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Abstract: The behaviour ofD-optimal exact designs, constructed using a combinatorialalgorithm, is examined under the variations
of A-, E- andG-optimality criteria. In particular, the question of whether designs that are optimal with respect to one criterion arealso
optimal with respect to other criteria is addressed. The Condition Numbers (CN) of the designs as well as the equivalencerelations of
the criteria are noted. TheD-optimal designs under consideration are for low-order bivariate polynomial models. By the rules of the
algorithm, not more than 25 percent search on the total available designs is required within a design class since a lot of inferior designs,
with respect to the search for optimal design are eliminated. The models, which could be with or without intercept, are defined on design
regions which are supported by the points of the circumscribed central composite design. The points are classified into three groups
with respect to their distances from the centre of the designregion. Results show thatD-optimally-constructed designs need not beA-,
E- or G-optimum. For the first order models considered, the global bestD-optimal exact designs were each,A-, E- andG-optimum. For
the bivariate quadratic model considered, the global bestD-optimal exact design was not necessarilyG-optimum. However, the design
was bothA- andE-optimum. The prediction capabilities of these designs were graphically evaluated.
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1 Introduction

The use ofD-optimality has gained much popularity as a vast number of literature on optimal designs centres around
the D-optimality criterion. This is perhaps, due to the assertion that designs which are optimal with respect to theD-
optimality criterion are invariably at least good in many other respects such as having low variances for the parameters,
low correlations among parameters, low maximum variance ofprediction over the design region, see [1]. As observed in
[2], the importance of using a design that is deemed adequate for several optimality criteria cannot be overemphasized
since optimality with respect to a particular optimality criterion usually represents an approximation to some notion
of goodness. It is therefore important to examine the designs constructed under an optimality criterion with respect to
other optimality criteria. [2] considered numerically, the efficiencies of different types of optimal designs under various
model assumptions. In the work, the robust properties ofA, D, E andG-optimal designs were compared for continuous
designs only. Results showed that a design that is deemed adequate under one optimality criterion can perform poorly in
terms of another optimality criterion. It was further revealed that a number of properties common toA, D andG-optimal
designs were not possessed byE-optimal designs. One of such properties was observed for polynomial regression of
degreek when the hypothesized model is of degreej. It was noted that forA-, D- andG-optimal designs, the associated
efficiency functions are non-increasing functions ofk whereas for theE-optimal designs, the efficiency function remained
remarkably stable for 1≤ j ≤ k ≤ 8 and henceE-optimal designs do not possess the monotonic property. This result
places caution on the use ofE-optimal designs as slightly mis-specified model can resultin severe loss in efficiency
of the design. [3] compared the efficiencies ofA-, D- andG-optimality for second-order split-plot Central Composite
Design under various degrees of correlation. For the second-order reduced split-plot Central Composite Design models

∗ Corresponding author e-mail:eugene.ukaegbu@unn.edu.ng

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jsap/050304


400 M. P. Iwundu et al.: D-optimally-constructed exact designs...

considered,D-, A- andG-optimality criteria were not robust across reduced models. [4] carried out a comparative study
of some varieties of the Central Composite Design using theA-, D- andG-optimality criteria. The varieties of the Central
Composite Design considered include Spherical Central Composite Design (SCCD), Rotatable Central Composite Design
(RCCD), Orthogonal Central Composite Design (OCCD), SlopeRotatable Central Composite Design (Slope-R) and Face
center Cube (FCC).

In studying the behaviour ofD-optimally constructed exact designs under the variation of non-D-optimality criteria,
comparisons made are under the assumption that the true model is a polynomial of degreem. Although the form of the
true underlying relationship between the response variable and the independent variables is usually unknown, [5] has it
that the relationship can be approximated by a low-order polynomial such as the first- and second-order response surface
models in equations (1) and (2), respectively;
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whereyi j ’s are the observations due to the univariate response variable; β ’s are the parameter coefficients;xi’s andx j ’s
are the independent variables;εi j ’s are the error terms associated with theyi j ’s which are normally and independently
distributed with zero mean and constant variance.

In this work, the design space is taken to be the spherical region in two variables, supported by the points(±1,±1),
(±1.414,0), (0,±1.414) and centred at the point(0,0). Unlike some works where interest is on continuous designs,only
exact designs are considered here. This follows from the remarks of [6] that in practice, all designs are exact. According
to[7], a design,ξN , is anN-point exact design ifξN is a probability measure on the design region,X̃ , which attaches a
mass 1

N to each point of the design andNξN is a non-negative integer forx ∈ X̃ . We shall denote the space ofN-point
exact designs oñX by Ξ N

X̃
. The information matrix,M(ξN), of an exact design,ξN , is given byM(ξN) =

1
N X ′X , whereX

is anN × p design matrix ofξN , whose ith row isf (xi). The design,ξ ∗
N , is aD-optimal exact design if the determinant of

the information matrix,M(ξ ∗
N), is maximized over allM(ξN) for ξN ∈ Ξ N

X̃
. TheD-optimality criterion introduced by [8]

is basically a parameter estimation criterion and puts emphasis on the quality of the parameter estimates.
Most D-optimal designs are generated by search algorithms such asthe DETMAX algorithm of [1], the K-L

algorithm of [6], etc. [9] introduced the combinatorial algorithm which requires grouping design points in the design
region according to their distances from the centre of the design region intog1, g2, ... ,gH groups. This algorithm serves
extensively well in locatingD-Optimal designs and is applicable under varying experimental conditions as seen in [10].
[11] suggested rules for obtaining a starting design that is as close as possible to the optimal design as measured by the
determinant value of the information matrix. [12] utilized the principles embodied in the Combinatorial Algorithm while
studying the effects of imposingD-Optimality criterion on the design regions of the Central Composite Designs. Results
showed that theD-optimality criterion performed better on the region supported by design points of the Circumscribed
Central Composite Design.

Attempts have been made to reduce the determinantal evaluations of the basic combinatorial algorithm to a
manageable number. One of such attempts is due to [13] whose efficient algorithm eliminates a large number of inferior
designs and allows not more than a 25 percent search in locating the best design within a design class. The essence of
this work therefore is to examine the behaviour ofD-optimally-constructed exact designs, under the variations ofA-, E-
and G-optimality criteria. In particular, we examine whether these exact designs are optimal with respect to the
optimality criteria under consideration. In Design of Experiments, theD-optimality criterion has been most frequently
encountered (see also, [14]). As a determinant-based criterion, theD-optimality criterion has the objective of maximizing
the determinant of the information matrix of the design. By maximizing the determinant of the information matrix, the
determinant of the variance-covariance matrix of the parameter estimates is also minimized. The implication of this is
that the variances of the parameter estimates as well as the covariances among the parameters are minimized.

In assessing the goodness of an already constructedD-optimal exact design, we shall employA-, E- andG-optimality
criteria as well as the condition number of the design. The criterion of A-optimality, introduced by [15], maximizes the
trace of the information matrix of the design and hence minimizes the trace of the variance-covariance matrix,M−1(ξ )
thereby minimizing the variances of the parameter estimates. Unlike theD-optimality criterion, theA-optimality criterion
does not take into account the covariances among parameters. The G-optimality criterion introduced by [16] seeks to
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minimize the maximum variance of any predicted response value over the experimental space (design region). The
variance of the predicted response atx is given by

Var(ŷ(x)) = σ2 f ′(x)M−1(ξ ) f (x). (3)

Without loss of generality, we assume thatσ2 is a constant, say 1. The criterion ofE-optimality introduced by [17] seeks
to maximize the minimum eigenvalue of the information matrix and hence minimizes the maximum eigenvalue of the
variance-covariance matrix. The criterion ofE-optimality is defined symbolically by

maxλmin(M
−1(ξ )) = minλmax(M

−1(ξ )), (4)

whereλmin is the minimum eigenvalue ofM(ξ ) andλmax is the maximum eigenvalue ofM−1(ξ ): see, for example, [18]
and [6] for further details. The Condition Number (CN) is an evaluation criterion used to rate an already created
D-optimal design. It evaluates the sphericity and the symmetricism of theD-optimal design. Let
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be a p×p symmetric matrix such thatmi j = m ji. The condition number of the matrix,M is defined by
Cond(M) = ‖M‖‖M−1‖, where the matrix norm,‖M‖, can easily be computed as the maximum absolute column sum
(or row sum) given by‖m‖= max j ∑p

i=1 |mi j|; ‖m‖ > 0 if m 6= 0. The matrix norm,‖M−1‖, is similarly computed. For
any matrixM, Cond(M) ≥ 1. According to [19], a design with a Condition Number of 1 would be orthogonal, while an
increasing Condition Number indicates a less orthogonal design.

We shall employ the combinatorial algorithm outlined in Section 2 in the construction of theD-optimal designs.
The Condition Numbers of the designs as well as the possible equivalence relations of theA-, E- andG-criteria shall be
noted. In this study, theD-optimal designs constructed are for low-order bivariate polynomial models which could be with
or without intercept. The models shall be defined on design region that is supported by the points of the Circumscribed
Central Composite Design. The design points of the design region shall be classified into three groups with respect to their
distances from the centre of the design region. Although this work considers low-order polynomials and design points of
the circumscribed central composite design, the working ofthe algorithm is not restricted to low-order polynomials nor
to design points of the Circumscribed Central Composite Design.

2 Methodology

For the algorithm, we assume that the support points that define the design region have been arranged intoH groups,
namely,g1, g2, ...,gH according to their distances,di , from the centre of the region,̃X , and are such thatd1 > d2 > ...>
dH . The group,g1 holdsN1 support points,g2 holdsN2 support points, etc andN1 + N2 + ...+ NH = N, whereN is the
total number of distinct support points in the design region. The design class, say,C = {r1 : r2 : ... : rH}, requires
selectingr1 support points fromg1, r2 support points fromg2, ... , rH support points fromgH . There areai ways of
selectingri support points fromgi and hence we obtainai sub-designs.

The following steps make up the algorithm for constructing theD-optimal exact designs:

Step I: Obtainai=

(

Ni
ri

)

sub-designs fromgiNi. The notation,giNi, implies that groupgi holdsNi supports points.

Step II: List theai sub-designs,a1,a2, ...,aai

StepIII: Form sets of composite designs from theai sub-designs such thata1 < a2 < ...< aai. Where this restriction does
not hold, the groups within the class may be repositioned to achieve the restriction.
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StepIV: Choose any set,i, and computedetM(ξ i jk), the determinant of information matrix associated withξ i jk ;
i = 1,2, ...,ai ; j = 1,2, ...,ai;k = 1,2, ...,ai .

StepV: Setd∗
c = max[detM(ξ i jk)].

Specifically, forH = 3, we require anN-point design such thatr1+ r2+ r3 = N with design class,C = r1 : r2 : r3,
following the steps that make up the algorithm.

i. Obtaina1 =

(

N1
r1

)

sub-designs fromg1(N1), a2 =

(

N2
r2

)

sub-designs fromg2(N2) anda3 =

(

N3
r3

)

sub-designs

from g3(N3).

ii. List the a1 sub-designs asξ11 = {a11}, ξ12= {a12}, ... ,ξ1a1= {a1a1}, a2 sub-designs asξ21={a21}, ξ22= {a22}, ... ,
ξ2a2= {a2a2} anda3 sub-designs asξ31 = {a31}, ξ32={a32}, ... ,ξ3a3=

{

a3a3

}

.

iii. Form sets of composite designs froma1, a2 anda3 sub-designs as:
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The steps outlined in Table 1a will yield an optimal design class,C={r′1 : r′2 : r3}, that is conditioned on holdingr3
fixed. Let the associated determinant value of information matrix for the best design in the design class bedc. With the
design classC={r′1 : r′2 : r3}, we proceed to obtain the optimal number of design points taken fromg3 by following the
steps of Table 1b.

For stept = 0,1,2, ..,n,n+1,n+2, ..,q,q+1 in Table 1a,d0 < d1 < d2 < . . . < dn > d(n+1). This similarly applies
for the steps in Table 1b.

d∗
t = max

{

(detM
(

ξ (i, j)
t

)}

; M
(

ξ (i, j)
t

)

∈ Sp×p
t for all t.

whereSp×p
t is the space of non-singularp× p information matrices at thetth step. For clarity, it is assumed from Table

1a that the initial design class at step 0 isC={r1,r2,r3} and is such thatd0 is the determinant value of the best design in
the design class, where
r1 is the initial number of support points taken from groupg1
r2 is the initial number of support points taken from groupg2
r3 is the initial number of support points taken from groupg3.

It is further assumed thatr3 is held fixed while making increments on ther′i ’s of the other groups. By incremental
changes on theri values, we aim to arrive at the optimal number of support points taken from theH − 1 = 2 groups
namely,r′1 andr′2 while holdingr3 value fixed. Here,r′1 shall be referred to as the conditional optimal number of supports
points fromg1 andr2′ shall be referred to as the conditional optimal number of support points fromg2. Holdingr3 value
fixed, we proceed to obtain the optimal number of support points from a group, say,g1. This requires effecting an
increment onr1 value by 1. At each sub-step of step 1, we compute the determinant value of the information matrix
associated with the best design in the design class. The bestdeterminant value in step 1 isd1. Supposed1 < d0, then we
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have obtained the optimal value,r′1, holdingr3 value fixed. Now, we seek to obtainr′2 holdingr3 andr′1 fixed. This will
require carrying out a similar process by effecting an increment onr2 value. The process continues similarly forr3. Note
however, that if at step 1,d1 > d0, we proceed to effect an increment onr1 by 2. Assuming thatd1 is associated with the
design classC = [r1−1,r2+1,r3], increments in the decreasing direction is required. Hence, we do not need to explore
all sub-steps of step 2. Incrementingr1 by 2 is equivalent to incrementingr1−1 by 1.

As earlier observed, we shall compute the determinant valueof the best designs in each of the design classes. At step
2, the best determinant value isd2. This value will be compared withd1 to check for convergence. Ifd2 > d1 , we effect
an increment onr1 by 3. If otherwise, then we have obtained the optimal valuer1′ holdingr3 value fixed. Continuing the
process will yield the design classC = [r′1,r

′
2,r3]. The remaining task is that of attempting to effect increments onr3 so as

to obtain the optimal number of support points,r∗3, taken from groupg3 . This will be achieved by defining combination of
support points as in Table 1b. Again at each step of the table,we shall obtain the determinant value that is associated with
the information matrix of the best design. We note however, that effecting increments onr3 value will obviously affect
the values ofr′1 andr′2. The design class that results in the global best determinant value is defined byC∗ = [r∗1,r

∗
2,r

∗
3]

wherer∗i is the optimal number of support points taken from theith group. TheD-optimal exact design is contained in the
immediate past tuple and is associated withd∗, the best determinant value of information matrix.

3 Illustrations

We apply the algorithm on the problem of constructingN-point D-Optimal exact designs for the bivariate polynomial
models,

i. y(x1,x2) = β1x1+β2x2+β12x1x2+ ε (5)

ii. y(x1,x2) = β +0+β1x1+β2x2+β12x1x2+ ε (6)

iii. y(x1,x2) = β +0+β1x1+β2x2+β12x1x2+β11x
2
1+β22x2

2+ ε (7)

defined on the geomtric region in Figure 1.

We demonstrate constructing a 6-pointD-optimal exact design for the six-parameter bivariate polynomial model of
equation (7).

The needed computations are tabulated in Table 2. Column 1 isthe requiredt steps for constructing the 6-pointD-
optimal exact design, column 2 is the requiredu sub-steps at each design class, column 3 is the desired design size,
column 4 is the design class components wherer1 is the number of support points taken from groupg1, r2 is the number
of support points taken from groupg2 andr3 is the number of support points taken from groupg3. Column 5 gives the
best determinant value of information matrix for the N-point D-optimal exact design within the design class. Column 6
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gives the best determinant value of information matrix for the requiredN-point D-optimal exact design. In listing of the
optimal design points, the notations 1,2,3,4,5,6,7,8,9 shall represent the design points (1,1), (−1,1), (1,−1), (−1,−1),
(1.414,0), (−1.414,0), (0,1.414), (0,−1.414) and (0,0), respectively. The results of the search forN-point D-optimal
exact designs for the three models considered are summarized in Table 3 for the no-intercept first order model, Table 4 for
the full bivariate first order model and Table 5 for the full bivariate quadratic model.
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4 Graphical Evaluations

In this section, we closely assess the prediction capabilities of the designs under the three models. The variance
dispersion graph (VDG), introduced by [20], was the graphical tool used to display and review the prediction capabilities
of the various designs under the different models. The need for graphical considerations is based on the fact that single
value criteria, like theA− andD-criteria, do not completely describe the performance of a design throughout the region
under consideration. Again, condensing the properties of adesign to single value may lead to loss of much information
as regards the design’s potential performance (see, for example, [21], [22],and [23]).

The variance dispersion graph displays the prediction variance of the design at every point radius in the design
region. The points of strength and weaknesses of the design in the design region are easily assessed from the VDGs. The
VDG procedure in [20] for first-order models was used for models (i) and (ii). For model (iii), the VDG procedure for
the second-order central composite designs proposed by [21] was used. The graphs for the designs in the models are
displayed in Figures 2, 3 and 4.
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According to the graphs in Figure 2, design4, with design points, (1,1), (−1,1), (1,−1) and (−1,−1), is the best since
the design has the smallest prediction variance throughoutthe entire design region. This is followed by design 3, with
design points, (1,1), (−1,1) and (1,−1). The prediction variance of the designs deteriorates as the design size increases
such that the design with the worst prediction capability isthe design with the largest size of 12 runs. Also, the prediction
variances of all the designs get worse close to the extremes of the design region. The graphs show that only the design
(design 4) with full factorial component, (1,1), (−1,1), (1,−1) and (−1,−1), has the best prediction variance spread
throughout the design region. The other designs, like design three with incomplete factorial component, or the other
designs where some or all the factorial points are replicated performed poorly because of the spread of high prediction
variances throughout the entire design region except at points close to the centre of the region. These attributes are also
obtainable with the designs associated with the full bivariate first-order model as could be seen in Figure 3. The designs’
prediction capabilities deteriorate as the design sizes increase and parts or full factorial points are replicated.
For the designs associated with the full bivariate second-order model, the behaviour are different from those of the
first-order models discussed above. Designs 6, 8 and 9 display extremely high prediction variances and were therefore
removed and not plotted in Figure 4. The graphs displayed in Figure 4 show that designs 10 and 12 display the best
prediction variances and compete equally throughout the entire design region except at radius,0≤ r ≤ 0.5 , where design
12 is slightly better than design 10 with smaller predictionvariance. Design 9 displayed the worst prediction capability at
radius, 0≤ r ≤ 1.0, but competes favourably with designs 10 and 12 towards theextremes of the design region.

5 Discussion of results

In addressing the question on whetherD-optimal exact designs could also be optimal with respect tonon-D-optimality
criteria, the following observations are made for the models and design region under study:
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i. D-optimally-constructed designs need not beA-, E- or G-optimum.

ii. For the first-order model with intercept term, the globalbestD-optimal exact designs were each,A−, G− andE-
optimum. This is sequel to the fact that the design that maximized the determinant of information matrix also minimized
the maximun variance of prediction over the design region aswell as minimizing the trace of the variance-covariance
matrix. Furthermore, the designs also maximized the minimun eigen value of information matrix over the exact designs
considered. The condition number of 1 indicates that the designs are perfectly orthogonal. The equivalence ofD− and
G-optimality criteria was noted for the global bestD-optimal exact designs since the minimum of the maximum variance
of prediction equals the number of model parameters.

iii. For the first-order model without intercept term, the designs that maximized the determinant of information
matrix also minimized the maximun variance of prediction over the design region as well as minimizing the trace of the
variance-covariance matrix. Furthermore, the designs also maximized the minimun eigen value of information matrix
over the exact designs considered. Hence, the global bestD-optimal exact designs were each,A-optimum,G-optimun as
well asE-optimum. The condition number of 1 indicates that the designs are perfectly orthogonal. The equivalence of
D− and G-optimality criteria was established for the global bestD-optimal exact designs since the minimum of the
maximum variance of prediction equals the number of model parameters.

iv. For the first-order model without intercept term, there is a strong aggreement betweenD− and A-optimality
criteria. As the determinant value of information matrix increases for changing design size, the trace of the
variance-covariance matrix decreases simultaneously. However, the strong aggreement is not observed forD− and the
G-optimality criteria nor forD− and theE-optimality criteria. In comparing theD-optimality criterion with the
condition number, as the determinant value of information matrix increases for changing design size the condition
number simulteneously decreases.

v. The observations for the first-order model without intercept term are generally true for the first order model with
intercept term.

vi. For the design size considered using the bivariate quadratic model, the global bestD-optimal design was not
necessarilyG-optimum. However, the design wasA− andE-optimum. On the contrary forN = 6, the bestD-optimal
exact design was alsoG-optimal and the equivalence ofD− andG-criteria was noted since the maximum variance of
prediction equals the number of model parameters. For changing design size, the relationships amongA−, D− andG-
criteria as well as the condition number do not generally apply. Infact, for the bivariate quadratic model, the condition
number need not be used as an assessment criterion as the optimal designs are far from being orthogonal. There exists
a G-optimum design that is far from beingD−, A− andE-optimum. The associated condition number shows much less
orthogonality.

6 Conclusion

From the foregoing,D-optimally-constructed exact designs for the bivariate first-order polynomial models with or without
the intercept term are optimal with respect to theA−, E− andG-optimality criteria. These designs are also orthogonal.
On the other hand, for the full bivariate second-order model, theD-optimally-constructed exact designs are not uniformly
A−, E− andG-optimal; neither are they orthogonal. In general,D-optimally-constructed exact designs for bivariate first-
and second-order polynomial models need not beA−, E− andG-optimal.
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