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Abstract: In the paper, we introduce the concept of operatorα-preinvex function, establish some new Hermite-Hadamard type
inequalities for operatorα-preinvex functions, and provide the estimates of both sides of Hermite-Hadamard type inequality in which
some operatorα-preinvex functions of positive selfadjoint operators in Hilbert spaces are involved.

Keywords: Hermite-Hadamard type inequality, operatorα-convex function, operator preinvex function, operatorα-preinvex function

1 Introduction

Throughout this paper, letR= (−∞,∞) andR0 = [0,∞).
First we review the operator order inB(H) which is

the set of all bounded linear operators on a Hilbert space
(H;〈., .〉), and the continuous functional calculus for a
bounded self-adjoint operator. For self-adjoint operators
A,B∈ B(H), we writeA≤ B if 〈Ax,x〉 ≤ 〈Bx,x〉 for every
vectorx∈ H, we call it the operator order.

Let A be a bounded self-adjoint linear operator on a
complex Hilbert space(H;〈., .〉). The Gelfand map
establishes a∗-isometrically isomorphismΦ between the
setC(Sp(A)) of all continuous complex-valued functions
defined on the spectrum ofA, denotedSp(A), and the
C∗-algebra C∗(A) generated byA and the identity
operator 1H on H as follows (see for instance [2], p.3).
For any f ,g∈C(Sp(A)) and anyα,β ∈ C, we have

(i) Φ(α f +βg) = αΦ( f )+β Φ(g);

(ii) Φ( f g) = Φ( f )Φ(g) and Φ( f ∗) = Φ( f )∗;

(iii ) ‖Φ( f ) ‖=‖ f‖ := sup
t∈Sp(A)

| f (t) |;

(iv) Φ( f0) = 1H and Φ( f1) = A, where

f0(t) = 1 and f1(t) = t for t ∈ Sp(A).

With this notation, we define

f (A) := Φ( f ) for all f ∈C(Sp(A)) (1)

and we call it the continuous functional calculus for a
bounded self-adjoint operatorA.

If A is a bounded self-adjoint operator andf is a real-
valued continuous function onSp(A), then f (t) ≥ 0 for
anyt ∈ Sp(A) implies thatf (A)≥ 0, i.e. f (A) is a positive
operator onH. Moreover, if bothf andg are real-valued
functions onSp(A) such thatf (t)≤ g(t) for anyt ∈Sp(A),
then f (A)≤ g(A) in the operator order inB(H).

A real valued continuous functionf on an intervalI ⊆
R is said to be operator convex (operator concave) if

f ((1−λ )A+λB)≤ (≥)(1−λ ) f (A)+λ f (B)

in the operator order inB(H), for all λ ∈ [0,1] and for
every bounded self-adjoint operatorsA and B in B(H)
whose spectra are contained inI .

For some fundamental results on operator convex
(operator concave) and operator monotone functions, see
[2], [5], [6] and the references therein.

In [3], Ghazanfari et al. gave the concept of operator
preinvex function and obtained Hermite-Hadamard type
inequality for operator preinvex function.
Definition 1.1.[[3]] Let X be a real vector space, a setS⊆
X is said to be invex with respect to the mapη : S×S→X,
if for everyx,y∈ Sandt ∈ [0,1],

x+ tη(x,y) ∈ S. (2)

It is obvious that every convex set is invex with respect
to the mapη(x,y) = x−y, but there exist invex sets which
are not convex (see [1]).
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Let S⊆X be an invex set with respect toη : S×S→X.
For everyx,y∈ S, theη-pathPxv joining the pointsx and
v := x+η(y,x) is defined as follows

Pxv := {z : z= x+ tη(y,x), t ∈ [0,1]}.

The mappingη is said to be satisfies the condition(C) if
for everyx,y∈ Sandt ∈ [0,1],

η(y,y+ tη(x,y)) =−tη(x,y),
η(x,y+ tη(x,y)) = (1− t)η(x,y). (C)

Note that for everyx,y∈Sand everyt1, t2 ∈ [0,1] from
condition(C) we have

η(y+ t2η(x,y),y+ t1η(x,y)) = (t2− t1)η(x,y), (3)

see [4], [7] for details.
Let A be aC∗-algebra, denote byAsa the set of all self-

adjoint elements inA.
Definition 1.2.[[3]] Let S⊆ B(H)sa be an invex set with
respect toη : S× S → B(H)sa. Then, the continuous
function f : R → R is said to be operator preinvex with
respect toη onS, if for everyA,B∈ Sandt ∈ [0,1],

f (A+ tη(B,A))≤ (1− t) f (A)+ t f (B) (4)

in the operator order inB(H).
Every operator convex function is operator preinvex

with respect to the mapη(A,B) = A−B, but the converse
does not holds (see [3]).

Theorem 1.1.[[3]] Let S⊆ B(H)sa be an invex set with
respect toη : S×S→ B(H)sa andη satisfy condition(C).
If for every A,B∈ SandV = A+η(B,A) the functionf :
I ⊆ R → R is operator preinvex with respect toη on η-
pathPAV with spectra ofA and spectra ofV in the interval
I . Then we have the inequality

f

(

A+V
2

)

≤

∫ 1

0
f ((A+ tη(B,A))dt ≤

f (A)+ f (B)
2

.

(5)
Motivated by the above results we investigate in this

paper the operator version of the Hermite-Hadamard
inequality for operatorα-preinvex functions.

2 Operator α-preinvex functions

In order to verify our main results, the following definition
and lemmas are necessary.
Definition 2.1. Let I be an interval inR0 andS⊆ B(H)+sa
be an invex set with respect toη : S×S→ B(H)+sa. Then,
the continuous functionf : I → R is said to be operator
α-preinvex with respect toη on I for operators inS, if

f (A+ tη(B,A))≤ (1− tα) f (A)+ tα f (B) (6)

in the operator order inB(H), for all t ∈ [0,1] and every
positive operatorsA andB in Swhose spectra are contained
in I and for some fixedα ∈ [0,1].

It is obvious that every operator 1-preinvex function
is operator preinvex, and every operatorα-preinvex with
respect to the mapη(A,B) = A−B is operatorα-convex
function, that is,

Definition 2.2. Let I be an interval inR0. Then, the
continuous functionf : I → R is said to be operator
α-convex onI for operators inB(H)+sa, if

f (tA+(1− t)B)≤ tα f (A)+ (1− tα) f (B) (7)

in the operator order inB(H), for all t ∈ [0,1] and every
positive operatorsA and B in B(H)+sa whose spectra are
contained inI and for some fixedα ∈ [0,1].

Lemma 2.1.Let S⊆ B(H)+sa be an invex set with respect
to η : S× S → B(H)+sa and f : I ⊆ R0 → R be a
continuous function on the intervalI . Suppose thatη
satisfies condition(C) on S. Then for everyA,B ∈ S and
V = A + η(B,A) and for some fixedα ∈ [0,1], the
function f is operatorα-preinvex with respect toη on
η-pathPAV with spectra ofA andV in the intervalI if and
only if the functionϕx,A,B : [0,1]→R defined by

ϕx,A,B(t) := 〈 f (A+ tη(B,A))x,x〉 (8)

is α-convex on[0,1] for everyx∈ H.

Proof. Suppose thatx ∈ H and ϕx,A,B : [0,1] → R is α-
convex on[0,1] for some fixedα ∈ [0,1]. For everyC1 :=
A+ t1η(B,A) ∈ PAV, C2 := A+ t2η(B,A) ∈ PAV, fix λ ∈
[0,1], by (8) we have

〈 f (C1+λ η(C2,C1))x,x〉

= 〈 f (A+((1−λ )t1+λ t2)η(B,A))x,x〉
= ϕx,A,B((1−λ )t1+λ t2)

≤ (1−λ α)ϕx,A,B(t1)+λ αϕx,A,B(t2)

= (1−λ α)〈 f (C1)x,x〉+λ α〈 f (C2)x,x〉. (9)

Hence, f is operatorα-preinvex with respect toη on η-
pathPAV.

Conversely, letA,B∈ Sand f be operatorα-preinvex
with respect toη on η-pathPAV for some fixedα ∈ [0,1].
Suppose thatt1, t2 ∈ [0,1]. Then for everyλ ∈ [0,1] and
x∈ H, we have

ϕx,A,B((1−λ )t1+λ t2)

= 〈 f (A+((1−λ )t1+λ t2)η(B,A))x,x〉
= 〈 f (A+ t1η(B,A)+λ η(A+ t2η(B,A),

A+ t1η(B,A)))x,x〉
≤ (1−λ α)〈 f (A+ t1η(B,A))x,x〉
+λ α〈 f (A+ t2η(B,A))x,x〉

= (1−λ α)ϕx,A,B(t1)+λ αϕx,A,B(t2). (10)

Therefore,ϕx,A,B is α-convex on [0,1]. The proof of
Lemma 2 is complete.
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3 Hermite-Hadamard type inequalities for
the operator α-preinvex functions

The following theorem is the generalization of Hermite-
Hadamard’s inequality for operatorα-preinvex functions.

Theorem 3.1.Let S⊆ B(H)+sa be an invex set with respect
to η : S×S→ B(H)+sa andη satisfy condition(C) on S.
If for every A,B ∈ S andV = A+η(B,A) and for some
fixed α ∈ [0,1], the continuous functionf : I ⊆ R0 → R

is operatorα-preinvex with respect toη on η-path PAV
with spectra ofA andV in the intervalI . Then we have the
inequality

f

(

A+V
2

)

≤

∫ 1

0
f (A+ tη(B,A))dt ≤

α f (A)+ f (B)
α +1

.

(11)

Proof. Forx∈ H andt ∈ [0,1], we have

〈(A+ tη(B,A))x,x〉= 〈Ax,x〉+ t〈η(B,A)x,x〉 ∈ I , (12)

since〈Ax,x〉 ∈ Sp(A)⊆ I and〈Vx,x〉 ∈ Sp(V)⊆ I .
Continuity of f and (12) imply that the operator

valued integral
∫ 1

0 f (A+ tη(B,A))dt exists.
Sinceη satisfies condition(C) and f is α-preinvex

with respect toη , for everyt ∈ [0,1], we have

f

(

A+
1
2

η(B,A)
)

= f

(

A+ tη(B,A)+
1
2

η(A+(1− t)η(B,A),A+ tη(B,A))
)

≤

(

1−
1

2α

)

f (A+ tη(B,A))+
1

2α f (A+(1− t)η(B,A))

≤

{

1− tα +
1

2α
[

tα − (1− t)α ]
}

f (A)

+

{

tα −
1

2α
[

tα − (1− t)α ]
}

f (B). (13)

Integrating the inequality (13) over t ∈ [0,1] and taking
into account that

∫ 1

0
f (A+ tη(B,A))dt =

∫ 1

0
f (A+(1− t)η(B,A))dt,

(14)
we obtain the inequality (11), which complete the proof
of Theorem3.

Remark 3.1.1.Choosingα = 1, we obtain Theorem1.
For some fixedα1,α2 ∈ [0,1], let f : I ⊆R0 →R be an

operatorα1-preinvex function andg : I →R be an operator
α2-preinvex function on the intervalI . Then for all positive
operatorsA andB on a Hilbert spaceH with spectra inI
and for anyx ∈ H, we define real functionsM(A,B) and
N(A,B) onH by

M(A,B)(x) = 〈 f (A)x,x〉〈g(A)x,x〉+ 〈 f (B)x,x〉〈g(B)x,x〉,

N(A,B)(x) = 〈 f (A)x,x〉〈g(B)x,x〉+ 〈 f (B)x,x〉〈g(A)x,x〉.
(15)

Theorem 3.2.Let S⊆ B(H)+sa be an invex set with respect
to η : S×S→ B(H)+sa andη satisfy condition(C) onS. If
for every A,B ∈ S and V = A+ η(B,A) and for some
fixed α1,α2 ∈ [0,1], the continuous function
f : I ⊆ R0 → R is an operatorα1-preinvex function and
g : I → R is an operatorα2-preinvex function on the
interval I with respect toη on η-pathPAV with spectra of
A andV in the intervalI . Then we have the inequality

∫ 1

0
〈 f (A+ tη(B,A))x,x〉〈g(A+ tη(B,A))x,x〉dt

≤
α1α2−1

(α1+1)(α2+1)
〈 f (A)x,x〉〈g(A)x,x〉

+
1

α2+1
〈 f (A)x,x〉〈g(B)x,x〉

+
1

α1+1
〈 f (B)x,x〉〈g(A)x,x〉

+
1

α1+α2+1

[

M(A,B)(x)−N(A,B)(x)
]

(16)

holds for anyx ∈ H, where M(A,B) and N(A,B) are
defined in (15).

Proof. Forx∈ H andt ∈ [0,1], we have

〈(A+ tη(B,A))x,x〉= 〈Ax,x〉+ t〈η(B,A)x,x〉 ∈ I ,

since〈Ax,x〉 ∈ Sp(A)⊆ I and〈Vx,x〉 ∈ Sp(V)⊆ I .
From the continuity off , g, it shows that the operator

valued integral
∫ 1

0 f (A+tη(B,A))dt,
∫ 1

0 g(A+tη(B,A))dt,
and

∫ 1
0 ( f g)(A+ tη(B,A))dt exist.

Since f : I → R is operatorα1-preinvex andg : I →
R is operatorα2-preinvex for some fixedα1,α2 ∈ [0,1],
therefore for everyt ∈ [0,1] we drive

〈 f (A+ tη(B,A))x,x〉〈g(A+ tη(B,A))x,x〉
≤ (1− tα1)(1− tα2)〈 f (A)x,x〉〈g(A)x,x〉

+(1− tα1)tα2〈 f (A)x,x〉〈g(B))x,x〉

+ tα1(1− tα2)〈 f (B)x,x〉〈g(A)x,x〉

+ tα1+α2〈 f (B)x,x〉〈g(B))x,x〉. (17)

Integrating both sides of (17) overt ∈ [0,1], we obtain
the required inequality (16). The proof of Theorem3 is
complete.

Corollary 3.2.1. Under the assumptions of Theorem3, if
α1 = α2 = α, then

∫ 1

0
〈 f (A+ tη(B,A))x,x〉〈g(A+ tη(B,A))x,x〉dt

≤
α −1
α +1

〈 f (A)x,x〉〈g(A)x,x〉+
1

2α +1
M(A,B)(x)

+
α

(α +1)(2α +1)
N(A,B)(x). (18)
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Specially, ifα1 = α2 = 1, then

∫ 1

0
〈 f (A+ tη(B,A))x,x〉〈g(A+ tη(B,A))x,x〉dt

≤
2M(A,B)(x)+N(A,B)(x)

6
. (19)

Corollary 3.2.2. With the conditions of Theorem3, if
η(B,A) = B−A, then

∫ 1

0
〈 f (tB+(1− t)A)x,x〉〈g(tB+(1− t)A)x,x〉dt

≤
α1α2−1

(α1+1)(α2+1)
〈 f (A)x,x〉〈g(A)x,x〉

+
1

α2+1
〈 f (A)x,x〉〈g(B)x,x〉

+
1

α1+1
〈 f (B)x,x〉〈g(A)x,x〉

+
1

α1+α2+1

[

M(A,B)(x)−N(A,B)(x)
]

. (20)

Theorem 3.3.Let S⊆ B(H)+sa be an invex set with respect
to η : S×S→ B(H)+sa andη satisfy condition(C) onS. If
for every A,B ∈ S and V = A+ η(B,A) and for some
fixed α1,α2 ∈ [0,1], the continuous function
f : I ⊆ R0 → R is an operatorα1-preinvex function and
g : I → R is an operatorα2-preinvex function on the
interval I with respect toη on η-pathPAV with spectra of
A andV in the intervalI . Then we have the inequality

2α1+α2

(2α1 −1)(2α2 −1)+1

×

〈

f

(

A+V
2

)

x,x

〉〈

g

(

A+V
2

)

x,x

〉

≤

∫ 1

0
〈 f (A+ tη(B,A))x,x〉〈g(A+ tη(B,A))x,x〉dt

+
α1−1

(2α1 −1)(2α2 −1)+1
〈 f (A)x,x〉〈g(B)x,x〉

+
α2−1

(2α1 −1)(2α2 −1)+1
〈 f (B)x,x〉〈g(A)x,x〉 (21)

holds for anyx∈ H.

Proof. Since f : I →R is operatorα1-preinvex andg : I →
R be operatorα2-preinvex for some fixedα1,α2 ∈ [0,1],

therefore for everyt ∈ [0,1] we have
〈

f

(

A+V
2

)

x,x

〉〈

g

(

A+V
2

)

x,x

〉

=

〈

f

(

A+ tη(B,A)+
1
2

η(A+(1− t)η(B,A),

A+ tη(B,A))
)

x,x

〉

×

〈

g

(

A+ tη(B,A)+
1
2

η(A+(1− t)η(B,A),

A+ tη(B,A))
)

x,x

〉

≤

〈[(

1−
1

2α1

)

f (A+ tη(B,A))

+
1

2α1
f (A+(1− t)η(B,A))

]

x,x

〉

×

〈[(

1−
1

2α2

)

g(A+ tη(B,A))

+
1

2α2
g(A+(1− t)η(B,A))

]

x,x

〉

≤

(

1−
1

2α1

)(

1−
1

2α2

)

〈 f (A+ tη(B,A))x,x〉

× 〈g(A+ tη(B,A))x,x〉

+
1

2α1+α2
〈 f (A+(1− t)η(B,A))x,x〉

× 〈g(A+(1− t)η(B,A))x,x〉

+

(

1−
1

2α1

)

1
2α2

〈 f (A)x,x〉〈g(B)x,x〉

+

(

1−
1

2α2

)

1
2α1

〈 f (B)x,x〉〈g(A)x,x〉]. (22)

By integrating overt ∈ [0,1] and taking into account that

∫ 1

0
〈 f (A+ tη(B,A))x,x〉〈g(A+ tη(B,A))x,x〉dt

=

∫ 1

0
〈 f (A+(1− t)η(B,A))x,x〉

× 〈g(A+(1− t)η(B,A))x,x〉dt,

we obtain the required inequality (21). Thus Theorem3
is thus proved.

Corollary 3.3.1. Under the assumptions of Theorem3, if
α1 = α2 = α, then

4α

(2α −1)2+1

〈

f

(

A+V
2

)

x,x

〉〈

g

(

A+V
2

)

x,x

〉

≤

∫ 1

0
〈 f (A+ tη(B,A))x,x〉〈g(A+ tη(B,A))x,x〉dt

+
α −1

(2α −1)2+1
N(A,B)(x). (23)
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In particular, ifα1 = α2 = 1, then

2

〈

f

(

A+V
2

)

x,x

〉〈

g

(

A+V
2

)

x,x

〉

≤
∫ 1

0
〈 f (A+ tη(B,A))x,x〉〈g(A+ tη(B,A))x,x〉dt. (24)

whereN(A,B) is defined in (15).
Corollary 3.3.2. With the conditions of Theorem3, if
η(B,A) = B−A, then

2α1+α2

(2α1 −1)(2α2 −1)+1

×

〈

f

(

A+B
2

)

x,x

〉〈

g

(

A+B
2

)

x,x

〉

≤

∫ 1

0
〈 f (tB+(1− t)A)x,x〉〈g(tB+(1− t)A)x,x〉dt

+
α1−1

(2α1 −1)(2α2 −1)+1
〈 f (A)x,x〉〈g(B)x,x〉

+
α2−1

(2α1 −1)(2α2 −1)+1
〈 f (B)x,x〉〈g(A)x,x〉. (25)

Corollary 3.3.3. With the assumptions of Theorem3 and
Theorem3, we obtain

1
(2α1 −1)(2α2 −1)+1

[

2α1+α2

〈

f

(

A+V
2

)

x,x

〉

×

〈

g

(

A+V
2

)

x,x

〉

− (α1−1)〈 f (A)x,x〉〈g(B)x,x〉

− (α2−1)〈 f (B)x,x〉〈g(A)x,x〉

]

≤
∫ 1

0
〈 f ((1− t)A+ tB)x,x〉〈g((1− t)A+ tB)x,x〉dt

≤
α1α2−1

(α1+1)(α2+1)
〈 f (A)x,x〉〈g(A)x,x〉

+
1

α2+1
〈 f (A)x,x〉〈g(B)x,x〉

+
1

α1+1
〈 f (B)x,x〉〈g(A)x,x〉

+
1

α1+α2+1

[

M(A,B)(x)−N(A,B)(x)
]

. (26)

whereM(A,B) andN(A,B) are defined in (15).
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