(t, t1)r(t1)x∆ (t1)+H∆s(t, t1)r(t1)x(t1).
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From (4.13) in (4.12), we get
∫ t

t1
H(t ,σ(s))A(s)∆s≥A(t , t1)+

∫ t

t1
(H∆s(t ,s)r(s))∆sx(σ(s))∆s

−

∫ t

t1
H(t ,σ(s))p∗(s)xγ (τ(s))∆s+k2

∫ t

t1
H(t ,σ(s))a(s)∆s

−

∫ t

t1
[H(t ,σ(s))a(s)

∫ s

t1
g(u)x(τ(u))∆u]∆s

= A(t , t1)+
∫ σ(t)

σ(t1)
(H∆s(t ,σ∗(s))r(σ∗ (s)))∆sx(s)(σ∗ (s))∆ ∆s

−

∫ τ(t)

τ(t1)
H(t ,σ(τ∗(s)))p∗(τ∗ (s))xγ (s)(τ∗ (s))∆ ∆s

+k2

∫ t

t1
H(t ,σ(s))a(s)∆s−

∫ t

t1
[H(t ,σ(s))a(s)

∫ s

t1
g(u)x(τ(u))∆u]∆s. (4.14)

Sinceτ(t)≤ t, then

∫ t

t1
H(t ,σ(s))A(s)∆s≥A(t , t1)+

∫ τ(t)

σ(t1)
(H∆s(t ,σ∗(s))r(σ∗ (s)))∆sx(s)(σ∗ (s))∆ ∆s

−

∫ τ(t)

τ(t1)
H(t ,σ(τ∗(s)))p∗(τ∗ (s))xγ (s)(τ∗ (s))∆ ∆s

+k2

∫ t

t1
H(t ,σ(s))a(s)∆s−

∫ t

t1
[H(t ,σ(s))a(s)

∫ s

t1
g(u)x(τ(u))∆u]∆s

≥ B(t , t1)+k2

∫ t

t1
H(t ,σ(s))a(s)∆s

−

∫ t

t1
[H(t ,σ(s))a(s)

∫ s

t1
g(u)x(τ(u))∆u]∆s

+

∫ τ(t)

t1
[(H∆s(t ,σ∗(s))r(σ∗ (s)))∆s(σ∗ (s))∆ x(s)

−H(t ,σ(τ∗(s)))p∗(τ∗ (s))(τ∗ (s))∆ xγ (s)]∆s, (4.15)

where B(t, t1) =
A(t, t1)+

∫ t1
σ(t1)

(H∆s(t,σ∗(s))r(σ∗(s)))∆sx(s)(σ∗(s))∆ ∆s

−
∫ t1

τ(t1)
H(t,σ(τ∗(s)))p∗(τ∗(s))xγ (s)(τ∗(s))∆ ∆s.

Applying Lemma3.1, we get
(H∆s(t ,σ∗(s))r(σ∗ (s)))∆s(σ∗ (s))∆ x(s)−H(t ,σ(τ∗(s)))p∗(τ∗ (s))(τ∗ (s))∆ xγ (s)

≥ (γ −1)γγ/(1−γ) [(H∆s(t ,σ∗(s))r(σ∗ (s)))∆s (σ∗(s))∆ ]γ/(γ−1)

(H(t ,σ(τ∗(s)))p∗(τ∗ (s))(τ∗ (s))∆ )1/(1−γ )
= G(t ,s)

Hence, (4.15) becomes
∫ t

t1
H(t ,σ(s))A(s)∆s≥ B(t , t1)+

∫ τ(t)

t1
G(t ,s)∆s+k2

∫ t

t1
H(t ,σ(s))a(s)∆s

−

∫ t

t1
[H(t ,σ(s))a(s)

∫ s

t1
τ(u)g(u)

x(τ(u))
τ(u)

∆u]∆s.

∫ t

t1
H(t,σ(s))[A(s)−k2a(s)]∆s−

∫ τ(t)

t1
G(t,s)∆s (4.16)

≥ B(t, t1)−
∫ t

t1
[H(t,σ(s))a(s)

∫ s

t1
τ(u)g(u)

x(τ(u))
τ(u)

∆u]∆s.

(4.17)

Multiplying (4.16) by H−1(t, t1), using (4.4), and taking
the lower limit of (4.16), we get a contradiction with(4.6).
This completes the proof.

Theorem 4.2Assume thatτ(t) ≥ t, H1-H4 hold and there
exists a kernel function H(t,s) such that

(H∆s(t,s)r(s))∆s ≥ 0, (4.18)

limsup
t→∞

1
H(t, t1)

∫ t

t1
[H(t,σ(s))a(s)

∫ s

t1
τ(u)g(u)∆u]∆ < ∞,

(4.19)

limsup
t→∞

1
H(t, t1)

∫ τ(t)

t
H(t,σ(τ∗(s)))sγ p∗(τ∗(s))(τ∗(s))∆ ∆s< ∞ (4.20)

limsup
t→∞

1
H(t, t1)

[
∫ t

t1

H(t,σ(s))[A(s)−k2a(s)]∆s+
∫ t

τ(t1)
G(t,s)∆s] = ∞, (4.21)

liminf
t→∞

1
H(t, t1)

[
∫ t

t1

H(t,σ(s))[A(s)−k2a(s)]∆s−
∫ t

τ(t1)
G(t,s)∆s] =−∞, (4.22)

where,
G(t ,s) = [(γ −1)γγ/(1−γ) [(H∆s(t ,σ∗(s))r(σ∗ (s)))∆s (σ∗(s))∆ ]γ/(γ−1)

(H(t ,σ(τ∗(s)))p∗ (τ∗(s))(τ∗ (s))∆ )1/(1−γ )], σ∗ (s) and τ∗(s) are the inverse
functions of σ(s) and τ(s) respectively, and
p∗(t) = max{±p(t),0}. Then every solution x(t) = O(t)
of Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1).
We may assume thatx(t)> 0, x(τ(t)) > 0 for all t ≥ t1¿0.
Proceeding as in the proof of Theorem4.1to get (4.14)
∫ t

t1

H(t,σ(s))A(s)∆s≥A(t, t1)+
∫ σ(t)

σ(t1)
(H∆s(t,σ∗(s))r(σ∗(s)))∆sx(s)(σ∗(s))∆ ∆s

−

∫ τ(t)

τ(t1)
H(t,σ(τ∗(s)))p∗(τ∗(s))xγ(s)(τ∗(s))∆ ∆s

+k2

∫ t

t1

H(t,σ(s))a(s)∆s

−

∫ t

t1

[H(t,σ(s))a(s)
∫ s

t1

g(u)x(τ(u))∆u]∆s.

sinceτ(t)≥ t, then
∫ t

t1
H(t ,σ(s))A(s)∆s≥ A(t , t1)+

∫ t

σ(t1)
(H∆s(t ,σ∗(s))r(σ∗ (s)))∆sx(s)(σ∗ (s))∆ ∆s

−

∫ t

τ(t1)
H(t ,σ(τ∗(s)))p∗(τ∗ (s))xγ (s)(τ∗ (s))∆ ∆s

−

∫ τ(t)

t
H(t ,σ(τ∗(s)))p∗(τ∗ (s))xγ (s)(τ∗ (s))∆ ∆s

+k2

∫ t

t1
H(t ,σ(s))a(s)∆s−

∫ t

t1
[H(t ,σ(s))a(s)

∫ s

t1
g(u)x(τ(u))∆u]∆s.

Hence,
∫ t

t1

H(t,σ(s))A(s)∆s≥ B(t, t1)−
∫ τ(t)

t
H(t,σ(τ∗(s)))p∗(τ∗(s))xγ(s)(τ∗(s))∆ ∆s

+

∫ t

τ(t1)
[(H∆s(t,σ∗(s))r(σ∗(s)))∆sx(s)(σ∗(s))∆

−H(t,σ(τ∗(s)))p∗(τ∗(s))xγ(s)(τ∗(s))∆ ]∆s

+k2

∫ t

t1

H(t,σ(s))a(s)∆s−
∫ t

t1

[H(t,σ(s))a(s)
∫ s

t1

g(u)x(τ(u))∆u]∆s,

where,

B(t, t1) =

A(t, t1)+
∫ τ(t1)

σ(t1)
(H∆s(t,σ∗(s))r(σ∗(s)))∆sx(s)(σ∗(s))∆ ∆s.

Therefore,
∫ t

t1
H(t,σ(s))[A(s)− k2a(s)]∆s−

∫ t

τ(t1)
G(t,s)∆s≥ B(t, t1)

−

∫ t

t1
[H(t,σ(s))a(s)

∫ s

t1
τ(u)g(u)

x(τ(u))
τ(u)

∆u]∆s

−

∫ τ(t)

t
H(t,σ(τ∗(s)))sγ p∗(τ∗(s))(

x(s)
s

)γ (τ∗(s))∆ ∆s,

(4.23)

Multiplying (4.23) by H−1(t, t1), using (4.19), (4.20) and
taking the lower limit of (4.23), we get a contradiction
with(4.22). This completes the proof.
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Example 41Consider the integro-differential equation
(T= R)

x′′(t)= t3±t2sintxγ(t)+
∫ t

0

xβ (s)
(t4+1)(s8+1)

∆s, t ≥ 0,

(4.24)
where,0< γ,β < 1. Here,
r(t) = 1, e(t) = t3, p(t) = t2sint, k(t,s) = 1

(t4+1)(s8+1)
,

a(t) = 1
t4

, m(s) = 1
s8 , f(x) = xβ , τ(t) = t. To apply

Theorem 4.1, let g(t) = m(t) and H(t,s) = t − s.
Therefore

(H ′(t,s)r(s))′ = 0,

and
∫ t

t1
H(t,s)a(s)[

∫ s

t1
τ(u)g(u)du]ds=

∫ t

t1
H(t,s)a(s)[

∫ s

t1

1
u7 du]ds

=
∫ t

t1
H(t,s)a(s)[

−1
6

[
1
s5 −

1

t5
1

]ds

=
−1
6

∫ t

t1
(t −s)

1
s4 [

1
s5 −

1

t5
1

]ds.

Hence,

limsup
t→∞

1
H(t, t1)

∫ t

t1
H(t,s)a(s)[

∫ s

t1
τ(u)g(u)du]ds< ∞,

∫ τ(t)
t1

G(t,s)ds= 0,

and
∫ t

t1
H(t,s)[A(s)− k2a(s)]ds

=
∫ t

t1
(t − s)[s3−

1
7
(1−β )β/(1−β )[

1
s11 −

1

t7
1s4

]− k2
1
s4 ]ds

→ ∞ as t→ ∞.

Therefore, Eq. (4.24) is oscillatory.

4.2 Oscillation criteria for Eq. (1.2):

Here, we establish oscillation criteria for Eq. (1.2) subject
to the following conditions:

(M1)r,e, p : T→ R andk : T×T→ R are rd-continuous,
r(t) > 0, k(t,s) ≥ 0 for t > s and there exist
rd-continuous functionsb,n : T→ (0,∞) such that

k(t,s)≥ b(t)n(s) for all t ≥ s.

(M2) f : T × R → R is continuous and there exist
rd-continuous functionu : T → (0,∞) and a real
numberλ with λ > 1 such that

x f(t,x) ≥ u(t)|x|λ+1 for x 6= 0, t ≥ 0. (4.25)

(M3)τ : T→ T with τ(t)≤ t and limt→∞ τ(t) = ∞.

In the following, we denote

h±(t) = e(t)± (λ −1)λ λ/(1−λ )b(t)
∫ t

0
vλ/(λ−1)(s)n1/(1−λ )(s)u1/(1−λ )(s)∆s,

(4.26)

wherev∈Crd(T,(o,∞)).

Now, we give sufficient conditions under which a
nonoscillatory solutionsx(t) of (1.2) satisfying

x(t) = O(1) t → ∞.

Theorem 4.3Let λ > 1, M1−M3 hold for all t0 > 0 such
that ∫ ∞

t0

1
r(s)

∆s< ∞. (4.27)

∫ ∞

t0
[

1
r(s)

∫ s

t0
b(ξ )∆ξ ]∆s< ∞, (4.28)

∫ ∞

t0

1
r(s)

[

∫ τ(s)

τ(t1)
p∗(τ∗(ξ ))(τ∗(ξ ))∆ ∆ξ ]∆s< ∞. (4.29)

If,

limsup
t→∞

∫ t

t0

1
r(s)

[

∫ s

t0
h+(ξ )∆ξ ]∆s< ∞

lim inf
t→∞

∫ t

t0

1
r(s)

[

∫ s

t0
h−(ξ )∆ξ ]∆s>−∞, (4.30)

then every nonoscillatory solution x(t) of (1.2) satisfies

limsup
t→∞

x(t)< ∞. (4.31)

Proof. Let x(t) be a nonoscillatory solution of (1.2). We
may assume thatx(t) > 0, x(τ(t)) > 0 for all t ≥ t1, for
somet1 > 0. UsingM1 andM2 in (1.2), we have

(r(t)x∆ (t))∆ = e(t)+ p(t)x(τ(t))

−

∫ t1

0
k(t,s) f (s,x(τ(s)))∆s

−
∫ t

t1
k(t,s) f (s,x(τ(s)))∆s

≤ e(t)+ p(t)x(τ(t))−b(t)c1

∫ t1

0
n(s)∆s

−b(t)
∫ t

t1
n(s)u(s)xλ (τ(s))∆s

≤ e(t)+ p∗(t)x(τ(t))+ c2b(t)

−b(t)
∫ t

t1
n(s)u(s)xλ (τ(s))∆s, (4.32)

where

c1 := min{ f (t,x(τ(t))) : t ∈ [0, t1]T} ≤ 0,

c2 =−c1

∫ t1

0
n(s)∆s≥ 0 andp∗(t) = max{0, p(t)}.
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Hence,

(r(t)x∆ (t))∆ ≤ e(t)+ p∗(t)x(τ(t))+ c2b(t)

−b(t)
∫ t

t1
n(s)u(s)xλ (τ(s))∆s

≤ e(t)+ p( ∗ t)x(τ(t))+ c2b(t)

+b(t)
∫ t

t1
[v(s)x(τ(s))−n(s)u(s)xλ (τ(s))]∆s,

(4.33)

Applying Lemma3.1 to v(s)x(τ(s)) − n(s)u(s)xλ (τ(s))
with

X = (nu)
1
λ x, and Y = ( 1

λ v(nu)−
1
λ )

1
λ−1 ,

we obtain

v(s)x(τ(s))−n(s)u(s)xλ (τ(s)) ≤

(λ −1)λ λ/(1−λ )vλ/(λ−1)(s)n1/(1−λ )(s)u1/(1−λ )(s).

Therefore,

(r(t)x∆ (t))∆ ≤ h+(t)+ p∗(t)x(τ(t))+ c2b(t). (4.34)

Integrating (4.34) from t1 to t, we have

r(t)x∆ (t)≤ r(t1)x
∆ (t1)+

∫ t

t1
h+(s)∆s

+

∫ t

t1
p∗(s)x(τ(s))∆s+ c2

∫ t

t1
b(s)∆s. (4.35)

Therefore,

x∆ (t)≤
r(t1)x∆ (t1)

r(t)
+

1
r(t)

∫ t

t1
h+(s)∆s

+
1

r(t)

∫ t

t1
p∗(s)x(τ(s))∆s+

c2

r(t)

∫ t

t1
b(s)∆s

=
r(t1)x∆ (t1)

r(t)
+

1
r(t)

∫ t

t1
h+(s)∆s

+
1

r(t)

∫ τ(t)

τ(t1)
p∗(τ∗(s))x(s)(τ∗(s))∆ ∆s+

c2

r(t)

∫ t

t1
b(s)∆s.

(4.36)

Integrating fromt1 to t, we get

x(t)≤ x(t1)+ r(t1)x
∆ (t1)

∫ t

t1

∆s
r(s)

+

∫ t

t1
[

1
r(s)

∫ s

t1
h+(ξ )∆ξ ]∆s+ c2

∫ t

t1
[

1
r(s)

∫ s

t1
b(ξ )∆ξ ]∆s

+

∫ t

t1

1
r(s)

[

∫ τ(s)

τ(t1)
p∗(τ∗(ξ ))x(ξ )(τ∗(ξ ))∆ ∆ξ ]∆s.

(4.37)

Hence,

x(t)≤ K+

∫ t

t1

1
r(s)

[

∫ τ(s)

τ(t1)
p∗(τ∗(ξ ))x(ξ )(τ∗(ξ ))∆ ∆ξ ]∆s,

(4.38)

whereK is an upper bound for the expression

x(t1)+ r(t1)x∆ (t1)
∫ t
t1

∆s
r(s) +

∫ t
t1

1
r(s)

∫ s
t1

h+(ξ )∆ξ ∆s+

c2
∫ t
t1
[ 1
r(s)

∫ s
t1

b(ξ )∆ξ ]∆s,

for t ≥ t1. Applying Lemma3.2 to inequality (4.38) and
then using condition (4.29), we get

limsup
t→∞

x(t)< ∞. (4.39)

If x(t) is eventually negative, we can sety= −x. Hence,y
satisfies Eq. (1.2) with e(t) replaced by−e(t) and f (t,x)
by− f (t,−y). In a similar way, we get

limsup
t→∞

(−x(t))< ∞. (4.40)

From (4.39) and (4.40), we conclude that (4.31) holds.

Theorem 4.4Letλ > 1, M1−M3, (4.27), (4.28), (4.29) and
(4.30) hold. If

limsup
t→∞

∫ t

t0

1
r(s)

[

∫ s

t0
h−(ξ )∆ξ ]∆s= ∞,

lim inf
t→∞

∫ t

t0

1
r(s)

[

∫ s

t0
h+(ξ )∆ξ ]∆s=−∞,

for all t0 ≥ 0, then every solution of (1.2) is oscillatory.

Proof. Assume that (1.2) is nonoscillatory on[t0,∞)T.
Then there is a solutionx of (1.2) and a pointt1 ∈ [t0,∞)T
such thatx(t) andx(τ(t)) are of the same sign on[t1,∞)T.
Consider the casex(t) andx(τ(t)) are positive on[t1,∞)T.
The proof whenx is eventually negative is similar.
Proceeding as in the proof of Theorem4.3, we get

x(t)≤ x(t1)+ r(t1)x
∆ (t1)

∫ t

t1

∆s
r(s)

+

∫ t

t1

1
r(s)

∫ s

t1
h+(ξ )∆ξ ∆s+ c2

∫ t

t1
[

1
r(s)

∫ s

t1
b(ξ )∆ξ ]∆s

+

∫ t

t1

1
r(s)

[

∫ τ(s)

τ(t1)
p∗(τ∗(ξ ))x(ξ )(τ∗(ξ ))∆ ∆ξ ]∆s.

Clearly, the conclusion of Theorem4.3 holds. Hence, the
second and the last two integrals in the above inequality
are bounded. Finally, taking liminf ast → ∞ and using
(??), we get a contradiction with the fact thatx(t) is
eventually positive. This contradiction completes the
proof.

Theorem 4.5Letλ = 1, M1−M3, (4.27), (4.28), and (4.29)
hold. If ∫ ∞

t0

1
r(s)

[

∫ s

t0
b(u)[

∫ τ(u)

τ(t0)
n(τ∗(ξ))u(τ∗ (ξ))(τ∗ (ξ))∆ ∆ξ ]∆ξ ]∆s< ∞, (4.41)

and,

limsup
t→∞

∫ t

t0

1
r(s)

[

∫ s

t0
e(ξ )∆ξ ]∆s= ∞,

lim inf
t→∞

∫ t

t0

1
r(s)

[

∫ s

t0
e(ξ )∆ξ ]∆s=−∞,

for all t0 ≥ 0, then every solution of (1.2) is oscillatory.
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