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Abstract: This paper deals with the Bayesian and maximum likelihood estimation of augmented strength reliabilityRk(k = 1,2,3)
under Augmentation Strategy Plan (ASP). In Bayesian context we consider gamma prior for unknown parameters of augmented strength
reliability model under squared error loss function (SELF)and linex loss function (LLF) for the generalized case of ASP. A Monte-Carlo
importance sampling procedure has been implemented to approximate the Bayes and quasi-Bayes estimators ofRk. The performances
of Bayes and quasi-Bayes estimators of augmented strength reliability under both the loss functions are compared with that of maximum
likelihood estimators on the basis of their mean square errors and absolute biases. We analyze simulated and real data sets for illustrative
purpose for validation of proposed estimators.
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1 Introduction

The Gamma distribution has widely been used to model the timeto event analysis in survival and reliability theory. This
distribution is been also used in many other areas e.g. life insurance claims and credit risks, climatology, meteorology,
telecommunication etc., the reader is suggested to refer [1] and [2]. for further applications and discussions of gamma
distribution. There exist comparatively less attempts on gamma model, may be because of non-availability of closed
form for cumulative distribution function, survival function and hazard rate etc. Moreover, this distribution consists its
reproductive property, which leads us to choose this model for the proposed ASP introduced by [28].

The strength reliability is defined as the probability that the equipment will survive its usual life if its random strength
(X) is higher than the random stress(Y) imposed on it, which is expressed asR= P(Y < X). In reliability engineering
R is often called as measure of system performance. The stressstrength model was first considered by [3] using the
non-parametric approach. Thereafter the problem of systemreliability under the stress strength set up have been attracted
to the researchers due to its applicability in various real life situations. A plenty of works on system reliability and its
inferences have widely been attempted by several authors, some of the pioneer contributions are, [4], [5], [6], [7] and [8]
and references therein.

In literature, a number of works on estimation of system reliability parameters are cited particularly for gamma life
distribution. The problem of estimation of system reliability for gamma distribution was firstly considered by [10]. They
extended the work of [33] and attempted to find out the different representations ofR= P(Y < X) for real and integer
valued shape parameters. A comparison between ML and uniformly minimum variance unbiased estimators of the stress-
strength reliability were presented for known integer-valued shape parameters. The similar work was followed by series
of work of [11] and [12], in which bootstrap and different non-parametric confidence intervals ofR are presented. In the
similar manner, [9] attempted the estimation ofRand compared the parametric and non-parametric methods of estimation.
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Recently, [13] have studied the MLE and UMVUE of parameters of gamma stressand strength reliability with assumption
that the two shape parameters are known arbitrary real numbers. Confidence interval estimation of strength reliability
have discussed by [14] for generalized gamma family. [15] proposed normal approximation due to [16] for two parameter
gamma distribution and they rectified that the proposed approximation was suitable and useful for the calculation of
prediction and tolerance intervals and for the estimation of system reliability parameters and also given number of real
life examples on two parameter gamma distribution. [17] derived the mathematical expressions for strength reliability
for several life distributions named as in gamma, compound gamma, log gamma and generalized gamma models. A
non-parametric approach is also considered in estimating the strength reliabilities for life distributions, namely,normal,
exponential, gamma and beta distributions by [18].

In Bayesian paradigm, the choice of appropriate prior distribution is most essential. The gamma distribution is
frequently chosen as a prior distribution over the decades.[19] and [20] attempted ML and Bayes estimation ofR under
gamma prior distribution, by considering both stress and strength are independently distributed as scaled Burr Type X
distribution and generalized exponential distributions respectively. [21] considered estimation of modified ML and Bayes
estimation ofR by assuming that X and Y are distributed as two independent 3-parameter generalized exponential
random variables having different shape but same location and scale parameters for gamma prior distribution. The
importance sampling procedure was employed for Bayes computations. A numerical comparison between Bayes and
modified ML estimators ofR= P(Y < X) through importance sampling procedure was carried out by [22] by assuming
that the random variables X and Y are distributed as two independent four-parameter generalized gamma distribution
with same location and scale parameters. Some of the recent attempts on Bayesian estimation ofR under the assumption
of gamma prior may be referred from [23], [24], [25] and [26] and references therein.

In this paper, we propose Bayesian and classical approach for drawing inferences on augmenting gamma strength
reliability for the generalized case of ASP. In fact, every new brand of existing system has two obvious characteristics
(i) reliable and (ii) unreliable. For life time data analysis of reliable equipments, several ideas including accelerated life
testing method are considered by researchers and the references are available in literature. There is a great difficultyin
assessing and obtaining the failure time observations of unreliable equipment. We therefore recommend ASP to overcome
the situation when equipment has an impression of early failure of new system and frequent failures occur in used systems
due to poor quality of component. The ASP is useful in enhancing the strength reliability and protect from unwanted such
failures and sustain to survive its usual life.

ASP comprises three possible situations for enhancing the strength of an equipment to face the common stress. The
cases under ASP are stated as: In the first case, the strength of equipment, having initially Gamma strength, is increasedby
m times of its initial stress. For second case, a suggestion is made to add n independent components, each having Gamma
initial strength with the equipment to face the stress. Finally, in third case, the strength of the equipment is increased by
adding independent components, each having m times of initial Gamma stress. It is to be noticed that case-I and case-II
of ASP are special cases of case-III, which we call it as generalized case of ASP.

Initially, the augmenting strength reliability problem under exponential stress strength set-up was considered by [27]
for three different possible cases. After one decade, [28] discussed applicability of augmenting strength reliability of an
equipment under these three cases which is named as augmentation strategy plan (ASP). They derived gamma strength
reliability models under ASP and numerically observed thataugmentation is fruitful. [29] attempted for augmenting
Inverse Gaussian strength reliability under ASP and numerically it is verified that ASP performs quite effectively.
Recently, [30] and [31] have attempted the augmentation of strength reliability of a coherent system, when its
components are connected in series and parallel set-up for exponential and gamma life time models respectively.

Here, we consider that the stress (Y) and strength (X) are independently and identically gamma distributed random
variables with scale and shape parameters respectively. The probability density function (pdf) of X (or Y) is given by

fX(x/α,λ ) =
αλ

Γ (λ )
exp(−αx)xλ−1; x> 0,α,λ > 0. (1)

Under the generalized case of ASP (i.e. case-III), the pdf ofenhanced gamma strengthZk(k= 1,2,3), wherek stands
for case-I,II and III respectively, is given by

fZk(zk/α,λ ) =
αnλ

mnλ Γ (nλ )
exp(

−αzk

m
) znλ−1

k ; zk > 0,α,λ > 0 (2)

where,′m′ is a positive real number and′n′ is positive integer. From equation2, the density functions of cases-I and II
of ASP can directly be obtained by substitutingk= n= 1 andk= 2,m= 1 respectively.

Recently, [34] have attempted Bayes estimation of augmenting gamma strength reliability of a System under
non-informative prior distributions. In similar manner, here we attempted ML, Bayes and quasi-Bayes estimation of
augmented strength reliability for the generalized case ofASP by assuming that both scale(α) and shape(λ ) parameters
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having gamma informative priors.

The rest of article is organized as follows. In section 2, a generalized form of augmented strength reliability models
under ASP are introduced. A generalized form of ML estimators of augmented strength reliability under ASP is presented
in section 3. The asymptotic distributions as well as asymptotic confidence intervals forα, λ andRk(k = 1,2,3) of ASP
are discussed in section 4. In section 5, we propose a generalized form of Bayes and quasi-Bayes estimators of augmented
strength reliability parameters using importance sampling under SELF and LLF. The methods proposed are illustrated
by analyzing simulated and real data sets in section 6. A simulation study and its discussions based on findings of the
generalized case of ASP are reported in section 7. Finally, the concluding remarks are given in section 8.

2 Generalized Augmented Strength Reliability Models

In this section, a generalized form of augmented strength reliability model under ASP is presented, which is suitable to
handle the situation of early stage failures of sophisticated new equipments as well as frequent failures of used equipments
due to its poor or weaker strength. To overcome such circumstances, the ASP is recommended to make the system failure
free by boosting the existing strength to survive its usual life. In this view augmenting gamma strength reliability models
for three different possible cases under ASP are validated and developed by [28]. A more generalized form of augmenting
gamma strength reliability is given by

Rk = P(Zk >Y) =
mλ

Γ (nλ )(1+m)nλ+λ

∞

∑
j=0

Γ (nλ +λ + j)
Γ (λ +1+ j)

( m
m+1

) j
; k= 1,2,3. (3)

The augmenting strength reliability expressions for case Iand II are particular cases ofRk can be obtained by substituting
k = n = 1 andk = 2,m= 1 respectively in equation3. One can find the strength reliability expression for case-III by
substitutingk= 3 in equation3.

3 Maximum Likelihood Estimation of Generalized Augmented Strength Reliability

In this section, we present the estimation of parameters of augmented strength reliabilityRk. SupposeZk = (zk1,zk2...zkn1)
andY = (y1,y2...yn2) be the two independent random samples of sizesn1 andn2 drawn from the augmented gamma
strength and gamma stress distributions respectively. Then the likelihood function is given as follows

Lk(α,λ/data) =
αλ (nn1+n2)

mλ nn1Γ (nλ )n1Γ (λ )n2
exp−α(

n1z̄k

m
+n2ȳ)

n1

∏
i=1

z(nλ−1)
ki

n2

∏
j=1

y(λ−1)
j . (4)

The likelihood equations with respect toα andλ are given by

∂ logLk(data/α,λ )
∂α

= 0 and
∂ logLk(data/α,λ )

∂λ
= 0. (5)

The maximum likelihood equations based on random samples are obtained by partial derivatives with respect toα andλ
and equating to zero, which are given by

∂ logLk(data/α,λ )
∂α

=
λ (nn1+n2)

α
− (

n1z̄k

m
+n2ȳ) = 0 (6)

∂ logLk(data/α,λ )
∂λ

=(nn1+n2)log(α)−nn1log(m)−n1ψ(nλ )−n2ψ(λ )

+n
n1

∑
i=1

logzki +
n2

∑
i=1

logyj = 0 (7)

where,ψ(λ ) is the digamma function, defined asψ(λ ) = ∂ lnΓ (λ )
∂λ . The maximum likelihood estimatorŝα and λ̂ are

obtained as the simultaneous solution of equations6 and7. As the closed form solution is not possible to evaluate the
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above equations, thus any one of numerical iterative technique may be used. The MLE of augmented strength reliability
(Rk) for generalized case of ASP can be obtained through invariance property as follow

R̂k =
mλ̂

Γ (nλ̂)(1+m)nλ̂+λ̂

∞

∑
j=0

Γ (nλ̂ + λ̂ + j)

Γ (λ̂ +1+ j)

( m
m+1

) j
; k= 1,2,3. (8)

Remarks: (1) The ML estimatorŝαk andλ̂k of augmented strength reliability parametersα andλ , respectively can be
obtained for each of respective cases I, II and III by substituting k = n = 1; k = 2,m= 1 andk = 3 separately in the
solution of equations6 and7.
(2) The MLE of augmented strength reliability(Rk) for Cases-I, II and III under ASP can be obtained directly by
substitutingk= n= 1; k= 2,m= 1 andk= 3 respectively in equation8.

4 Asymptotic Distributions and Confidence Intervals ofRk

In this section, the asymptotic distributions and asymptotic confidence intervals (C.I.) forα, λ andRk(k= 1,2,3) for each
of the generalized case of ASP are derived. The asymptotic distributions ofα andλ for large samples are given as

√
n(α̂ −α)→ N(0, I−1

11 (α)) and
√

n(λ̂ −λ )→ N(0, I−1
22 (λ ))

where,Ik(Θ) is the Fisher information matrix ofΘ = (α,λ ), defined as

Ik(Θ) =−E







∂ 2lk
∂α2

∂ 2lk
∂α∂λ

∂ 2lk
∂λ ∂α

∂ 2lk
∂λ 2






=

(

Ik,11 Ik,12
Ik,21 Ik,22

)

where,lk = logLk. The 100(1− p)% confidence interval ofα andλ are given by

{α̂ ∓ zp/2

√

v(α̂)} and{λ̂ ∓ zp/2

√

v(λ̂ )} respectively,

where,zp/2 is the upper 100(p/2)th percentile of a standard normal random variable. The asymptotic distribution of
augmented strength reliability asn1 → ∞ andn2 → ∞ is given by

R̂k−Rk
√

R2
k1

n1I11
+

R2
k2

n2I22

→ N(0,1)

where,Rk1 =
∂Rk
∂α andRk2 =

∂Rk
∂λ . Here, MLE ofRk, R̂k is not in explicit form, therefore, it is difficult to find out the exact

distribution ofR̂k. We, therefore, construct the 100(1− p)% asymptotic confidence interval ofR̂k, is given by
[

R̂k∓ zp/2

√

R̂2
k1

n1Ik,11(α̂)
+

R̂2
k2

n2Ik,22(λ̂ )

]

where, Ik,11(α̂), Ik,22(λ̂ ), R̂2
k1 and R̂2

k2 are the MLEs ofIk,11(α), Ik,22(λ ), R2
k1 and R2

k2 respectively and the Fisher
information matrix is given as

Ik(Θ) =







λ (nn1+n2)
α2

−(nn1+n2)
α

−(nn1+n2)
α n1ψ ′

(nλ )+n2ψ ′
(λ )







where,ψ ′
(.) is the tri-gamma function, which is defined as follows

ψ
′
(nλ ) =

∂ 2logΓ (nλ )
∂λ 2 =

Γ ′′
(nλ )Γ (nλ )− (Γ ′

(nλ ))2

(Γ (nλ ))2

ψ
′
(λ ) =

∂ 2logΓ (λ )
∂λ 2 =

Γ ′′
(λ )Γ (λ )− (Γ ′

(λ ))2

(Γ (λ ))2 .
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Thus the 100(1− p)% confidence intervals ofα andλ for the generalized case of ASP is given by
[

α̂ ∓ zp/2

√

α̂2

λ̂ (nn1+n2)

]

and

[

λ̂ ∓ zp/2

√

(n1ψ ′(nλ̂ )+n2ψ ′(λ̂ ))−1

]

respectively. One can also find the asymptotic distributionof R̂k, which is asymptotically normally distributed with mean

Rk and varianceσ2
Rk

=

(

R2
k1

n1Ik,11
+

R2
k2

n2Ik,22

)

, whereRk1 andRk2 are defined as

Rk1 =
∂Rk

∂α
= 0

Rk2 =
∂Rk

∂λ
=

mλ

Γ (nλ )

∞

∑
j=0

Γ (nλ +λ + j)
Γ (λ +1+ j)

(

m
m+1

)(nλ+λ+ j)

{(n+1)PG(0,nλ +λ + j)−nlogm−PG(0,λ + j +1)+nPG(0,nλ )}
Remark 3: PG(0,z) defines the first derivative of logarithmic of gamma function, which is defined by

PG(0,z) = ∂ log(Γ (z))
∂z .

5 Bayesian Estimation of Generalized Augmenting Strength Reliability Models

5.1 Prior and Posterior

This subsection deals with the Bayes estimation ofRk(k= 1,2,3) and its parametersα andλ for generalized case under
ASP. In Bayesian paradigm, the choice of appropriate prior is most essential and is also challenging task. The general
ideology behind the choosing of such prior is depends on personal belief and subjective knowledge. If one has adequate
information about the parameter(s), one should use informative prior(s), which are combined with the likelihood function
to update the information about a particular characteristic of the known data. In this study, we considerα andλ are
independent random variables having conjugate (informative) gamma prior, i.e.,α ∼ G(a,b) andλ ∼ G(c,d). The joint
prior probability density function ofα andλ is given by

g(α,λ )∝ αa−1λ c−1exp{−(bα +dλ )} ; α,λ > 0; a,b,c,d > 0. (9)

The hyper-parametersa,b,c andd of prior density function are assumed to be known and are chosen in such a way to
reflect the prior belief about the unknown parameters. The joint posterior probability distribution ofα andλ is given as

Πk(α,λ ) = Kg(α,λ )Lk(data/α,λ ) (10)

where,Lk(data/α,λ ) is the likelihood function andK is normalizing constant which is defined as

K−1 =

∫ ∞

0

∫ ∞

0
g(α,λ )Lk(data/α,λ )∂α∂λ . (11)

The marginal posteriors densities ofα andλ respectively can be obtained from equation (10) as

πk1(α/data,λ )∝
∫ ∞

0
Πk(α,λ/data)∂λ (12)

πk2(λ/data,α)∝

∫ ∞

0
Πk(α,λ/data)∂α. (13)

Here, we consider two different loss functions for better comprehension of Bayesian analysis, first one is squared error
loss function (SELF) which is symmetric and other is linex loss function (LLF) which is asymmetric. The Bayes estimator
of any parametric function, sayφ(α,λ ) under SELF as well as LLF are respectively defined by

φ̂ (α,λ )sel f =

∫

(α ,λ )
φ(α,λ )Π(α,λ/data)∂α∂λ (14)

φ̂ (α,λ )ll f =
−1
p

log

[

∫

(α ,λ )
exp{−pφ(α,λ )}Π(α,λ/data)∂α∂λ

]

. (15)
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5.2 Bayes Estimation of Rk under squared error loss function (SELF)

In this subsection, we propose the Bayes estimators of augmenting strength reliability(Rk;k = 1,2,3) under squared
error loss function for the general case of ASP. The joint posterior probability distribution of random variablesα andλ
for general case of ASP is obtained by combining likelihood functionLk(α,λ/data) and joint prior probability density
g(α,λ ) given by

Πk(α,λ/data) ∝
exp{s1(nλ −1)− s2}
mnn1λ Γ (nλ )n1Γ (λ )n2

λ c−1exp{−λ (d− s2)}

αλ (nn1+n2)+a−1exp

[

−α(
n1z̄k

m
+n2ȳ+b)

]

. (16)

The equation16can also have a form as

Πk(α,λ/data) ∝ πk1(α/data,λ )πk2(λ/data,α)Wk(α,λ ) (17)

where,s1 = ∑n1
i=1 logzki, s2 = ∑n2

j=1 logyj and the adjustment factorWk(α,λ ) is defined as

Wk(α,λ ) =
exp{−(s1+ s2)}αλ (nn1+n2)

mnn1λ Γ (nλ )n1Γ (λ )n2
(18)

and the marginal posterior density functions ofα andλ are respectively given by

πk1(α/data,λ ) ∝ G

(

a,
(n1z̄k

m
+n2ȳ+b

)

)

(19)

πk2(λ/data,α) ∝ Gλ (c, d−ns1− s2). (20)

Therefore, the Bayes estimator of augmented strength reliability under SELF for a generalized case of ASP is given as

R̂sel f
k =

∫

(α ,λ )
RkΠk(α,λ/data)∂α∂λ (21)

where,Rk is the augmented strength reliability under ASP. The expression of Bayes estimator in equation21 does not
have closed form solution and it cannot be solved analytically, therefore numerical method is used for solution of the
proposed estimator. We therefore suggested Monte-Carlo importance sampling procedure to evaluate equation21. Hence,
Bayes estimator̂Rsel f

kIS of Rk under this sampling procedure for generalized case of ASP isgiven by

R̂sel f
kIS =

1
N

N

∑
i=1

[

Rk
]

α=αi ;λ=λi

=
1
N

N

∑
i=1

Wk(αi ,λi)
mλ

i

Γ (nλi)(1+m)nλi+λi

∞

∑
j=0

Γ (nλi +λi + j)
Γ (λi +1+ j)

( m
m+1

) j
. (22)

As an alternative, we obtain the quasi-Bayes estimatorR̂sel f
kQB of augmented strength reliabilityRk by substituting the

Bayes estimatorŝλ sel f
k andα̂sel f

k in the place ofλ andα respectively in the augmented strength reliability expression of

Rk given in equation3. Under SELF, the Bayes estimatorsλ̂ sel f
k andα̂sel f

k are obtained by its posterior means ofλ andα,
respectively given by

α̂sel f
k =

∫ ∞

0
απk1(α/data,λ ) (23)

λ̂ sel f
k =

∫ ∞

0
λ πk2(λ/data,α). (24)

It may be notice that the expressions of augmented strength reliability Rk given in equation3 is free fromα, therefore,
only Bayes estimator ofλ is required in order to obtain quasi-Bayes estimator. Thus,the required quasi-Bayes estimator
(R̂sel f

kQB) of augmented strength reliabilityRk for general case of ASP is given by

R̂sel f
kQB=

mλ̂ sel f
k

Γ (nλ̂ sel f
k )(1+m)nλ̂ sel f

k +λ̂ sel f
k

∞

∑
j=0

Γ (nλ̂ sel f
k + λ̂ sel f

k + j)

Γ (λ̂ sel f
k +1+ j)

( m
m+1

) j
. (25)
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Remark 4: The expressions for Bayes estimators (and quasi-Bayes estimators) of augmented strength reliability(Rk)
for Case-I, II and III under ASP can be obtained directly by substitutingk = n= 1, k = 2m= 1 andk = 3 separately in
equations22and25.

5.3 Bayes Estimation of Rk under Linex loss function (LLF)

Under LLF, The Bayes estimator( ˆ
Rll f

k ) of augmented strength reliability(Rk) for generalized case of ASP is given as

R̂ll f
k =

−1
p

ln
[

E(e−pRk/data)
]

=
−1
p

ln
[

∫

(α ,λ )
e−pRkΠk(α,λ/data)∂α∂λ

]

(26)

where,Πk(α,λ/data) being the joint posterior density ofα and λ for general case of ASP, which is defined in the
equation16. The expression of Bayes estimatorR̂ll f

k of augmenting strength reliability for general case of ASP is given
in equation26, have not closed form solution and therefore analytically cannot be solved. Only numerical approximation
methods can be used for solution. We therefore importance sampling approximation is proposed. As an alternatively, we
obtain the quasi-Bayes estimatorR̂ll f

kQB of augmented strength reliability for general case of ASP under LLF by substituting

the Bayes estimatorŝα ll f
k andλ̂ ll f

k in place ofα andλ respectively inRk defined in equation3. The Bayes estimators of

α andλ under linex loss function for generalized case of ASP are denoted byα̂ ll f
k andλ̂ ll f

k are respectively given by

α̂ ll f
k =

−1
p

ln
[

E(e−pαk/data)
]

=
−1
p

ln

[

∫

(α)
e−pαkπk1(α/data,λ )∂α

]

(27)

λ̂ ll f
k =

−1
p

ln
[

E(e−pλk/data)
]

=
−1
p

ln

[

∫

(λ )
e−pλkπk1(λ/data,λ )∂λ

]

(28)

where,πk1(α/data,λ ) andπk2(λ/data,α) are defined in equations19and20respectively. The quasi-Bayes estimator of
augmented strength reliability(R̂ll f

kQB) for the generalized case of ASP is given by

R̂ll f
kQB=

mλ̂ ll f
k

Γ (nλ̂ ll f
k )(1+m)nλ̂ ll f

k +λ̂ ll f
k

∞

∑
j=0

Γ (nλ̂ ll f
k + λ̂ ll f

k + j)

Γ (λ̂ ll f
k +1+ j)

( m
m+1

) j
. (29)

Remark 5: Under LLF,(a) the expressions of Bayes estimators of augmented strength reliability (Rk) for all three Cases
of ASP can be obtained under importance sampling in similar manner of Bayes estimator under SELF (see, eq.22).

(b) The quasi-Bayes estimators of augmented strength reliability (Rk) for Case-I, II and III of ASP can directly be
obtained by substitutingk= n= 1, k= 2 m= 1 andk= 3 in equation29.

6 Data analysis

In this section we illustrate the proposed ML and Bayesian procedures to analyze the augmented strength reliabilities for
the generalized case (i.e., Case-III) of ASP by consideringthe simulated and real data sets.

Example 1:We generate the strength and stress data sets of 30 observations each fromG(α/m,nλ ) and G(α,λ )
respectively withα = 2.5,λ = 0.5,m= 2 andn = 2. The true value for augmented strength reliability for case-III is
given asR3 = 0.81650. Thus the maximum likelihood estimates of unknown stress-strength parameters(α and λ ) are
given as ˆα3 = 0.16654 and̂λ3 = 0.341475. Hence, the maximum likelihood estimate of augmented strength reliability
(R3) is R̂3 = 0.78162. To find out the Bayes estimate of augmented strength reliability under square error and Linex loss
functions separately, we fixed the hyper-parametersa = 1.25,b = 0.15,c = 2.5,d = 0.65.The Bayes estimate of
augmented strength reliability and its parameters have been numerically approximated through the general importance
sampling of fifty thousand random generations ofα andλ . The Bayes estimate of augmented strength reliability under
SELF (LLF) is 0.74288(0.74287). Similarly, the quasi-Bayes estimate of augmented strength reliability under SELF
(LLF) is 0.758475(0.758209). To test which set of parameter estimates give better fit to the data sets, the
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Kolmogorov-Smirnov (K-S) distance between the empirical and fitted distribution based on MLEs and Bayes estimators
have been calculated. The test was carried out with 5% level of significance. For data set 1, we get the p-value for MLEs
(Bayes estimators) as 0.5161(0.6452) and for data set 2, the p-value for MLEs (Bayes estimators) is0.06452(0.06455).
From the K-S test it is noticed that for both data sets, Bayes estimates gives the better fit than MLEs.

Example2 : We analyze the strength data sets reported by [32] using the two parameters gamma distribution. The
ML and Bayes estimates of augmented strength reliability and its parameters are obtained. For the same data sets, [22]
observed that 4-parameter generalized gamma distributionworks quite well.
The data sets were initially reported by [32], represent the strength of single carbon fiber and impregnated 1000-carbon
fiber tows which were measured in GPa. Single fibers were tested under tension at gauge lengths of 1, 10, 20, and 50mm.
Impregnated tows of 1000 fibers were tested at gauge lengths of 20, 50, 150 and 300 mm. We analyze here the
transformed strength data sets were considered by [19]. The data sets are consider the single fibers of 20 mm (Data Set I)
and 10 mm (Data Set II) in gauge length, with sample sizes n = 69and m = 63, respectively. The data sets are presented
in Tables 1 and 2.

Assuming Data set 1(x) as strength and Data set 2(y) as stress, the generalized case (i.e., case-III) of ASP was
applied to the strength data to augment the strength of the carbon-fiber. In order to obtain the enhanced strength data sets,
we added two units each having strength 0.004 (two times of initial stress (0.002)) to the existing strength of carbon
fiber. The maximum likelihood estimates of augmented strength reliability (R3) based on augmented strength data set is
R̂3 = 0.94122 and ML estimates of parameters(α andλ ) are given aŝα3 = 2.6333 and̂λ3 = 1.6987.

Table 1: Data set 1(x)
0.312 0.314 0.479 0.552 0.700 0.803 0.861 0.865 0.944 0.958
0.966 0.997 1.006 1.021 1.027 1.055 1.063 1.098 1.140 1.179
1.224 1.240 1.253 1.270 1.272 1.274 1.301 1.301 1.359 1.382
1.382 1.426 1.434 1.435 1.478 1.490 1.511 1.514 1.535 1.554
1.566 1.570 1.586 1.629 1.633 1.642 1.648 1.684 1.697 1.726
1.770 1.773 1.800 1.809 1.818 1.821 1.848 1.880 1.954 2.012
2.067 2.084 2.090 2.096 2.128 2.233 2.433 2.585 2.585

Table 2: Data set 2(y)
0.101 0.332 0.403 0.428 0.457 0.550 0.561 0.596 0.597 0.645
0.654 0.674 0.718 0.722 0.725 0.732 0.775 0.814 0.816 0.818
0.824 0.859 0.857 0.938 0.940 1.056 1.117 1.128 1.137 1.137
1.177 1.196 1.230 1.325 1.339 1.345 1.420 1.423 1.435 1.443
1.464 1.472 1.494 1.532 1.546 1.577 1.608 1.635 1.693 1.701
1.737 1.754 1.762 1.828 2.052 2.071 2.086 2.171 2.224 2.227
2.425 2.595 3.220

To find out the Bayes estimate of augmented strength reliability under square error and Linex loss functions
separately, we fixed the hyper-parametersa = 1.25,b = 0.15,c = 2.5,d = 0.65. The Bayes estimate of augmented
strength reliability and its parameters have been obtainedthrough the general importance sampling of fifty thousand
random generations ofα and λ . The Bayes estimates of augmented strength reliability under SELF (LLF) is
0.745028(0.737579). Similarly, the Bayes estimates of augmented strength reliability parametersα andλ under SELF
(LLF) respectively are 0.445426(0.445226) and 0.208503(0.208506), thus the quasi-Bayes estimate of augmented
strength reliability under SELF (LLF) is 745028(745027).
In order to test which of the estimation method better fits thegiven data sets, we compute the Kolmogorov-Smirnov
(K-S) distance between empirical and fitted distributions based on ML and Bayes methods for different loss functions
(SELF and LLF) and tested at 5% level of significance. For the data set 1, the K-S distance based on MLEs (Bayes
estimates) is 0.9275(0.913) with corresponding p-values 0.3646(0.3838). Similarly, for data set 2, the K-S distance based
on MLEs (Bayes estimates) is 0.7302(0.6349) and the corresponding p-values are 0.6703(0.8223).Thus, for data sets 1
and 2 it is observed that the Bayes estimates give better fit than that of MLEs.
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7 Simulation Study and Discussion

This section presents the behavior of augmented strength reliability parameters under the proposed augmentation
strategy plan through simulated samples with different combinations of sample sizes and the stress-strength reliability
parameters. For this purpose, the random samples of different sizes (n1,n2) from the distributions of stress and
augmented strength random variables were drawn. The performance of proposed maximum likelihood estimators of
strength reliability parameters have been compared with that of Bayes and Quasi-Bayes estimators under SELF and LLF.
The comparison among the different proposed estimators of augmented strength reliabilities have been done on the basis
of their mean square errors (MSEs) and absolute biases for different combinations of fixed strength reliability parameters
as well as hyper parameters with different sample sizes. In order to evaluate MSEs and absolute biases of the ML, Bayes
and quasi-Bayes estimators of augmented strength reliability, the whole procedure was randomly replicated 1000 times.
The derived expressions of Bayes and quasi-Bayes estimators of augmented strength reliability models under ASP are
not in explicit form and involve the ratios of implicit integrals. We, therefore used Monte-Carlo importance sampling
method to evaluate the integrals involved in the equations of posterior expectations of augmented strength reliabilities
and its parameters. The Monte-Carlo importance sampling was carried out with 5000 of intermediate iterations. The
importance sampling is a well-established method to approximate the integrals. To carry out the importance sampling
procedure numerically the following steps were taken as:

(i)Set trail densitiesg1(α) and g2(λ ) whose support is same as that of corresponding joint posterior density
Π(α,λ/data).

(ii)Generate random samplesαi andλi;(i = 1,2, ...,N) of size N from the trail densitiesg1(α) andg2(λ ).
(iii )Find the product ofRk(αi ,λi) andWk(αi ,λi) at each values ofαi and λi drawn from the corresponding marginal

posterior densitiesg1(α) andg2(λ ) respectively.
(iv)The importance sampling estimateERk(αi ,λi) can be found by evaluating the following equation

[

ÊRk(αi ,λi)
]

IS =
(1/N)∑N

i=1Rk(αi ,λi)Wk(αi ,λi)

(1/N)∑N
i=1Wk(αi ,λi)

The comparison among the proposed estimators of augmented strength reliabilities, for the generalized of ASP are
presented for varying values of stress-strength parameters λ , m, n andα while keeping all the hyper-parameters fixed
(a= 0.5,b= 0.75,c= 0.25,d = 0.75, p= 1.5) for different combinations of sample sizes(n1,n2). Similarly the effect of
hyper-parameters(a,b,c,d) in Bayesian estimation of augmented strength reliability models have also been observed for
the generalized case and compared by that of MLE. The resultsobtained through simulation for the generalized case (i.e.
case-III) of ASP are presented in the tables(3−6). In these tables the average estimates, mean square errors (MSEs) and
absolute biases are tabulated for MLE as well as for Bayes andquasi-Bayes estimates under SELF and LLF. The
following observations are made based on the results reported in the tables.

∗ In Table3 the effect of different values ofλ (0.5,1.5,3) are presented by fixing rest of the other parameters and hyper-
parameters and it is observed that the MSEs of all the estimators decrease for increasing sample sizes. For smaller
value ofλ (0.5) the Bayes estimators are dominated by ML estimators but for higher values ofλ (1.5,3) the Bayes
estimators dominate the ML estimator. It is also to be noticed that the quasi-Bayes estimators perform quite effective
as an alternative to Bayes estimators.

∗ The results for variation inn(3,5) are presented in Table4 and it is noticed from the table that the quasi-Bayes
estimators under SELF perform well with minimum MSEs and absolute biases as compared to ML and Bayes
estimators. It is also observed that the larger sample sizesreduce the MSEs.

∗ Table 5 presents the variation inm(2.5,5) and it is noticed that the MSEs and absolute biases are in decreasing
in nature with increasing values of sample sizes(n1,n2). For m= 2.5 the ML estimators dominate the Bayesian
estimators. Moreover the quasi-Bayes estimators of augmented strength reliability gives more accurate result than
Bayes estimator. Similarly the Bayes estimators dominate that of ML estimators form= 5.

∗ In Table6, three different choices of prior variances (small, moderate and large) are chosen to observe the effect of
variability in the considered prior distributions, it is noticed that the mean square errors for small variance prior are
lesser than that of the moderate and large variance priors. Thus, the choice of minimum variance prior gives the better
precision in the Bayes estimates of the parameters.

8 Concluding remarks

In this paper, we have attempted the estimation of augmenting strength reliability under ASP by adopting ML and Bayes
methods. Bayes and quasi-Bayes methods of estimation with importance sampling for two different loss functions (SELF
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and LLF) have been employed. We also derived the asymptotic distribution of MLE of augmented strength reliability and
its parameters to construct the associated confidence intervals. The comparison among the different estimates of
augmented strength reliability models of ASP have been carried out on the basis of mean square errors (MSEs) and
absolute biases with 1000 replications of Monte-Carlo simulation. The estimates of augmented strength reliabilitiesand
mean square errors and absolute biases for the generalized case of ASP are tabulated in the corresponding tables. From
the given tables, it may be notice that the mean square errors(MSEs) and absolute biases gradually decrease for
increasing values of sample sizes. It may be noticed that, the Bayes estimates and quasi-Bayes estimates for SELF and
LLF performs quite effectively than that of ML estimates. Itis seen from the tables that, there are not much differences
among the different estimates with respect to loss functions, i.e., the Bayes and quasi-Bayes estimates give almost
similar results for SELF and LLF. The choice of priors with minimum variability are suggestive. To validate both the
methods of estimation, the data analysis was carried out with simulated as well as real data sets and it is observed that the
Bayes and quasi-Bayes estimates gives the better fit in compare to ML method.
This present problem remains some open problems to the researchers for future attempt, the problem of Bayesian and
ML estimation of augmenting strength reliability models for (i) some other life time distributions;(ii) different
censoring schemes of life time experiments(iii ) cost aspects of augmenting strength by adding new components and its
cost estimation.
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Table 3: Average estimates, MSE and Absolute bias of the estimators of augmented strength reliability(R3) under SELF
and LLF with variation inλ and samples sizes(n1,n2) when α = 0.75,n = m= 2;a = 0.5,b = 0.75,c = 0.25,d =
0.75, p= 1.5

(n1,n2) MLE
Bayes Quasi-Bayes

SELF LLF SELF LLF
λ = 0.5; R3 = 0.816497

(10, 20)
Estimate

MSE
Abs. bias

0.823853
0.000663
0.007356

0.777285
0.001542
0.039212

0.777179
0.00155
0.039318

0.77930
0.001397
0.037197

0.778898
0.001427
0.037599

(20, 10)
Estimate

MSE
Abs. bias

0.823541
0.000663
0.007045

0.777740
0.001510
0.038757

0.777584
0.001522
0.038913

0.774337
0.001808
0.042160

0.773809
0.001852
0.042687

(20, 30)
Estimate

MSE
Abs. bias

0.820333
0.000329
0.003836

0.799454
0.000293
0.017043

0.799349
0.000296
0.017148

0.791741
0.000634
0.024755

0.791325
0.000655
0.025172

(30, 50)
Estimate

MSE
Abs. bias

0.819213
0.000211
0.002717

0.799393
0.000294
0.017103

0.799325
0.000296
0.017172

0.795842
0.000435
0.020655

0.79543
0.000452
0.021067

(50, 50)
Estimate

MSE
Abs. bias

0.818179
0.000145
0.001683

0.789268
0.000744
0.027229

0.789210
0.000747
0.027287

0.789124
0.000757
0.027373

0.788731
0.000779
0.027766

λ = 1.5; R3 = 0.929899

(10, 20)
Estimate
MSE
Abs. bias

0.934318
0.000540
0.004419

0.898406
0.000999
0.031493

0.898244
0.001009
0.031655

0.907882
0.000512
0.022017

0.904306
0.000681
0.025592

(20, 10)
Estimate
MSE
Abs. bias

0.934490
0.000559
0.004592

0.887998
0.001785
0.041901

0.887562
0.001821
0.042337

0.907100
0.000558
0.022799

0.901410
0.000850
0.028489
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(20, 30)
Estimate
MSE
Abs. bias

0.932995
0.000304
0.003096

0.901384
0.000822
0.028515

0.901249
0.000829
0.02865

0.910285
0.000401
0.019614

0.908019
0.000495
0.021880

(30, 50)
Estimate
MSE
Abs. bias

0.931218
0.000208
0.001319

0.902236
0.000772
0.027663

0.902141
0.000777
0.027757

0.909598
0.000421
0.020301

0.908319
0.000475
0.021579

(50, 50)
Estimate
MSE
Abs. bias

0.931271
0.000163
0.001372

0.898933
0.000964
0.030965

0.898850
0.000969
0.031049

0.905873
0.000585
0.024026

0.904713
0.000642
0.025186

λ = 3; R3 = 0.980338

(10, 20)
Estimate
MSE
Abs. bias

0.981264
0.000144
0.000926

0.955612
0.000614
0.024726

0.95556
0.000616
0.024778

0.961330
0.000370
0.019008

0.958668
0.000478
0.021670

(20, 10)
Estimate
MSE
Abs. bias

0.980702
0.000142
0.000363

0.974492
3.8e-050
0.005846

0.974443
3.9e-050
0.005896

0.980357
3.0e-060
1.9e-050

0.977567
1.2e-050
0.002771

(20, 30)
Estimate
MSE
Abs. bias

0.980851
9.5e-050
0.000513

0.961341
0.000364
0.018997

0.961302
0.000365
0.019037

0.966366
0.000199
0.013972

0.964763
0.000246
0.015576

(30, 50)
Estimate
MSE
Abs. bias

0.980894
5.5e-050
0.000556

0.965043
0.000236
0.015295

0.965022
0.000236
0.015316

0.968324
0.000146
0.012014

0.967396
0.000169
0.012942

(50, 50)
Estimate
MSE
Abs. bias

0.980388
4e-050
5e-050

0.975704
2.2e-050
0.004634

0.975693
2.2e-050
0.004646

0.978172
6e-060
0.002167

0.977499
9e-060
0.00284

Table 4: Average estimates, MSE and Absolute bias of the estimators of augmented strength reliability(R3) under SELF
and LLF with variation inn and samples sizes(n1,n2) whenα = 0.75,λ = 1.5n = 2;a = 0.5,b = 0.75,c = 0.25,d =
0.75, p= 1.5

(n1,n2) MLE Bayes Quasi-Bayes
SELF LLF SELF LLF

n= 3; R3 = 0.984284

(10, 20)
Estimate

MSE
Abs. bias

0.985109
8.7e-05

0.000825

0.968781
0.000247
0.015504

0.968691
0.00025
0.015594

0.977894
4.7e-05
0.00639

0.975662
8.2e-05

0.008622

(20, 10)
Estimate

MSE
Abs. bias

0.984311
0.000101
2.7e-05

0.967389
0.000298
0.016896

0.967225
0.000304
0.01706

0.979911
2.7e-05

0.004373

0.976371
7.3e-05

0.007913

(20, 30)
Estimate

MSE
Abs. bias

0.984711
5.2e-05

0.000427

0.968854
0.000243
0.015431

0.968799
0.000245
0.015486

0.975238
8.6e-05

0.009046

0.973851
0.000114
0.010433

(30, 50)
Estimate

MSE
Abs. bias

0.984742
3.7e-05

0.000458

0.962976
0.000458
0.021309

0.962929
0.00046
0.021355

0.968082
0.000267
0.016203

0.967224
0.000295
0.01706

(50, 50)
Estimate

MSE
Abs. bias

0.984466
2.6e-05

0.000182

0.977063
5.4e-05

0.007221

0.977043
5.4e-05

0.007241

0.980529
1.6e-05

0.003755

0.979884
2.1e-05

0.004401
n= 5; R3 = 0.999281

(10, 20)
Estimate

MSE
Abs. bias

0.999051
2e-06

0.00023

0.987265
0.000145
0.012017

0.987247
0.000145
0.012035

0.985257
0.000199
0.014024

0.984875
0.00021
0.014407
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(20, 10)
Estimate

MSE
Abs. bias

0.999065
1e-06

0.000216

0.978481
0.000434
0.020801

0.978442
0.000435
0.020839

0.977449
0.000481
0.021833

0.976853
0.000507
0.022428

(20, 30)
Estimate

MSE
Abs. bias

0.99915
1e-06

0.000131

0.998608
4.8e-06

0.000673

0.998608
4.9e-07

0.000674

0.999319
1.9e-08
3.8e-05

0.999207
2.9e-08
7.4e-05

(30, 50)
Estimate

MSE
Abs. bias

0.999208
4.2e-07
7.3e-05

0.99822
1e-06

0.001061

0.99822
1e-06

0.001061

0.99883
2.3e-07

0.000451

0.998736
2.2e-07

0.000545

(50, 50)
Estimate

MSE
Abs. bias

0.999253
2.4e-07
2.8e-05

0.991546
6e-05

0.007735

0.991540
6e-05

0.007742

0.993802
3e-05

0.005479

0.993531
3.4e-05

0.005750

Table 5: Average estimates, MSE and Absolute bias of the estimators of augmented strength reliability(R3) under SELF
and LLF with variation inm and samples sizes(n1,n2) whenα = 0.75,λ = 1.5m= 2;a= 0.5,b= 0.75,c= 0.25,d =
0.75, p= 1.5

(n1,n2) MLE
Bayes Quasi-Bayes

SELF LLF SELF LLF
m= 2.5; R3 = 0.954803

(10, 20)
Estimate

MSE
Abs. bias

0.958217
0.000373
0.003414

0.911241
0.001900
0.043562

0.911099
0.001912
0.043703

0.905190
0.002485
0.049613

0.904043
0.002600
0.050759

(20, 10)
Estimate

MSE
Abs. bias

0.956846
0.000356
0.002043

0.909120
0.002119
0.045683

0.908657
0.002161
0.046146

0.928975
0.000703
0.025828

0.923411
0.001025
0.031392

(20, 30)
Estimate

MSE
Abs. bias

0.956263
0.000212
0.001461

0.924730
0.000913
0.030072

0.924599
0.000920
0.030204

0.933589
0.000464
0.021214

0.931464
0.000559
0.023339

(30, 50)
Estimate

MSE
Abs. bias

0.955973
0.000134
0.001171

0.943939
0.000122
0.010863

0.943876
0.000124
0.010926

0.950188
2.6e-05

0.004615

0.949047
3.8e-05

0.005755

(50, 50)
Estimate

MSE
Abs. bias

0.955646
1e-04

0.000843

0.937522
0.000303
0.017281

0.937452
0.000306
0.01735

0.943672
0.000129
0.011131

0.942635
0.000153
0.012168

m= 5; R3 = 0.990527

(10, 20)
Estimate

MSE
Abs. bias

0.990475
5.3e-05
5.2e-05

0.963454
0.000743
0.027073

0.963324
0.000751
0.027203

0.974657
0.000262
0.015871

0.972343
0.000341
0.018184

(20, 10)
Estimate

MSE
Abs. bias

0.990123
5.3e-05

0.000404

0.970524
0.000414
0.020003

0.97038
0.00042
0.020147

0.982685
6.9e-05

0.007842

0.979879
0.000123
0.010648

(20, 30)
Estimate

MSE
Abs. bias

0.990433
3.4e-05
9.4e-05

0.97536
0.000234
0.015167

0.975305
0.000236
0.015222

0.981563
8.4e-05

0.008964

0.980388
0.000107
0.010139

(30, 50)
Estimate

MSE
Abs. bias

0.990662
1.9e-05

0.000135

0.99338
8e-06

0.002853

0.993377
8e-06

0.00285

0.994878
1.9e-05

0.004351

0.994586
1.7e-05

0.004059

(50, 50)
Estimate

MSE
Abs. bias

0.990429
1.6e-05
9.8e-05

0.986802
1.5e-05

0.003726

0.986792
1.5e-05

0.003735

0.989444
2e-06

0.001083

0.989031
3e-06

0.001496
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Table 6: Average estimates, MSE and Absolute bias of the estimators of augmented strength reliability(R3) under SELF
and LLF with variation in hyper-parameters(a,b,c,d) and samples sizes(n1,n2) whenα = 0.75,λ = 1.5m= n= 2;R3 =
0.929899

(n1,n2) MLE Bayes Quasi-Bayes
SELF LLF SELF LLF

{(Small variance=0.25)}a= 1.5,b= 0.56,c= 1.75,d = 0.75, p= 1.5

(10, 20)
Estimate

MSE
Abs. bias

0.934724
0.000533
0.004825

0.88793
0.001765
0.041969

0.88777
0.001778
0.042129

0.883442
0.002175
0.046457

0.881445
0.002366
0.048454

(20, 10)
Estimate

MSE
Abs. bias

0.93437
0.000514
0.004471

0.873376
0.003228
0.056523

0.872905
0.003281
0.056993

0.891077
0.001554
0.038822

0.885499
0.002019
0.044400

(20, 30)
Estimate

MSE
Abs. bias

0.933653
0.000345
0.003754

0.881582
0.002338
0.048317

0.881471
0.002349
0.048428

0.885748
0.001964
0.044151

0.88395
0.002125
0.045949

(30, 50)
Estimate

MSE
Abs. bias

0.931871
0.000188
0.001972

0.907022
0.000528
0.022877

0.906937
0.000532
0.022962

0.913673
0.000272
0.016225

0.912357
0.000316
0.017542

(50, 50)
Estimate

MSE
Abs. bias

0.93095
0.000151
0.001051

0.913402
0.000278
0.016497

0.913326
0.00028
0.016573

0.919503
0.000115
0.010396

0.918333
0.00014
0.011566

{(Moderate variance=5)}a= 0.25,b= 0.30,c= 0.35,d = 0.60, p= 1.5

(10, 20)
Estimate

MSE
Abs. bias

0.933952
0.000517
0.004053

0.876329
0.002876
0.053569

0.876188
0.002891
0.053711

0.876813
0.002835
0.053086

0.875695
0.002954
0.054203

(20, 10)
Estimate

MSE
Abs. bias

0.934842
0.000556
0.004943

0.958691
0.000836
0.028792

0.95858
0.00083
0.028681

0.967972
0.001456
0.038073

0.964274
0.001189
0.034375

(20, 30)
Estimate

MSE
Abs. bias

0.93285
0.000316
0.002951

0.886513
0.001886
0.043386

0.886415
0.001895
0.043484

0.890372
0.001577
0.039527

0.888597
0.00172
0.041302

(30, 50)
Estimate

MSE
Abs. bias

0.931498
0.000206
0.001599

0.894544
0.001253
0.035355

0.894486
0.001257
0.035413

0.898174
0.001015
0.031725

0.897045
0.001088
0.032854

(50, 50)
Estimate

MSE
Abs. bias

0.930934
0.000157
0.001036

0.914588
0.00024
0.015311

0.914514
0.000242
0.015385

0.920782
8.9e-05

0.009117

0.919605
0.000112
0.010293

{(Large variance=10)}a= 0.20,b= 0.40,c= 0.50,d = 2.50, p= 1.5

(10, 20)
Estimate

MSE
Abs. bias

0.934376
0.000521
0.004477

0.914562
0.000242
0.015337

0.914416
0.000246
0.015483

0.924093
5.5e-05

0.005806

0.920474
0.000109
0.009425

(20, 10)
Estimate

MSE
Abs. bias

0.933585
0.000533
0.003687

0.872962
0.003271
0.056937

0.872535
0.003319
0.057364

0.888538
0.001759
0.041361

0.883028
0.002244
0.046871

(20, 30)
Estimate

MSE
Abs. bias

0.932557
0.000324
0.002658

0.920857
9.2e-05

0.009042

0.92072
9.4e-05

0.009179

0.929528
1.1e-05

0.000371

0.927202
1.8e-05

0.002697

(30, 50)
Estimate

MSE
Abs. bias

0.932105
0.000203
0.002206

0.909400
0.000427
0.020499

0.909316
0.000430
0.020583

0.915809
0.000207
0.014090

0.914499
0.000246
0.015400

(50, 50)
Estimate

MSE
Abs. bias

0.930578
0.000153
0.000679

0.889414
0.001645
0.040484

0.889323
0.001652
0.040576

0.896728
0.001109
0.033171

0.895601
0.001185
0.034298
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