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Abstract: In this paper, we introduce a new class of Laguerre Poly-Euler and Laguerre multi Poly-Euler polynomials. The concept

of Poly-Euler numberE(k)
n (a,b), generalized Poly-Euler polynomialsE(k)

n (x;a,b,e) of Jolany et al., Hermite-Bernoulli polynomials

HBn(x,y) of Dattoli et al.,HB(α)
n (x,y) of Pathan and Khan and Hermite based Poly-Euler polynomialsHE(k)

n (x,y;a,b,e) of Khan are

generalized to the oneLE(k)
n (x,y,z;a,b,e). Some implicit summation formulae and general symmetry identities arising from different

analytical means and applying generating functions.

Keywords: Laguerre polynomials, Hermite polynomials, Poly-Euler polynomials, Laguerre Poly-Euler polynomials, multi Poly-Euler
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1 Introduction

The two variable Laguerre polynomialsLn(x,y) are
defined by the generating function [5]

∞

∑
n=0

Ln(x,y)
tn

n!
= expytC0(xt), (1.1)

whereC0(x) is the 0-th order Tricomi function [2]

C0(x) =
∞

∑
r=0

(−1)rxr

(r!)2 (1.2)

and are represented by the series

Ln(x,y) =
n

∑
s=0

n!(−1)syn−sxs

(n− s)!(s!)2 (1.3)

Recently, the generalized Poly-Euler polynomials are
defined by Jolany et al. [6]-[9] as follows:

2Lik(1− (ab)−t)

a−t + bt ext =
∞

∑
n=0

E(k)
n (x;a,b,e)

tn

n!
, (1.4)

|t|<
2π

|lna+ lnb|

Note that the Poly-Euler polynomials of Sasaki and
Bayad ([1],[14]) can be deduced from(1.4) by replacingt
with 4t and takingx = 1

2. whenx = 0, (1.4) gives

E(k)
n (0;a,b,e) = E(k)

n (a,b)

2Lik(1− (ab)−t)

a−t + bt =
∞

∑
n=0

E(k)
n (a,b)

tn

n!
, (1.5)

|t|<
2π

|lna+ lnb|

and whena = 1 andb = e, we get

E(k)
n (x;1,e,e) = E(k)

n (x)

where
2Lik(1− e−t)

1+ et ext =
∞

∑
n=0

E(k)
n (x)

tn

n!
, (1.6)

|t|<
2π

|lna+ lnb|

On the other hand in the same paper by Jolany et al. [6]-
[9], they defined certain multi Poly-Euler polynomials as
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follows

2Lik1,··· ,kr(1− (ab)−t)

(a−t + bt)r erxt =
∞

∑
n=0

E(k1,··· ,kr)
n (x;a,b,e)

tn

n!
,

(1.7)

|t|<
2π

|lna+ lnb|

where

Li(k1,··· ,kr)(z) =
∞

∑
r,k=1

zmr

mk1
1 · · ·mkr

r

is the generalization of poly-logarithm.

In particular

E(k1···kr)
n (x;1,e,e) = E(k1···kr)

n (x)

E(k1···kr)
n (0;a,b,e) = E(k1···kr)

n (a,b)

Further by takingr = 1, in (1.7) immediately yield (1.4).

Very recently, Pathan et al. [15]-[21] introduced the
generalized Hermite-Bernoulli polynomials of two

variablesHB(α)
n (x,y) defined as

(

t
et −1

)α
ext+yt2 =

∞

∑
n=0

HB(α)
n (x,y)

tn

n!
(1.8)

which are essentially generalization of Bernoulli numbers,
Bernoulli polynomials, Hermite polynomials and Hermite-
Bernoulli polynomialsHBn(x,y) introduced by Dattoli et
al. ([4], p.386 (1.6)) in the form

(

t
et −1

)

ext+yt2 =
∞

∑
n=0

HBn(x,y)
tn

n!
(1.9)

The 2-variable Kampe de Feriet generalization of the
Hermite polynomials [3] reads

Hn(x,y) = n!
[ n
2 ]

∑
r=0

yrxn−2r

r!(n−2r)!
(1.10)

These polynomials are usually defined by the
generating function

ext+yt2 =
∞

∑
n=0

Hn(x,y)
tn

n!
(1.11)

and reduce to the ordinary Hermite polynomialsHn(x)
wheny =−1 andx is replaced by 2x.

Motivated by their importance and potential for
applications in certain problems in number theory,
combinatorics, classical and numerical analysis and other
fields of applied mathematics, several kinds of some
special numbers and polynomials were recently studied

by many authors (see [1]-[24]).

In this note firstly, we will give the definition of the

Laguerre Poly-Euler polynomialsLE(k)
n (x,y,z;a,b,e) and

Laguerre multi Poly-Euler polynomials

LE(k1···kr)
n (x,y,z;a,b,e) which generalize the concept

stated above and then investigate their basic properties

and relationships with Poly-Euler numbersE(k)
n (a,b),

Poly-Euler polynomialsE(k)
n (x), generalized Poly-Euler

polynomials E(k)
n (x;a,b,e) of Jolany et al.,

Hermite-Bernoulli polynomialsHBn(x,y) of Dattoli et at.,

HB(α)
n (x,y) of Pathan and Khan and Hermite poly-Euler

polynomialsHE(k)
n (x,y;a,b,e) of Khan. The reminder of

this paper is organized as follows: We modify generating
functions for the Poly-Euler polynomials and derive some
identities related to Laguerre polynomials, Hermite
polynomials, Poly-Euler polynomials and power sums.
Some implicit summation formulae and general
symmetry identities are derived by using different
analytical means and applying generating functions.
These result extended some known summations and
identities of generalized Hermite-Bernoulli polynomials
studied by Dattoli et al., Hermite Poly-Euler polynomials
studied by Khan, Zhang et al., Yang, Pathan and Pathan
and Khan.

2 Definition and Properties of the Laguerre
Poly-Euler polynomials and Laguerre multi
Poly-Euler polynomials

In this section, we will establish definitions and properties

of Laguerre Poly-Euler polynomialsLE(k)
n (x,y,z;a,b,e)

and Laguerre multi Poly-Euler polynomials

LE(k1,··· ,kr)
n (x,y,z;a,b,e).

Definition 2.1. Let a,b > 0 and a 6= b. The Laguerre

Poly-Euler polynomials LE(k)
n (x,y,z;a,b,e) for a

nonnegative integern is defined by

2Lik(1− (ab)−t)

a−t + bt eyt+zt2C0(xt)

=
∞

∑
n=0

LE(k)
n (x,y,z;a,b,e)

tn

n!
, |t|<

2π
|lna+ lnb|

(2.1)

Forx = 0 in (2.1), the result reduces to the known result of
Khan [11].

2Lik(1− (ab)−t)

a−t + bt eyt+zt2

=
∞

∑
n=0

HE(k)
n (y,z;a,b,e)

tn

n!
, |t|<

2π
|lna+ lnb|

(2.2)

As in the casex = y = z = 0 ande = 1 in (2.1), it
leads to an extension of the generalized poly-Euler
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polynomials denoted byE(k)
n (a,b) for a nonnegative

integern, defined earlier by (1.5).

Definition 2.2. Let a,b > 0 and a 6= b. The Laguerre

multi Poly-Euler polynomialsLE(k1,··· ,kr)
n (x,y,z;a,b,e) for

a nonnegative integern, is defined by

2Lik(1− (ab)−t)

(a−t + bt)r er(yt+zt2)C0(rxt)

=
∞

∑
n=0

LE(k1,··· ,kr)
n (x,y,z;a,b,e)

tn

n!
, |t|<

2π
|lna+ lnb|

(2.3)

Forx = 0 in (2.3), the result reduces to the known result of
Khan [11].

2Lik(1− (ab)−t)

(a−t + bt)r er(yt+zt2)

=
∞

∑
n=0

HE(k1,··· ,kr)
n (y,z;a,b,e)

tn

n!
, |t|<

2π
|lna+ lnb|

(2.4)

As in the casex = y = z = 0 ande = 1 in (2.3), it leads to
an extension of the generalized multi Poly-Euler

polynomials denoted byE(k,··· ,kr)
n (a,b) for a nonnegative

integern, defined earlier by (1.7).

Theorem 2.1.Let a,b > 0 anda 6= b. For x,y,z ∈ R and
n ≥ 0. Then we have

LE(k)
n (x,y,z;1,e,e) = LE(k)

n (x,y,z),

LE(k)
n (0,0,0;a,b,1) = E(k)

n (a,b)

LE(k)
n (0,0,0;1,e,1) = E(k)

n ,

LE(k)
n (x,y,z;a,b,e) = LE(k)

n (x,y,z;a,b) (2.5)

LE(k)
n (x,y+ z,v+ u;a,b,e)

=
n

∑
m=0

(

n
m

)

LE(k)
n−m(x,z,v;a,b,e)Hm(y,u;a,b,e) (2.6)

LE(k)
n (x,y+v,z;a,b,e)=

n

∑
m=0

(

n
m

)

vm
LE(k)

n−m(x,y,z;a,b,e)

(2.7)
Proof. The formula in (2.6) are obvious. Applying
definition (2.1), we have

∞

∑
n=0

LE(k)
n (x,y+ z,v+ u;a,b,e)

tn

n!

=

(

∞

∑
n=0

LE(k)
n (x,z,v;a,b,e)

tn

n!

)(

∞

∑
m=0

Hm(y,u)
tm

m!

)

∞

∑
n=0

LE(k)
n (x,y+ z,v+ u;a,b,e)

tn

n!

=
∞

∑
n=0

(

n

∑
m=0

(

n
m

)

LE(k)
n−m(x,z,v;a,b,e)Hm(x,y)

)

tn

n!

Now equating the coefficient oft
n

n! in the above equation,
we get the result (2.6). Again by definition (2.1) of
Laguerre Poly-Euler polynomials, we have

∞

∑
n=0

LE(k)
n (x,y+ v,z;a,b,e)

tn

n!

=

(

2Lik(1− (ab)−1)

a−t + bt

)

e(y+v)t+zt2C0(xt)

∞

∑
n=0

LE(k)
n (x,y+ v,z;a,b,e)

tn

n!

=

(

2Lik(1− (ab)−1)

a−t + bt eyt+zt2C0(xt)

)

evt

which can be written as
∑∞

n=0 LE(k)
n (x,y+ v,z;a,b,e) tn

n! = ∑∞
n=0 LE(k)

n (x,y,z;a,b,e) tn

n! ∑∞
m=0

(vt)m

m!

∑∞
n=0 LE(k)

n (x,y+ v,z;a,b,e) tn

n! = ∑∞
n=0

(

∑n
m=0

(

n
m

)

vm
LE(k)

n−m(x,y,z;a,b,e)

)

tn

n!

On equating the coefficient of the like power oftn

n! in the
above equation, we get the result (2.7). Hence we
complete the proof of theorem.

Theorem 2.2.The Laguerre multi Poly-Euler polynomials
satisfy the following relation:

LE(k1,··· ,kr)
n (x,y+ z,u;a,b,e)

=
n

∑
m=0

(

n
m

)

(rz)m
LE(k1,··· ,kr)

n−m (x,y,u;a,b,e) (2.8)

Proof. Since

∞

∑
n=0

LE(k1,··· ,kr)
n (x,y+ z,u;a,b,e)

tn

n!

=
2Lik(1− (ab)−t)

(a−t + bt)r er((y+z)t+ut2)C0(rxt)

∞

∑
n=0

LE(k1,··· ,kr)
n (x,y+ z,u;a,b,e)

tn

n!

=
∞

∑
n=0

LE(k1,··· ,kr)
n (x,y+ z,u;a,b,e)

tn

n!

∞

∑
m=0

(rzt)m

m!

Replacingn by n−m in the above equation and equating
the coefficients oftn, we get the result (2.8).

Theorem 2.3. The Laguerre multi Poly-Euler
polynomials satisfy the following relation:

LE(k1,··· ,kr)
n (x,y,z;a,b,e)

=
[ n
2 ]

∑
m=0

n−2m

∑
k=0

(−1)k(r)k+mxkzmE(k1,··· ,kr)
n−k−2m (y;a,b,e)

(n− k−2m)!(k!)2!m!
(2.9)

∞

∑
n=0

LE(k1,··· ,kr)
n (x,y,z;a,b,e)

tn

n!
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=
2Lik(1− (ab)−t)

(a−t + bt)r er(yt+zt2)C0(rxt)

∑∞
n=0 LE(k1,··· ,kr)

n (x,y,z;a,b,e) tn

n! =
(

∑∞
n=0 E(k1,··· ,kr)

n (y;a,b,e) tn

n!

)

×

(

∞

∑
m=0

(rzt2)m

m!

)(

∞

∑
k=0

(−1)k(rxt)k

(k!)2

)

Replacingn by n− k, we get

∞

∑
n=0

LE(k1,··· ,kr)
n (x,y,z;a,b,e)

tn

n!

= ∑∞
n=0

(

∑n
k=0

(−1)k(rx)kE
(k1,··· ,kr)
n−k (y;a,b,e)

(n−k)!(k!)2

)

tn
(

∑∞
m=0

(rzt2)m

m!

)

Replacingn by n−2m in the above equation and equating
the coefficients oftn, we get the result (2.9).

3 Implicit Summation Formulae Involving
Laguerre Poly-Euler Polynomials

For the derivation of implicit summation formulae
involving Laguerre Poly-Euler polynomials

LE(k)
n (x,y,z;a,b,e) the same consideration as developed

for the ordinary Hermite and related polynomials in Khan
et al. [10] and Hermite-Bernoulli polynomials in Pathan
[15] and Pathan et al. [16]-[21] holds as well. First we
prove the following results involving Laguerre Poly-Euler

polynomialsLE(k)
n (x,y,z;a,b,e).

Theorem 3.1.Let a,b > 0 anda 6= b. Then, forx,y,z ∈ R
and m,n ≥ 0, the following implicit summation formula

for Laguerre Poly-Euler polynomialsLE(k)
n (x,y,z;a,b,e)

holds true:

LE(k)
m+n(x,v,z;a,b,e) =

m,n

∑
s,k=0

(

m
s

)(

n
k

)

(v− y)s+k

×LE(k)
m+n−s−k(x,y,z;a,b,e) (3.1)

Proof. We replacet by t + u and rewrite the generating
function (2.1) as

(

2Lik(1− (ab)−(t+u))

a−(t+u)+ b(t+u)

)

ez(t+u)2C0(x(t + u))

= e−y(t+u)
∞

∑
m,n=0

LE(k)
m+n(x,y,z;a,b,e)

tn

n!
um

m!
(3.2)

Replacingy by v in the above equation and equating the
resulting equation to the above equation, we get

e(v−y)(t+u)
∞

∑
m,n=0

LE(k)
m+n(x,y,z;a,b,e)

tn

n!
um

m!

=
∞

∑
m,n=0

LE(k)
m+n(x,v,z;a,b,e)

tn

n!
um

m!
(3.3)

on expanding exponential function (3.3) gives

∞

∑
N=0

[(v− y)(t + u)]N

N!

∞

∑
m,n=0

LE(k)
m+n(x,y,z;a,b,e)

tn

n!
um

m!

=
∞

∑
m,n=0

LE(k)
m+n(x,v,z;a,b,e)

tn

n!
um

m!
(3.4)

which on using formula [[22], p. 52(2)]

∞

∑
N=0

f (N)
(x+ y)N

N!
=

∞

∑
n,m=0

f (m+ n)
xn

n!
ym

m!
(3.5)

in the left hand side becomes
∞

∑
k,s=0

(v− y)k+s tkus

k!s!

∞

∑
m,n=0

LE(k)
m+n(x,y,z;a,b,e)

tn

n!
um

m!

=
∞

∑
m,n=0

LE(k)
m+n(x,v,z;a,b,e)

tn

n!
um

m!
(3.6)

Now replacingn by n− k, s by n− s and using the lemma
[[22], p. 100(1)] in the left hand side of (3.6), we get

∑∞
m,n=0 ∑∞

k,s=0
(v−y)k+s

k!s! LE(k)
m+n−k−s(x,y,z;a,b,e) tn

(n−k)!
um

(m−s)!

=
∞

∑
m,n=0

LE(k)
m+n(x,v,z;a,b,e)

tn

n!
um

m!
(3.7)

Finally, on equating the coefficient of the like powers oftn

andum in the above equation, we get the required result.

Remark 1. By taking m = 0 in equation (3.1), we
immediately deduce the following result.

Corollary 3.1. The following implicit summation
formula for Laguerre Poly-Euler polynomials

LE(k)
n (x,y,z;a,b,e) holds true:

LE(k)
n (x,v,z;a,b,e) =

n

∑
k=0

(

n
k

)

(v−y)k
LE(k)

n−k(x,y,z;a,b,e)

(3.8)
Remark 2. On replacingv by v+ y and settingx = z = 0
in Theorem (3.1), we get the following result involving
Laguerre Poly-Euler polynomial of one variable

LE(k)
m+n(v+ y;a,b,e) =

m,n

∑
s,k=0

(

m
s

)(

n
k

)

(v)k+s

×LE(k)
m+n−k−s(y;a,b,e) (3.9)

whereas by settingv = 0 in Theorem (3.1), we get another
result involving Laguerre Poly-Euler polynomial of one
and two variable

LE(k)
m+n(x,z;a,b,e) =

m,n

∑
s,k=0

(

m
s

)(

n
k

)

(−y)k+s

c© 2016 NSP
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×LE(k)
m+n−k−s(x,y,z;a,b,e) (3.10)

Remark 3. Along with the above result we will exploit
extended forms of Laguerre Poly-Euler polynomial

LE(k)
m+n(x,v;a,b,e) by settingz = 0 in the Theorem (3.1)

to get

LE(k)
m+n(x,v;a,b,e) =

m,n

∑
k,s=0

(

m
s

)(

n
k

)

(v− y)k+s

×HE(k)
m+n−k−s(x,y;a,b,e) (3.11)

Remark 4. A straight forward expression of the
LEm+n(x,v,z;a,b,e) is suggested by a special case of the
Theorem (3.1) fork = 1 in the following form

LEm+n(x,v,z;a,b,e) =
m,n

∑
s,k=0

(

m
s

)(

n
k

)

(v− y)s+k

×LEm+n−s−k(x,y,z;a,b,e) (3.12)

Theorem 3.2.Let a,b > 0 anda 6= b. Then, forx,y,z ∈ R
and m,n ≥ 0, the following implicit summation formula

for Laguerre Poly-Euler polynomialsLE(k)
n (x,y,z;a,b,e)

holds true:

LE(k)
n (x,y+ u,z;a,b,e) =

n

∑
j=0

(

n
j

)

u j
LE(k)

n− j(x,y,z;a,b,e)

(3.13)
Proof. Since

∞

∑
n=0

LE(k)
n (x,y+ u,z;a,b,e)

tn

n!

=
2Lik(1− (ab)−t)

a−t + bt e(y+u)t+zt2C0(xt)

∞

∑
n=0

LE(k)
n (x,y+ u,z;a,b,e)

tn

n!

=

(

∞

∑
n=0

LE(k)
n (x,y,z;a,b,e)

tn

n!

)(

∞

∑
j=0

u j t j

j!

)

Now, replacingn by n− j and comparing the coefficient
of tn, we get the result (3.13).

Theorem 3.3.Let a,b > 0 anda 6= b. Then, forx,y,z ∈ R
and m,n ≥ 0, the following implicit summation formula

for Laguerre Poly-Euler polynomialsLE(k)
n (x,y,z;a,b,e)

holds true:

LE(k)
n (x,y+ u,z+w;a,b,e)

=
n

∑
m=0

(

n
m

)

LE(k)
n−m(x,y,z;a,b,e)Hm(u,w) (3.14)

Proof. By the definition of Laguerre Poly-Euler
polynomials and the definition (1.11), we have

(

2Lik(1− (ab)−t)

a−t + bt

)

e(y+u)t+(z+w)t2C0(xt)

=

(

∞

∑
n=0

LE(k)
n (x,y,z)

tn

n!

)(

∞

∑
m=0

Hm(u,w)
tm

m!

)

Now, replacingn by n−m and comparing the coefficient
of tn, we get the result (3.14).

Theorem 3.4.Let a,b > 0 anda 6= b. Then, forx,y,z ∈ R
and m,n ≥ 0, the following implicit summation formula

for Laguerre Poly-Euler polynomialsLE(k)
n (x,y,z;a,b,e)

holds true:

LE(k)
n (x,y,z;a,b,e) =

n−2 j

∑
m=0

[ n
2 ]

∑
j=0

E(k)
m (a,b)Ln−m−2 j(x,y)z jn!

m! j!(n−m−2 j)!

(3.15)
Proof. Applying the definition (2.1) to the term
(

2Lik(1−(ab)−t)
a−t+bt

)

and expanding the exponential and

tricomi functioneyt+zt2C0(xt) at t = 0 yields
(

2Lik(1− (ab)−t)

a−t + bt

)

eyt+zt2C0(xt)

=

(

∞

∑
m=0

E(k)
m (a,b)

tm

m!

)(

∞

∑
n=0

Ln(x,y)
tn

n!

)(

∞

∑
j=0

z j (t)
2 j

j!

)

∞

∑
n=0

LE(k)
n (x,y,z;a,b,e)

tn

n!

=
∞

∑
n=0

(

n

∑
m=0

E(k)
m (a,b)Ln−m(x,y)

)

tn

n!

(

∞

∑
j=0

z j t2 j

j!

)

Now, replacingn by n−2 j and comparing the coefficient
of tn, we get the result (3.15).

Theorem 3.5.Let a,b > 0 anda 6= b. Then, forx,y,z ∈ R
and m,n ≥ 0, the following implicit summation formula

for Laguerre Poly-Euler polynomialsLE(k)
n (x,y,z;a,b,e)

holds true:

LE(k)
n (x,y+1,z;a,b,e) =

n

∑
m, j=0

n!(−1) j(x) j
HE(k)

n−m− j(y,z;a,b,e)

(n−m− j)!m!( j!)2

(3.16)
Proof. By the definition of Laguerre Poly-Euler
polynomials, we have

∞

∑
n=0

LE(k)
n (x,y+1,z;a,b,e)

tn

n!

=

(

2Lik(1− (ab)−t)

a−t + bt

)

e(y+1)t+zt2C0(xt)
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=

(

∞

∑
n=0

(

n

∑
m=0

HE(k)
n−m(y,z;a,b,e)

(n−m)!n!

)

tn

)(

∞

∑
j=0

(−1) j(xt) j

( j!)2

)

=

(

∞

∑
n=0

(

∞

∑
j=0

n

∑
m=0

(−1) j(x) j
HE(k)

n−m(y,z;a,b,e)

(n−m)!n!( j!)2

)

tn+ j

)

Replacingn by n− j, we have

∞

∑
n=0

LE(k)
n (x,y+1,z;a,b,e)

tn

n!

=

(

∞

∑
n=0

(

n

∑
m, j=0

(−1) j(x) j
HE(k)

n−m(y,z;a,b,e)

(n−m)!n!( j!)2

)

tn+ j

)

On comparing the coefficient oftn, we get the result
(3.16).

Theorem 3.6.Let a,b > 0 anda 6= b. Then, forx,y,z ∈ R
and m,n ≥ 0, the following implicit summation formula

for Laguerre Poly-Euler polynomialsLE(k)
n (x,y,z;a,b,e)

holds true:

LE(k)
n (x,y+1,z;a,b,e) =

n

∑
m=0

(

n
m

)

LE(k)
n−m(x,y,z;a,b,e)

(3.17)
Proof. By the definition of Laguerre Poly-Euler
polynomials, we have

∞

∑
n=0

LE(k)
n (x,y+1,z;a,b,e)

tn

n!
−

∞

∑
n=0

LE(k)
n (x,y,z;a,b,e)

tn

n!

=

(

2Lik(1− (ab)−t)

a−t + bt

)

(et −1)eyt+zt2C0(xt)

=
∞

∑
n=0

LE(k)
n (x,y,z;a,b,e)

tn

n!

(

∞

∑
m=0

tm

m!
−1

)

= ∑∞
n=0 LE(k)

n (x,y,z;a,b,e) tn

n! ∑∞
m=0

tm

m! −∑∞
n=0 LE(k)

n (x,y,z;a,b,e) tn

n!

=
∞

∑
n=0

n

∑
m=0

LE(k)
n−m(x,y,z;a,b,e)

tn

m!(n−m)!

−
∞

∑
n=0

LE(k)
n (x,y,z;a,b,e)

tn

n!

Finally equating the coefficient of the like powers oftn in
the above equation, we get the result (3.17).

4 General Symmetry Identities for Laguerre
Poly-Euler Polynomials

In this section, we will obtain general symmetry identities
for the Laguerre Poly-Euler polynomials

LE(k)
n (x,y,z;a,b,e) by applying the generating function

(2.1). It turns out that some known identities of Khan
[11]-[13], Pathan et al. [15]-[21], Yang et al. [23], Zhang
et al. [24].

Theorem 4.1.Let a,b > 0 anda 6= b. Then, forx,y,z ∈ R
andm,n ≥ 0. Then the following identity holds true:

n

∑
m=0

(

n
m

)

bman−m
EG(k)

n−m(x,by,b2z;b,e)LE(k)
m (x,ay,a2z;a,e)

=
n

∑
m=0

(

n
m

)

ambn−m
LE(k)

n−m(x,ay,a2z;a,e)LE(k)
m (x,by,b2z;b,e)

(4.1)
Proof. Start with

g(t) =

(

(2Lik(1− (ab)−t)C0(xt))2

(a−at + bat)(a−bt + bbt)

)

eabyt+a2b2zt2 (4.2)

Then the expression forg(t) is symmetric ina andb and
we can expandg(t) into series in two ways to obtain
g(t) = ∑∞

n=0 LE(k)
n (x,by,b2z;b,e) (at)n

n! ∑∞
m=0 LE(k)

m (x,ay,a2z;a,e) (bt)m

m!

=
∞

∑
n=0

n

∑
m=0

(

n
m

)

an−mbm
LE(k)

m (x,by,b2z;b,e;)

×LE(k)
n−m(x,ay,a2z;a,e;)

tn

n!

On the similar lines we can show that
g(t) = ∑∞

n=0 LE(k)
n (x,ay,a2z;a,e) (bt)n

n! ∑∞
m=0 LE(k)

m (x,by,b2z;b,e) (at)m

m!

=
∞

∑
n=0

n

∑
m=0

(

n
m

)

ambn−m
LE(k)

n−m(x,ay,a2z;a,e)

×LE(k)
m (x,by,b2z;b,e)

tn

n!
Comparing the coefficient oftn on the right hand sides of
the last two equations, we arrive at the desired result.

Remark 1. By setting b = 1 in Theorem (4.1), we
immediately following result

n

∑
m=0

(

n
m

)

an−m
LE(k)

n−m(x,y,z;1,e)LE(k)
m (x,ay,a2z;a,e)

=
n

∑
m=0

(

n
m

)

am
LE(k)

n−m(x,ay,a2z;a,e)LE(k)
m (x,y,z;1,e)

(4.3)

Theorem 4.2.Let a,b > 0 anda 6= b. Then, forx,y,z ∈ R
andm,n ≥ 0. Then the following identity holds true:
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n

∑
m=0

(

n
m

)a−1

∑
i=0

b−1

∑
j=0

bman−m
LE(k)

n−m

(

x,by+
b
a

i+ j,b2u;A,B,e

)

×LE(k)
m (x,az,a2v;A,B,e)

= ∑n
m=0

(

n
m

)

∑b−1
i=0 ∑a−1

j=0 ambn−m
LE(k)

n−m

(

x,ay+ a
b i+ j,a2u;A,B,e

)

×LE(k)
m (x,bz,b2v;A,B,e) (4.4)

Proof. Let

g(t) =

(

(2Lik(1− (ab)−t)C0(xt))2

(A−at +Bat)(A−bt +Bbt)

)

×

(

(eabt −1)2eab(y+z)t+a2b2(u+v)t2

(eat −1)(ebt −1)

)

=

(

2Lik(1− (ab)−t)C0(xt)
(A−at +Bat)

)

eabyt+a2b2ut2
(

eabt −1
ebt −1

)

×

(

2Lik(1− (ab)−t)C0(xt)
(A−bt +Bbt)

)

eabzt+a2b2vt2
(

eabt −1
eat −1

)

=

(

2Lik(1− (ab)−t)C0(xt)
(A−at +Bat)

)

eabyt+a2b2ut2

×
a−1

∑
i=0

ebti
(

2Lik(1− (ab)−t)C0(xt)
(Abt +Bbt)

)

eabzt+a2b2vt2
b−1

∑
j=0

eat j

(4.5)

=

(

2Lik(1− (ab)−t)C0(xt)
(A−at +Bat)

)

ea2b2ut2
a−1

∑
i=0

b−1

∑
j=0

e(by+ b
a i+ j)at

×
∞

∑
m=0

LE(k)
m (x,az,a2v;A,B,e)

(bt)m

m!

=
∞

∑
n=0

a−1

∑
i=0

b−1

∑
j=0

LE(k)
n−m

(

x,by+
b
a

i+ j,b2u : A,B,e

)

(at)n

n!

×
∞

∑
m=0

LE(k)
m (x,az,a2v;A,B,e)

(bt)m

m!

=
∞

∑
n=0

n

∑
m=0

(

n
m

)a−1

∑
i=0

b−1

∑
j=0

LE(k)
n−m

(

x,by+
b
a

i+ j,b2u;A,B,e

)

×
∞

∑
m=0

LE(k)
m (x,az,a2v;A,B,e)bman−mtn (4.6)

On the other hand

∞

∑
n=0

n

∑
m=0

(

n
m

)b−1

∑
i=0

a−1

∑
j=0

LE(k)
n−m

(

x,ay+
a
b

i+ j,a2u;A,B,e
)

×
∞

∑
m=0

LE(k)
m (x,bz,b2v;A,B,e)bn−mamtn (4.7)

By comparing the coefficients oftn on the right hand
sides of the last two equations, we arrive at the desired
result.

5 Conclusion

In this paper, we modify generating functions for the
Poly-Euler and multi Poly-Euler polynomials and derive
some identities related to Laguerre polynomials, Hermite
polynomials, Poly-Euler polynomials and power sums.
These generating functions have wide applications in
certain problems in number theory, combinatorics,
classical and numerical analysis and other fields of
applied mathematics, several kinds of special numbers
and polynomials.
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