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Abstract: The behaviour oD-optimal exact designs, constructed using a combinatalgarithm, is examined under the variations
of A-, E- andG-optimality criteria. In particular, the question of whettdesigns that are optimal with respect to one criterioratse
optimal with respect to other criteria is addressed. Thed@imm Numbers (CN) of the designs as well as the equivaleelations of
the criteria are noted. Th-optimal designs under consideration are for low-ordeaiiate polynomial models. By the rules of the
algorithm, not more than 25 percent search on the totalablaildesigns is required within a design class since a latfefior designs,
with respect to the search for optimal design are eliminated models, which could be with or without intercept, arérgsl on design
regions which are supported by the points of the circumedritentral composite design. The points are classified ma®tgroups
with respect to their distances from the centre of the desgion. Results show tha@t-optimally-constructed designs need notfe
E- or G-optimum. For the first order models considered, the globatD-optimal exact designs were eaéh, E- andG-optimum. For
the bivariate quadratic model considered, the global Besptimal exact design was not necessa@hpptimum. However, the design
was bothA- andE-optimum. The prediction capabilities of these designsevggaphically evaluated.

Keywords: D-optimality, Variance of Prediction, Trace, Eigenvaluendition number

1 Introduction

The use ofD-optimality has gained much popularity as a vast numbertefdture on optimal designs centres around
the D-optimality criterion. This is perhaps, due to the assertitat designs which are optimal with respect to e
optimality criterion are invariably at least good in manhet respects such as having low variances for the parameters
low correlations among parameters, low maximum variangeediction over the design region, sd& |As observed in

[2], the importance of using a design that is deemed adequate¥eral optimality criteria cannot be overemphasized
since optimality with respect to a particular optimalityiterion usually represents an approximation to some notion
of goodness. It is therefore important to examine the daesggmstructed under an optimality criterion with respect to
other optimality criteria. 2] considered numerically, the efficiencies of differentagmf optimal designs under various
model assumptions. In the work, the robust propertie&, @, E andG-optimal designs were compared for continuous
designs only. Results showed that a design that is deemegdiaeunder one optimality criterion can perform poorly in
terms of another optimality criterion. It was further relezhthat a number of properties common&oD andG-optimal
designs were not possessed Byoptimal designs. One of such properties was observed flynpmial regression of
degree&k when the hypothesized model is of degjedt was noted that foA-, D- andG-optimal designs, the associated
efficiency functions are non-increasing functionke@fhereas for th&-optimal designs, the efficiency function remained
remarkably stable for ¥ j < k < 8 and hencé-optimal designs do not possess the monotonic property fHsiult
places caution on the use Bfoptimal designs as slightly mis-specified model can reisutevere loss in efficiency
of the design. 3] compared the efficiencies @&-, D- and G-optimality for second-order split-plot Central Compesit
Design under various degrees of correlation. For the seooter reduced split-plot Central Composite Desigh models
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consideredD-, A- andG-optimality criteria were not robust across reduced maodd]scarried out a comparative study
of some varieties of the Central Composite Design using\th®- andG-optimality criteria. The varieties of the Central
Composite Design considered include Spherical Centralfgosite Design (SCCD), Rotatable Central Composite Design
(RCCD), Orthogonal Central Composite Design (OCCD), SRptatable Central Composite Design (Slope-R) and Face
center Cube (FCC).

In studying the behaviour dd-optimally constructed exact designs under the variatiomon-D-optimality criteria,
comparisons made are under the assumption that the trud im@dpolynomial of degreen. Although the form of the
true underlying relationship between the response variabtl the independent variables is usually unkno®jnhas it
that the relationship can be approximated by a low-ordegrmwhial such as the first- and second-order response surface
models in equations (1) and (2), respectively;

k k kK
Yij=PBo+ ) Bxi+ BijXiXj + &j 1)
1] i; | I;J; (NEA EAY| 1]
and
k k kK k 2
Yij = Bo+ ZBiXi+ Z\ZBinin + Z\Biixﬁ‘FZBijjzj +&j,i=12,...kj>i (2)
i= i=1]>1 i= >0

wherey;j’s are the observations due to the univariate responseblerféis are the parameter coefficients’s andx;’s
are the independent variables;’'s are the error terms associated with §gs which are normally and independently
distributed with zero mean and constant variance.

In this work, the design space is taken to be the sphericameg two variables, supported by the poilfisl, +1),
(+£1.414,0), (0,+1.414) and centred at the poi®, 0). Unlike some works where interest is on continuous desigmy,
exact designs are considered here. This follows from therksrof [6] that in practice, all designs are exact. According
to[7], a designé, is anN-point exact design i€y is a probability measure on the design regi¥nwhich attaches a
massﬁ to each point of the design amM€y is a non-negative integer fore X. We shall denote the space Nfpoint
exact designs oK by E};‘. The information matrixM(&n ), of an exact desigrén, is given byM(én) = %X’X, whereX
is anN x p design matrix o€y, whose ith row isf (x;). The designéy, is aD-optimal exact design if the determinant of
the information matrixM (&), is maximized over alM(&y) for &y € =Y. TheD-optimality criterion introduced byg]
is basically a parameter estimation criterion and puts ersiglon the quality of the parameter estimates.

Most D-optimal designs are generated by search algorithms suchea®ETMAX algorithm of 1], the K-L
algorithm of ], etc. [9] introduced the combinatorial algorithm which requiresgring design points in the design
region according to their distances from the centre of thségieregion intagys, go, ... , gy groups. This algorithm serves
extensively well in locatind>-Optimal designs and is applicable under varying expertale@onditions as seen il ().

[11] suggested rules for obtaining a starting design that idasea@s possible to the optimal design as measured by the
determinant value of the information matri®g utilized the principles embodied in the Combinatorial étghm while
studying the effects of imposing-Optimality criterion on the design regions of the Centrah@posite Designs. Results
showed that th@®-optimality criterion performed better on the region sugied by design points of the Circumscribed
Central Composite Design.

Attempts have been made to reduce the determinantal exalsadf the basic combinatorial algorithm to a
manageable number. One of such attempts is dug3onhose efficient algorithm eliminates a large number ofiiitie
designs and allows not more than a 25 percent search indgcté best design within a design class. The essence of
this work therefore is to examine the behavioubebptimally-constructed exact designs, under the vamatiaf A-, E-
and G-optimality criteria. In particular, we examine whetheresle exact designs are optimal with respect to the
optimality criteria under consideration. In Design of Expents, theD-optimality criterion has been most frequently
encountered (see alsd4]). As a determinant-based criterion, theoptimality criterion has the objective of maximizing
the determinant of the information matrix of the design. Bgximizing the determinant of the information matrix, the
determinant of the variance-covariance matrix of the patamestimates is also minimized. The implication of this is
that the variances of the parameter estimates as well agtiaei@nces among the parameters are minimized.

In assessing the goodness of an already constrizigutimal exact design, we shall empl8y, E- andG-optimality
criteria as well as the condition number of the design. Tliterdon of A-optimality, introduced by15], maximizes the
trace of the information matrix of the design and hence mirés the trace of the variance-covariance matvix;! (&)
thereby minimizing the variances of the parameter estisnatalike theD-optimality criterion, theA-optimality criterion
does not take into account the covariances among paraméter&-optimality criterion introduced by1[6] seeks to
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minimize the maximum variance of any predicted responsaevalver the experimental space (design region). The
variance of the predicted response & given by

Var (Y(x)) = o' (x)M (&) f(x). (3)

Without loss of generality, we assume tlagttis a constant, say 1. The criterion®foptimality introduced by 7] seeks
to maximize the minimum eigenvalue of the information ma&ind hence minimizes the maximum eigenvalue of the
variance-covariance matrix. The criterionBfoptimality is defined symbolically by

MExArin(M~(£)) = MinAmex(M(€), (4)

whereAnin is the minimum eigenvalue dfl (&) andAmax is the maximum eigenvalue ®~1(&): see, for example 1]
and 6] for further details. The Condition Number (CN) is an evaioa criterion used to rate an already created
D-optimal design. It evaluates the sphericity and the syminigtn of theD-optimal design. Let

M M2 ... M
M1 Mp2 . .. Mpp
M — . e

be a pxp symmetric matrix such thatmj = mj;. The condition number of the matrix\l is defined by
Cond(M) = |[M]||IM —1||, where the matrix normj|M||, can easily be computed as the maximum absolute column sum
(or row sum) given byjm|| = max; 3, |myj|; |m|| > 0 if m# 0. The matrix norm||M — 1||, is similarly computed. For
any matrixM, Cond(M) > 1. According to 9], a design with a Condition Number of 1 would be orthogondlilezan
increasing Condition Number indicates a less orthogorsibde

We shall employ the combinatorial algorithm outlined in @t 2 in the construction of th®-optimal designs.
The Condition Numbers of the designs as well as the possihlvaence relations of tha-, E- andG-criteria shall be
noted. In this study, thB-optimal designs constructed are for low-order bivariatiypomial models which could be with
or without intercept. The models shall be defined on desigiorethat is supported by the points of the Circumscribed
Central Composite Design. The design points of the desigiomeshall be classified into three groups with respect tw the
distances from the centre of the design region. Althoughwhurk considers low-order polynomials and design points of
the circumscribed central composite design, the workintpefalgorithm is not restricted to low-order polynomials no
to design points of the Circumscribed Central Compositadpes

2 M ethodology

For the algorithm, we assume that the support points thateldfie design region have been arranged khtgroups,
namely, 01, 02, ..., gy according to their distanced;, , from the centre of the regioiX, and are such thah > d, > ... >

dy. The groupg; holdsN; support pointsg, holdsN, support points, etc and; + N + ... + Ny = N, whereN is the
total number of distinct support points in the design regidhe design class, sag = {r1:r2:...:rg}, requires
selectingry support points frongy, ro support points frongy, ... , ry support points frongy. There areg; ways of
selectingj support points frong; and hence we obtam sub-designs.

The following steps make up the algorithm for constructimg@-optimal exact designs:

Step I: Obtairﬁi:<’§i ) sub-designs from;N;. The notationg;N;, implies that groum; holdsN; supports points.
|

Step II: List thea; sub-designsay, ay, ..., ag;

Steplll: Form sets of composite designs from #hsub-designs such that < ay < ... < a5. Where this restriction does
not hold, the groups within the class may be repositionedhdeze the restriction.
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SteplV: Choose any set,and computeletM(&'1), the determinant of information matrix associated vfitH ;
i=12..a;]j=212..,a;k=12 ..4a

StepV: Set): = max[detM (&'1K)].

Specifically, forH = 3, we require amN-point design such that + r, +rz = N with design classC =ry : rp : r3,
following the steps that make up the algorithm.

i. Obtaina; = <’?|11) sub-designs frongs(Ny), az = (T:) sub-designs frongy(Ny) andaz = <’?‘:> sub-designs
from gz(N3).

ii. List the a; sub-designs a& 1 = {a11}, £10= {a12}, ..., {1a,= {814, }, @2 sub-designs a& 1={az1}, &20= {az2}, ...,
&2a,= {@0a, } andag sub-designs ads; = {as1}, €32={as2}, ... , €3a,= {@3a; }-

iii. Form sets of composite designs fram, a, andaz sub-designs as:

é11 é11 é11

Setl: EMV=| & |, &M= [ &, |,...,608) = [ &
é31 é32 &3a,

é11 é11 é11

12D = [ &5 | 622 = | & |,...,E0) = | &)

é31 &30 &3a,

é11 é11
) 5(1332) = EZaz PEXX) E (12333) — EZaz
é3o &3a,
12 12
R = | & |, EC) = | &y
é32 &3a,
12 12
’ E (2332) = EZaz IR E (2a3a3 EZaz
. é32 &3a,
. Elal Elal Elal
Stag: @MW & | @D | & |, . @l = | &,
é31 €32 €33,

&@21) 92126121 (E@22) %21 E(al?ﬂa) = i‘lzazl
31 32 &30,

. 14 31 &
E(alag,l EZZ , E (a1a32) — 52:: yeeny E (293533) — EZZ:
531 32 &3ag
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Table 1a Combinatorics at the initial stage of constructing D-optimal design
Step ¢ Sub- g g g3 Sub-step u best Step t best
step u determinant determinant
value value
0 1 'rl T‘: 'ra |:i-:l Ij-':I
1 1 T'l-]. Tz_l Lk dIl d
: T'l_]. T": -1 Tﬂ dl:
2 1 -2 Tz_: Lk d;l d
: T‘l _: T": -: Tﬂ 'T:
3 1 n -3 T‘:—S Lk dﬂ_l d:
: T‘l _3 T": -3 Tﬂ d!+:

The steps outlined in Table 1a will yield an optimal desigass|C={r} : 15 : r3}, that is conditioned on holding
fixed. Let the associated determinant value of informati@trix for the best design in the design classdheWith the
design clas€={r : r, : r3}, we proceed to obtain the optimal number of design pointsrtdkomgs by following the
steps of Table 1b.

Table 1b Combinatorics at the later stage of constructing D-optimal design
Step Sub- oy g g3 Sub-step u best Step ¢ best
t step u determinant determinant
value value
0 1 L "2 3 ds ds
1 n+1 Ty -1 ddyyy dd,
2 'rj_' ?’:'+ 1 Ty - 1 dd;ﬂ
1 -1 L' ry+1 ddfyy
2 'rj_' ?':' -1 T+ 1 dd:ﬂ
2 1 nt+2 5 r3-2 ddzyy dd;
2 ntl | m+ 1| my-2 ddz,,
1 n+1 ?':'+1 Ty -2 ddzgy
2 T n+2| -2 ddzs,

Forstept =0,1,2,..,n,n+1,n+2,..,9,q+ 1in Table lady < d; < dz <...<dn > dinyq). This similarly applies
for the steps in Table 1h.

d = max{(detM (EJ'-”) }; M (EJ'-”) e S Pforallt.
whereSP”*? is the space of non-singularx p information matrices at thé" step. For clarity, it is assumed from Table
la that the initial design class at step @is{r1,r2,r3} and is such thaty is the determinant value of the best design in
the design class, where
r, is the initial number of support points taken from grayp
ro is the initial number of support points taken from grap
r3 is the initial number of support points taken from grap

It is further assumed thag is held fixed while making increments on thés of the other groups. By incremental
changes on the values, we aim to arrive at the optimal number of support fsaiaken from theH — 1 = 2 groups
namely,r} andr}, while holdingrs value fixed. Heret) shall be referred to as the conditional optimal number opsuis
points fromg; andr,/ shall be referred to as the conditional optimal number opsujpoints fromg,. Holdingrz value
fixed, we proceed to obtain the optimal number of supporttsdirom a group, sayy;. This requires effecting an
increment orry value by 1. At each sub-step of step 1, we compute the detanniralue of the information matrix
associated with the best design in the design class. Theleesminant value in step 1d5. Supposel; < do, then we
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have obtained the optimal valud, holdingrs value fixed. Now, we seek to obtaif holdingrs andr; fixed. This will
require carrying out a similar process by effecting an inwat onr, value. The process continues similarly far Note
however, that if at step H; > dgy, we proceed to effect an incrementiarby 2. Assuming thatl; is associated with the
design clas€ = [r1 — 1,r2+ 1,r3], increments in the decreasing direction is required. Heweedo not need to explore
all sub-steps of step 2. Incrementingoy 2 is equivalent to incrementing — 1 by 1.

As earlier observed, we shall compute the determinant \@ltlee best designs in each of the design classes. At step
2, the best determinant valueds. This value will be compared witth to check for convergence. df, > d; , we effect
an increment om; by 3. If otherwise, then we have obtained the optimal vajuboldingr; value fixed. Continuing the
process will yield the design cla€s= [r},r5,r3]. The remaining task is that of attempting to effect increta@nrs so as
to obtain the optimal number of support pointg,taken from grous . This will be achieved by defining combination of
support points as in Table 1b. Again at each step of the taldeshall obtain the determinant value that is associatdd wit
the information matrix of the best design. We note howevet effecting increments ony value will obviously affect
the values of andr’. The design class that results in the global best deterrirsdne is defined b* = [r},r5,r3]
wherer;" is the optimal number of support points taken fromifAgroup. TheD-optimal exact design is contained in the
immediate past tuple and is associated wliththe best determinant value of information matrix.

3 lllustrations

We apply the algorithm on the problem of constructMgpoint D-Optimal exact designs for the bivariate polynomial
models,

i Y(X1,X2) = BiX1 + BoXo 4 BroXiXe + € (5)
il. y(xl, Xz) = B +0+ B]_Xj_ + B2X2 + B12X1X2 + € (6)
ii. Y(X1,%2) = B+ 0+ Brxa + BoXa + BroxaXe + B1Xs + BoXs + € (7

defined on the geomtric region in Figure 1.

=103 g

=Nz, i i, O HER T
il M ek »

[ 10 S |

Figure 1: Spherical Geomeiric Region with Axial Distance, e=1.414

We demonstrate constructing a 6-poibHoptimal exact design for the six-parameter bivariate pofyial model of
equation (7).

The needed computations are tabulated in Table 2. Columrhk ieequired steps for constructing the 6-poibt
optimal exact design, column 2 is the requinedub-steps at each design class, column 3 is the desirechdezi
column 4 is the design class components whiglie the number of support points taken from graypr, is the number
of support points taken from grougp andrs is the number of support points taken from grayp Column 5 gives the
best determinant value of information matrix for the N-gdinoptimal exact design within the design class. Column 6

(@© 2016 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro5, No. 3, 399-410 (2016)www.naturalspublishing.com/Journals.asp

N SS ¥

405

gives the best determinant value of information matrix far tequiredN-point D-optimal exact design. In listing of the
optimal design points, the notationg213,4,5,6,7,8,9 shall represent the design pointsX}, (—1,1), (1, —1), (-1,-1),
(1.414.0), (—1.414,0), (0,1.414), (0—1.414) and (00), respectively. The results of the search epoint D-optimal

exact designs for the three models considered are summaniZable 3 for the no-intercept first order model, Table 4 for

the full bivariate first order model and Table 5 for the fulldiiate quadratic model.

Table 2 Combinatorics for constructing 6-point D-optimal exact design
Step t Sub- Design Design class Det M(EY Det M(£7)
stepu | size N component
L5} L Lk
1 1 6 4 1 1 2.193461929x10~2
2 1 4 ] 2 Singular design
2 4 2 0 8.002099747 x10°
3 1 3 2 1 3.19474332x102 | 3.19474332x102
2 3 1 2 Singular design
4 1 2 3 1 3193613001 =102
2 2 2 2 Singular design
5 1 5 ] 1 Singular design
2 5 1 ] Singular design
Table 3 Summary statistics for the no-intercept first order model
Design | Optimal design Design points Best Best trace Best Best
size N | class component determinant of minimum condition
value of varaince- eigen value number
information Best covariance of of the
matrix of the mavimum matrix information design
design variance of matrix of
ry T3 Prediction the design
3 3 0 0 123 0.5926 3.0000 45000 0.3337 4.9598
4 4 0 0 1.0000 3.0000 3.0000 1.0000 1.0000
5 5 0 0 0.8%60 35714 3.2142 0.8000 1.5984
& 6 0 0 0.8888 4.0000 3.2500 0.6667 2.0000
7 7 0 0 0.9329 4.2000 3.1500 0.7149 1.7987
8 8 0 0 1.0000 3.0000 3.0000 1.0000 1.0000
9 9 0 0 0.9657 3.2727 3.0681 0.8889 1.3871
10 10 0 0 0.5600 3.5000 3.0832 0.8000 1.4995
11 11 0 0 0.9737 3.6666 3.0555 0.6521 1.3359
12 12 0 0 1.0000 3.0000 3.0000 1.0000 1.0000
Table 4 Summary statistics for the full bivariate first order model
Design | Optimal design Design points Best Best Best trace Best Best
size N | class component determinant | maximum | of varaince- minimum condition
value of the | variance of | covariance eigen value | number of
design Prediction matrix of the design
information
ry T3 matrix of
3 the design
4 4 ] 0 1.0000 4 4 10000 1.00
3 3 1] 0 0.8192 5.00 43748 0.8000 230
6 ] ] 0 0.7901 6.00 43 0.6667 200
7 7 ] 0 0.8330 1.00 4.3748 05724 230
3 8 ] 0 1.0000 4 4 10000 1.00
9 9 1] 0 0.9364 430 4.1248 0.0787 1.75
10 10 1] 0 0.9216 5.00 4.1664 0.8000 1.30
11 11 ] 0 0.5442 5.50 41248 0.7282 1.75
12 12 0 0 1.0000 4 4 1.0000 1.00
(© 2016 NSP
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Table 5 Summary statistics for the full bivariate quadratic model
Design | Optimal design Design points Best determinant Best trace Best Best
size N | class component value for N-point Best of varaince minimum condition
design maximum | covariance eigen value number
LET variance matrix of
of information
T3 Prediction matrix
6 3 2 1 123689 3.1547433200=10 6 17.7268 0.1084 4350697250
7 3 3 1 1245689 3.837420226 =102 7 18.6558 0.0830 4795048907
8 4 3 1 123456759 4.6828783707x102 3 19.0017 0.0817 4798393049
9 4 4 1 12343567389 6.138433842 x102 9 19,6857 0.0730 4590202226
10 4 4 2 123435678599 6.345637882 x102 6.2508 14.3767 0.12%6 2398574004
11 3 4 2 112343567899 | 6004443063 x102 6.8360 15.1268 0.1180 31.59612467
12 5 5 2 112345667899 | 5782736734 x102 1.3626 16.5880 0.1067 30.88088840

4 Graphical Evaluations

In this section, we closely assess the prediction capigsiliof the designs under the three models. The variance
dispersion graph (VDG), introduced b2(q], was the graphical tool used to display and review the jgtamt capabilities

of the various designs under the different models. The needrbphical considerations is based on the fact that single
value criteria, like theA— andD-criteria, do not completely describe the performance oésigh throughout the region
under consideration. Again, condensing the propertiesdefsign to single value may lead to loss of much information
as regards the design’s potential performance (see, fongbea21], [22],and [23)).

The variance dispersion graph displays the predictionamag of the design at every point radius in the design
region. The points of strength and weaknesses of the dasitpe idesign region are easily assessed from the VDGs. The
VDG procedure in 2Q] for first-order models was used for models (i) and (ii). Favdal (iii), the VDG procedure for
the second-order central composite designs propose@tyias used. The graphs for the designs in the models are
displayed in Figures 2, 3 and 4.

80 T T T
70 - [
----- designd
80 ==k== designd
— oGNS
50 e gesignd
Y —— design7
E | | desios
E - e jgnd
0 == designi0
designtt
10

radius
Figure 2: VDG's for the Designs Under the no-Intercept Bivariate First-Order Model
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Figure 3: VDG's for the Full Bivariate First-Order Model
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Figure 4: VDG's for the Full Bivariate Second-Order Model

According to the graphs in Figure 2, design4, with desigm{®i(1 1), (—1,1), (1, —1) and (1,—1), is the best since
the design has the smallest prediction variance througheuéntire design region. This is followed by design 3, with
design points, (1), (—1,1) and (1—1). The prediction variance of the designs deterioratebasl¢sign size increases
such that the design with the worst prediction capabilithedesign with the largest size of 12 runs. Also, the praatict
variances of all the designs get worse close to the extreftee alesign region. The graphs show that only the design
(design 4) with full factorial component, (1), (—1,1), (1, —1) and 1, —1), has the best prediction variance spread
throughout the design region. The other designs, like deligee with incomplete factorial component, or the other
designs where some or all the factorial points are replicptformed poorly because of the spread of high prediction
variances throughout the entire design region except atgolose to the centre of the region. These attributes ace al
obtainable with the designs associated with the full batarfirst-order model as could be seen in Figure 3. The désigns
prediction capabilities deteriorate as the design sizeease and parts or full factorial points are replicated.

For the designs associated with the full bivariate secad@romodel, the behaviour are different from those of the
first-order models discussed above. Designs 6, 8 and 9 gisgteemely high prediction variances and were therefore
removed and not plotted in Figure 4. The graphs displayedgnrE 4 show that designs 10 and 12 display the best
prediction variances and compete equally throughout thieeasiesign region except at radiusir < 0.5, where design

12 is slightly better than design 10 with smaller predictianiance. Design 9 displayed the worst prediction capsitaiti
radius, 0< r < 1.0, but competes favourably with designs 10 and 12 towardsextremes of the design region.

5 Discussion of results

In addressing the question on whetleoptimal exact designs could also be optimal with respectaioD-optimality
criteria, the following observations are made for the mea@eld design region under study:
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i. D-optimally-constructed designs need notfeE- or G-optimum.

ii. For the first-order model with intercept term, the globaktD-optimal exact designs were eaéh;, G— andE-
optimum. This is sequel to the fact that the design that mepechthe determinant of information matrix also minimized
the maximun variance of prediction over the design regiowels as minimizing the trace of the variance-covariance
matrix. Furthermore, the designs also maximized the minigigen value of information matrix over the exact designs
considered. The condition number of 1 indicates that thggdesare perfectly orthogonal. The equivalencéef and
G-optimality criteria was noted for the global bé&toptimal exact designs since the minimum of the maximunmavene
of prediction equals the number of model parameters.

ii. For the first-order model without intercept term, thesims that maximized the determinant of information
matrix also minimized the maximun variance of predictioeiothe design region as well as minimizing the trace of the
variance-covariance matrix. Furthermore, the designs mlaximized the minimun eigen value of information matrix
over the exact designs considered. Hence, the globabegtimal exact designs were eaghpptimum,G-optimun as
well asE-optimum. The condition number of 1 indicates that the desigre perfectly orthogonal. The equivalence of
D— and G-optimality criteria was established for the global bBsbptimal exact designs since the minimum of the
maximum variance of prediction equals the number of modelipaters.

iv. For the first-order model without intercept term, theseai strong aggreement betweBn- and A-optimality
criteria. As the determinant value of information matrixcrieases for changing design size, the trace of the
variance-covariance matrix decreases simultaneoushyeker, the strong aggreement is not observedXferand the
G-optimality criteria nor forD— and theE-optimality criteria. In comparing thé-optimality criterion with the
condition number, as the determinant value of informaticatrin increases for changing design size the condition
number simulteneously decreases.

v. The observations for the first-order model without inégicterm are generally true for the first order model with
intercept term.

vi. For the design size considered using the bivariate qudmodel, the global bedd-optimal design was not
necessarilyG-optimum. However, the design was- and E-optimum. On the contrary foN = 6, the besD-optimal
exact design was alsB-optimal and the equivalence &-— and G-criteria was noted since the maximum variance of
prediction equals the number of model parameters. For ¢hgmtgsign size, the relationships amokg, D— and G-
criteria as well as the condition number do not generallyhappfact, for the bivariate quadratic model, the conditio
number need not be used as an assessment criterion as timalogdisigns are far from being orthogonal. There exists
a G-optimum design that is far from beirig—, A— andE-optimum. The associated condition number shows much less
orthogonality.

6 Conclusion

From the foregoing)-optimally-constructed exact designs for the bivariat-farder polynomial models with or without
the intercept term are optimal with respect to the, E— andG-optimality criteria. These designs are also orthogonal.
On the other hand, for the full bivariate second-order matielD-optimally-constructed exact designs are not uniformly
A—, E— andG-optimal; neither are they orthogonal. In genebBalpptimally-constructed exact designs for bivariate first-
and second-order polynomial models need noAbe E— andG-optimal.
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