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Abstract: In 1982, the theory of rough sets proposed by Pawlak and i8,201ay concerned a rough probability by using the notion
of Topology. In this paper, we study the rough probabilityttie stochastic approximation spaces by using set-valugxbimg and
obtain results on rough expectation, and rough variance.
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1 Introduction and Preliminaries Also, using lower and upper inverse, the lower and
upper probability is defined as follows:
Definition 1.2 Let T : X — P*(X) be a set-valued

L mapping and A be an event in the stochastic
The theory of rough sets was first introduced by Panakapproximation spaces — (X,P). Then the lower and

[15]. Rough set theory, a new mathematical approach t i - .
deal with inexact, uncertain or vague knowledge, hagupper probability of Ais given by:

recently received wide attention on the research areas in _ + C BIAY -1

both of the real-life applications and the theory itself. BA) =P(TT(A) 5 PA) =PT(A),

Also, after the proposal by Pawlak, there have been manyespectively. Clearly, 8 P(A) < 1 and 0< P(A) < 1.
researches on the connection between rough sets and -

algebraic systemsl|2,3,4,5,6,7,9,10,11,12,13]. In [§] Definition 1.3 Let X be a non-empty set. L&t : X —
Jamal study stochastic approximation spaces fromP*(X) be a set-valued mapping. Then we Jakias
topological view that generalize the stochastic i) reflective property, if for everx € X we havex €
approximation space in the case of general relation. Thé (x),

coupleS= (X,P) is called the stochastic approximation i) transitive property, if for every € T(x) andze T(y)
space, where X is a non-empty set @ a probability  we havez € T (x).
measure.

Remark 1.4Let T has reflective and transitive properties,
Lower and upper inverse is defined as follows: then in topological spacgX, 7) we haveT ~1(A) = Aand
Definition 1.1 Let X be a non-empty set atC X. Let ~ T*(A) = A%, whereA°® denotes interior oA andA denotes
T : X — P*(X) be a set-valued mapping whelré(X) the closure ofA. These implies that DefinitioR? of our
denotes the set of all non-empty subsets of X. The lowepaper is same the Definition 2.2 of pap&4][ Hence this
inverse and upper inverse of A under T are defined as  paper is generalized version of pape4][

THA) = {xeX|[T(x) CA} ; T HA) = {xeX|T(x)NA#0}, Definition 1.5 Let A be a subset of topological space
(X,7), then we cal A is a exact set Iif

respectively. Also(T*(A), T~1(A)) is called T-rough set T+ (A) =T 1(A)=A

of X.
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2 Main Result Lemma 2.6 Let T : X —; P*(X) be a set-valued mapping
andA, B,C be three events in the stochastic approximation

Proposition 2.1 Let T : X — P*(X) be a set-valued spaceS= (X,P). then the following holds:

mapping andA,B be two events in the stochastic _

approximation spaceS = (X,P). Then the following  (1L)P(AJA) =P(AJA) =

holds: (2P(O|A) =P(O|A) = 0; _

(3)P(AIX) =P(A) andP(A|X) = P(A);

(4)P(A°B) < 1—P(A|B);

(
(
~
(2)E(X) F _ _
(3)P(AUB) < P(A) +P(B) —P(ANB) B AT < Ay CLI) ~ BANBIC)
(AP(AUB) > P(A) +P(B) — P(ANB) (7)P(AUBIC) < P(A|C) + P(B|C) — P(ANBIC);
B L AnE ()R(A) > 57 ; P(AB(B:), wherel !, B — X;
O <pian ) EANE) (9)P(A) < 37, P(ABI)P(B;), whereli_; B = X
(8)IF AC B, thenP(A) < P(B) andP(A) < P(B). (10)I0ff';'< r;ﬁésntransmve property and i is an exact subset

Proof. It is straightforward. _
P(AB) < P(A[B) < P(AB).

Definition 2.2 Let T : X — P*(X) be a set-valued

mapping and A be an event in the stochastic Example 2.7 Consider the same experiment as in
approximation spac8= (X,P). The rough probability of  Example2. Let X = {1,2,3,4,5,6}, B = {1,3,5} and
A, denoted byP*(A), is given by: A= {4,5 6} then

P (A) = (E(A)P(A))~ P({5})
Lemma 2.3LetT : X — P*(X) be a set-valued mapping
andA be a event in the stochastic approximation sggee  and

X,P). _
(X.P) pag) - PUBH

olul|oin
[$21 I\ ]

(L)If T has reflective property, thét(A) < P(A) < P(A); P({1,3,5)) 2
(2)If T has reflective and transmve properties, then
P(T*(A)) =P(A) andP(T"(A)) =P(A);  _ _ o ,
(3)If Ais an exact subset of, thenP(A) = P(A) = P(A). We define the lower and upper distribution functions
) ] of a random variable.
Proof. Itis straightforward. Definition 2.8 Let T : X —s P*(X) be a set-valued

mapping andJ be a random variable in the stochastic
Example 2.4 Let X = {1,2,3,456} and let approximation spac& = (X,P). The lower and upper
T : X — P*X) where for every n e X, distribution ofU is given by:
T(1) = {1,722 = {12},TQ) = {3},T(4) = _
{4}, T(5) =T(6) ={1,5,6}. F(uy=PU<u) ; F(u=PU <u),

respectively.

(1)LetA={1,3,5} thenT*(A) = {1,3}, P(A) = £ and P Y
T-1(A) ={1,2,3,5,6}, P(A) = 2 andP(A) = 2. Definition 2.9 Let T : X — P*(X) be a set-valued

mapping andJ be a random variable in the stochastic

Tabel 2.1:Lower and upper probabilities of a random  gpnroximation spacs = (X,P). The rough distribution

variable U function ofU, denoted byF*(u), is given by:
u 1[2[3[4[5]6 F*(u) = (E(u),E(u)).
PU=u| ¢ [0]g[g[0]O
PU=u[ s [alalal&[%

Definition 2.10 Consider the same experiment as in
Example2. The Lower and upper distribution function of

Definition 2.5 Let T : X — P*(X) be a set-valued U are

mapping andA,B be two events in the stochastic

approximation space S = (X,P). We define ?’ _1°°<<uu<<317
P(AB) = E2g2 for everyP( ) 0 andP(A|B) = ‘EQ? Fw=9% 32,24
for everyP( ) # g, 4<u< o
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And
—o < U<l

1<u<?2
2<u< 3,
3<u<4,
4<u<b,
5<u<6,
6<u<oo.

\.I—\OUIU'KJUIA\.O

=

o|Rolooico

ThereforeF*(2) = (%, 2).

We define the lower and upper expectations of a
random variabléJ in the stochastic approximation space
S=(X,P).

Definition 2.11 Let T : X — P*(X) be a set-valued
mapping andJ be a random variable in the stochastic
approximation spac& = (X,P). The lower and upper
expectation ol is given by:

n n
E(W=Y uPU=u) ; EU)=Y uPU =u),
k=1 k=1
respectively.

Definition 2.12 Let T : X — P*(X) be a set-valued
mapping andJ be a random variable in the stochastic
approximation spac& = (X,P). The rough expectation
of U is denoted bye*(U) and is given by:

E*(U)=(E(U),E(U)).

Example 2.13 Consider the same experiment as in
Example2. Then the lower and upper expectationdJof
are

1 1 1 4
E(U)_1-6+3-6+4-6_§,
and
_ 4 1 1 1 2 2 35
E(U)_1'€+2'€+3'6+4'6+5'€+6'6_@'
Hence rough expectation bf is
4 35
E*U)=(=,—).
V=373

Theorem 2.14 Let T : X — P*(X) be a set-valued
mapping andJ be a random variable in the stochastic
approximation spac8 = (X,P). For any constanta and

b, we have

E(aU +b)=aE(U)+bcwhere0<c<1.

Proof.

n n
E(aU +b) = z auy + b)P z augP(uy) + bP(uk)
1 K=1

aE(U)+bc where c= 2 P(uk)(i.e 0<c<1).

Theorem 2.15 Let T : X — P*(X) be a set-valued
mapping andJ be a random variable in the stochastic
approximation spac8= (X,P). For any constanta and

b, we have

E(aU+b)=aE(U)+bdwherel<d<n, neN.

Proof. The proof is similar to Theore

We define the lower and upper variances of a random
variable U in the stochastic approximation space
S=(X,P).

Definition 2.16 Let T : X — P*(X) be a set-valued
mapping andJ be a random variable in the stochastic
approximation spac& = (X,P). The lower and upper
variance ol is given by:

V(U)=EU-EU))?

» V(U)=EU-EU))?

respectively.

Definition 2.17 Let T : X — P*(X) be a set-valued
mapping andJ be a random variable in the stochastic
approximation spac8= (X,P). The rough variance df
is denoted by*(U) and is given by:

Vi) = (Y(U),V()).

Example 2.18 Consider the same experiment as in
Example2. Then the lower and upper varianced .bére

V()=
The rough variance df isV*(U) =

0.4, V(U)=1375
(0.4,13.75).

Theorem 2.19 Let T : X — P*(X) be a set-valued
mapping andJ be a random variable in the stochastic
approximation spacg= (X,P). Then

V(U) = E(U)*— (2—)(E(U))? where c= 3 P(ug
k=1

Proof. We have
E(U-EU))? = +(EU)))

= E(U)?>—2E(U)E(U) +c(E(U))? where c= ig(uk)
K=

E(U?-2UE(U)

(U)?~2(E(U))?+c(EU))?
(U)?~(2-cEU)*

Theorem 2.20Let T : X — P*(X) be a set-valued
mapping andJ be a random variable in the stochastic
approximation spac8= (X,P). Then

V(U)=E(U)?— (2—d)(E(U))*> where d=

u S B
) k; (uk)

Proof. The proof is similar to Theorer2
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Theorem 2.21 Let T : X — P*(X) be a set-valued [3] B. Davvaz, Roughness based on fuzzy ideals, Information
mapping andJ be a random variable in the stochastic Sciences, 176 (2006) 2417-2437.
approximation spac8= (X,P). For any constanta and [4]1B. Davvaz, A short note on algebraic T-rough sets,

b, we have Information Sciences, 178 (2008) 3247-3252.
. [5] B. Davvaz and M. MahdavipourRoughness in modules,
Via +5) =a’E(U?) - (2a- O E(V))? + o~ OEW) +bc whare o= 3 Pluy). Information Sciences, 176 (2006) 3658-3674.
[6] B. Davvaz and M. MahdavipourRough approximations
Proof. We have in a general approximation space and their fundamental
properties, Int. J. General Systems, 37 (2008) 373-386.
V(aU+b) = E((@U +b)~E(U))? [7]1 3. Jarvinen,On the structure of rough approximations,
= E(@U ) - 2@ +DEU) + EV)? Fundamental Informatica 53 (2002) 135-153.
= E@PU2 2300 b2 - 22UE() ~ 2E(U) + E(U))) [8] M. Jamal, "On Topological Structures and Uncertainty”,
= PEU%)+28hE(V) + b0 2a(E(U)? - 2xE) +olEV))? Tanta University, Egypt, Phd, 2010.
= PEUY - (2a-9EW)P + 2la- IEWV) +5e [9] O. Kazanci and B. Davvafn the structure of rough prime
where c:élg(uk» (primary) ideals and rough fuzzy prime (primary) ideals in
B commutative rings, Information Sciences, 178 (2008) 1343-
1354.

Theorem 2.22Let T : X — P*(X) be a set-valued [10] 0. Kazanci, S. Yamak and B. Davvaihe lower and upper
mapping andJ be a random variable in the stochastic approximations in a quotient hypermodule with respect to

approximation spacg= (X,P). For any constanta and fuzzy sets, Information Sciences, 178 (2008) 2349-2359.

b, we have [11] N. Kuroki, Rough ideals in semigroups, Information
- . - o, N Sciences, 100 (1997) 139-163.
V(aU +b)=a“E(U“) - (2a—d)(E(U))“ +2b(a—d)E(U) +b“d where d:kzlP(uk)‘ [12] N KUrOki and PP Wang,The |0Wef and upper
approximations in a fuzzy group, Information Sciences, 90
Proof. We have (1996) 203-220.

[13] V. Leoreanu-Fotea and B. DavvaRoughness in n-ary
hypergroups, Information Sciences, 178 (2008) 4114-4124.

[14] A. Luay Al-Swidi, A. Ali Hussein and K. Hasanain
Al-Abbasi, Rough Probability In Topological Spaces,

N Mathematical Theory and Modeling, Vol.3, No.5, 2013.

= @EUY) - (a-d)EV))"+ (- dEV) 1%d, whare d= 3 Pl [15] Z. Pawlak,Rough sets, Int. J. Inf. Comp. Sci., 11 (1982)

341-356.

V(aU +b) = E((aU +b)—E(U))?
— E(aU +b)2—2(aU + b)E(U) + (E(U))2
= E(aU2+ 2abU + b2 - 2aUE(U) — 20E(U) + (E(U))?)

= a?E(U2)+ 2abE(U) + bZc— 2a(E(U))2 - 2bcE(U) + ¢(E(U))2

3 Conclusion
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