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Abstract: The negative binomial distribution is a well recognized lifetime model. In this paper, we consider estimation of reliability
measures of this model using type-II censored data. We obtain maximum likelihood and Bayes estimates of parameter, reliability
function and hazard rate of this model. We also provide asymptotic, bootstrap and Bayesian credible intervals for the parameter.
Finally, we give numerical illustration based on simulation study.
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1 Introduction

In reliability analysis, often the failures are noted at regular intervals. In such situations, it is recommended to apply any
discrete distribution for failure times. The negative binomial distribution (NBD) is a well recognized lifetime model,
advocated by many authors. The probability mass function (pmf) of a random variableX, following NBD with
parameters(r, θ ) Johnson et. al. [1], is given by

p(X = x) =

(

x+ r −1
x

)

θ r (1−θ )x ; x> 0 , r > 0, 0< θ < 1. (1)

The reliability function of NBD withpmf (1), at a mission timet, is given by

R(t) =
∞

∑
y=t+1

(

y+ r −1
y

)

θ r (1−θ )y . (2)

According to Barlow [2] hazard rater(t) of NBD, at timet (>0), comes out to be

h(t) = 1−
R(t)

R(t −1)
,

= 1−
∑∞

y=t+1

(

y+ r −1
y

)

θ r (1−θ )y

∑∞
y=t

(

y+ r −1
y

)

θ r (1−θ )y
.

The negative binomial distribution has a long history of applications. The fitting of this distribution to various typesof
data is considered by Fisher [3], Bliss and Fisher [4] and Simon [5]. Schader and Schmid [6] obtained the ML estimator
of θ using grouped data. They also compared the convergence of Newton Raphson versus EM algorithm. Adamidis [7]
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also obtained the estimate of parameter of this model using EM algorithm. Duvall [8] derived the Bayes estimator of
parameterθ assuming the Beta model as prior distribution. Bradlow [9] derived the Bayes estimator of the parameter
of NBD using conjugate prior and expressed the Bayes estimator in term of the ratio of two gamma functions using
polynomial expression. Chaturvedi and Tomer [10] discussed the uniformly minimum variance unbiased estimation as
well as Bayesian estimation ofP(X>Y), when bothX andY follow NBDs. Ganji [11] considered the Bayes estimation
of parameters of generalized NBD and discussed its applications. Lio [12] presented the different forms of NBD and
obtained Bayes estimates of parameter. Doherty [13] considered the parameter estimation for the interval censored data
from NBD. Zhao [14] discussed the hypothesis testing of parameters of two negative binomial populations in case of
missing data. Ganji [15] obtained the Bayes and empirical Bayes estimates of numberof success using the left truncated
Poisson distribution as prior of the same.
Censoring is defined as the loss of observations on the lifetime variable of interest in the process of an investigation. In
life testing experiments, it may occur due to lack of time, scarcity of funds or any other unavoidable reason. In type-II
censoring scheme some units (sayn) are placed on test and the test is terminated after observing the lifetime of prefixed
number, saym(≤ n), of units. Thus out ofn, the lifetimes ofm units are observed andn-mare considered as censored
[See Sinha [16], Lawless [17]) for details].
In this paper, we discuss estimation procedures for NBD withfailure censored data. We provide ML and Bayes estimates of
lifetime parameters, hazard rate and reliability functions. Rest of the paper is organized as follows. In Section 2, we present
the likelihood function and derive MLEs of parameter, hazard rate and reliability function. In section 3, we evaluate the
asymptotic and boot-p confidence intervals for the parameter. In Section 4, we give procedures to obtain Bayes estimates
of these parametric functions using Metropolis-Hasting algorithm. We carry out simulation study in Section 5 and finally
conclude the findings in Section 6.

2 Maximum Likelihood Estimation

Let n units are put to test and the lifetimes of each unit follows NBD with pmf (1). The test is terminated after observing
the lifetimes ofm(≤ n) units. Suppose that the samplex = x1 ≤ x2 ≤ ... ≤ xm is observed after the termination of the
experiment which hasd ‘tie runs’ with lengthzh for hth one,h = 1,2, ...,d with ∑d

h=1zh = m. Here the term ‘tie runs’
indicate a ’sub chain consisting of equal integers. Using the result of Gan and Bain [18], we write the likelihood function
of θ , givenx andr as follows.

L(θ |x, r) =



















n−m
∑

s=0

n!

(n−m−s)!(zd+s)!
d−1
∏
j=1

zj !

m
∏
i=1

p(xi) [p(xm)]
s[R(xm)]

n−m−s ; 0< θ < 1

if t1 < t2 < .... < tk has d tie− runs with length zj for the jth one, j = 1, 2, ....., r,
0 otherwise

(3)

Using equation (1) and (2) the likelihood function (3) can be re-expressed as

L(θ |x, r) =
n−m

∑
s=0

n!

(n−m− s)!(zd+ s)!
d−1
∏
j=1

(zj)!

m

∏
i=1

(

xi + r −1
xi

)

θ r(1−θ )xi

{(

xm+ r −1
xm

)

θ r(1−θ )xm

}s

{

∞

∑
y=xm+1

(

y+ r −1
y

)

θ r(1−θ )y

}n−m−s

(4)

In order to obtain MLE ofθ ,we solve the likelihood equation

∂
∂θ

log(L(θ |x)) = 0,

that is,

rm

θ̂
−

m
∑

i=1
xi

(

1− θ̂
) +

n−m
∑

s=0
Csξ s(xm, θ̂ )φn−m−s(xm, θ̂ )

(

rs
θ̂ − xms

1−θ̂ + (n−m−s)φ
′
(xm,θ̂)

φ(xm,θ̂ )

)

n−m
∑

s=0
Csξ s(xm, θ̂ )φn−m−s(xm, θ̂ )

= 0, (5)
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whereθ̂ is MLE of θ , Cs =
n!

(n−m−s)!(zd+s)!
d−1
∏
j=1

(zj )!
, φ(xm, θ̂ ) =

∞
∑

y=xm+1

(

y+ r −1
y

)

θ̂ r
(

1− θ̂
)y

and

φ ′(xm, θ̂ ) =
∞
∑

y=xm+1

(

y+ r −1
y

)

θ̂ r−1
(

1− θ̂
)y−1(

r − (y− r) θ̂
)

andξ (xm, θ̂ ) =
(

xm+ r −1
xm

)

θ̂ r
(

1− θ̂
)xm

.

We observe that (5) can not be solved analytically. Therefore, we use iteration method to obtain̂θ .
Remark: The ML estimates of the reliability function and hazard rate, at a given timet are given, respectively, by

R̂(t) =
∞

∑
y=t+1

(

y+ r −1
y

)

θ̂ r (1− θ̂
)y

and

ĥ(t) = 1−
R̂(t)

R̂(t −1)
.

3 Confidence Interval:

The exact distribution of MLE ofθ cannot be obtained explicitly. Therefore, we evaluate asymptotic confidence interval
and bootstrap confidence interval forθ as follows:

3.1 Asymptotic Confidence Interval

Using, the asymptotic normality of MLE, we construct the asymptotic confidence intervals (ACI) for the parameterθ .The
confidence limits for 100(1−α)% ACI are given by

θ̂ ±Zα/2

√

Î−1
(

θ̂
)

,

where,Zα/2 is upper 100(α/2) percentile of standard normal distribution andI(θ̂ ) is the observed Fisher’s information
given by

Î (θ ) =
∂ 2 log(L(θ |x, r))

∂θ 2

∣

∣

∣

∣

θ=θ̂
.

= −
rm

(1−θ )2 −

m
∑

i=1
xi

θ 2 −















n−m
∑

s=0
Csξ sφn−m−sA(θ ,xm)

θ(1−θ)

n−m
∑

s=0
Csξ sφn−m−s















2

−

n−m
∑

s=0

Cs
θ(1−θ)ξ

sφn−m−s

n−m
∑

s=0
Csξ sφn−m−s

×

[

A(θ ,xm)

{

rs−1
θ

−
xms−1
1−θ

− (n−m− s)
φ ′

φ

}

+A
′

θ (θ , xm)

]
∣

∣

∣

∣

∣

θ=θ̂

where,

φ = φ(xm,θ ), φ
′
=

∂
∂θ

φ , φ
′′
=

∂ 2

∂θ 2 φ , ξ = ξ (xm,θ ),A(θ , xm) = xms(1−θ )− rsθ − (n−m− s)θ (1−θ )(1−φ)−1φ
′

and

A
′

θ (θ , xm) =−xms− rs− (n−m− s)(1−φ)−1φ
′
{

1−θ (1−θ )φ
′
(1−φ)

}

− (n−m− s)θ (1−θ )(1−φ)−1φ
′′
.
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3.2 Bootstrap confidence interval

Here, we evaluate the parametric bootstrap confidence intervals proposed by Efron and Tibshirani [19]. The bootstrap
method is very useful when an assumption regarding the normality is not valid. In order to obtain boot-p confidence
intervals, the computational algorithm is given as follows.

1. Compute the MLEθ̂ using the given type II censored sample.
2. Using θ̂ generate failure censored sample{x∗1, x∗2, ...., x∗m} of sizem from f (x; θ̂ ).
3. Using sample obtained in step (2), compute the bootstrap estimate ofθ , sayθ̂ ∗ .
4. Repeat step 2-3,B times, to get the set of bootstrap estimators(θ̂ ∗

j ; j = 1, 2, ...B).

5. Arrange(θ̂ ∗
j ; j = 1, 2, ...B) in ascending order and get

(

θ̂ ∗
[1], θ̂ ∗

[2], . . . , θ̂ ∗
[B]

)

.

6. A two-sided 100(1−α)% boot-p confidence interval is given by,
(

θ̂ ∗
L , θ̂ ∗

U

)

=
(

θ̂ ∗
[B(α/2)], θ̂

∗
[B(1−α/2)]

)

.

where, [q] denote the integer part ofq.

4 Bayesian Estimation

Here, we assume thatθ is a continuous random variable and follows Bata distribution with parameters(α, β ), given by

π(θ ) =
1

B(α, β )
θ α−1(1−θ )β−1; 0< θ < 1, α, β > 0. (6)

Using the likelihood function and the prior distribution, given in (4) and (6) respectively, we obtain the following posterior
distribution ofθ .

Π (θ |x) ∝
n−m

∑
s=0

n!

(n−m− s)!(zd+ s)! ∏d−1
j=1(zj)!

{(

xm+ r −1
xm

)}s
(

∞

∑
y=xm+1

(

y+ r −1
y

)

θ r (1−θ )y
)n−m−s

θ r(m+s)+α−1(1−θ )
m
∑

i=1
x+xms+β−1

, (7)

We observe that the posterior distribution ofθ in (7) do not appear in closed form. We therefore use Markov Chain
Moto Carlo method to evaluate Bayes estimate ofθ . We apply Metropolis-Hastings (M-H) algorithm to generatesample
observations from the posterior distribution ofθgiven in (7). The M-H algorithm generates a sequence of observations
from any distributionf (θ ) as follows [See, Metropolis and Ulam [20]].

1. Start with any initial valueθo ∈ (0, 1).
2. Generate a candidate pointθ ∗ form q∼ N(θ̂ , I(θ̂ ))and a pointu from U(0, 1).
3. Calculate

α = min

(

f (θ ∗)q(θt−1)

f (θt−1)q(θ ∗)
, 1

)

4. Setθt = θ ∗with probabilityα elseθt = θt−1.

5. Repeating the steps 2-4 forh
′
times, whereh

′
is a large number, we get the sample observationsθ (1), θ (2), ...., θ

(

h
′
)

.

After the burn-in process, we obtain samples ofh observations fromθ . Using these observations we can obtain the Bayes
estimates of these parameters, as well as, we can evaluate the credible intervals.

4.1 Bayesian Intervals

Once the sample observations are generated from the posterior of θ , it can be used to obtain the credible intervals for
the parameters. In this section, we provide procedure, based on the algorithm of Chen and Shao [21], to evaluate credible
intervals and highest posterior density (HPD) intervals.
The essential steps of the algorithm are as follows.

(a) Credible Intervals
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(i) Order the sample observations generated through M-H algorithm,

θ(1) ≤ θ(2) ≤ ......≤ θ(h)

(ii) The 100(1−α)% Bayesian credible interval forθ is given, by

(

θ[(α/2)h],θ[(1−α/2)h]
)

(b) Highest posterior density (HPD) intervals

(i) Find all possible 100(1−α)% credible intervals with their respective lengths as follows

(

θ( j), θ( j+[(1−α)h])

)

, l j = θ( j+[(1−α)h])−θ( j); j = 1,2, ...,αh

. (ii) Search for the credible intervals having smallest length for lθ
j . This smallest length credible interval is HPD interval

for θ .

5 Simulation Study

Here we present some numerical illustrations based on simulation study. We have chosen the values ofθ and r to be
(0.3, 5), (0.5, 5), (0.3, 8) and(0.5, 8). We generate 3000 samples using these parametric values andevaluate average
MLE of θ along with its MSE. We also evaluate ACI and boot-p confidenceintervals along with their coverage
probabilities (CP).
In Bayesian study, we set the hyperparameters of Beta distribution to beα = 2 andβ = 3. For these values a plot of prior
and posterior distributions is given in Figure 1. We obtain the Bayes estimates of parameter and reliability function along
with their MSEs. The estimates of parameters, reliabilities and hazard rate are mentioned in Table1-4, for different
values of parameters. The average length of ACI, Bayesian credible and HPD intervals with their CPs are given in Table
5 and6.
In this Simulation study, we conclude that

1. The MSE of MLE and Bayes estimates decreases asm increases for a given value ofn.
2. While comparing boot-p and ACI, for the given value of(n, m), we observe that boot-p CI provide better CP then ACI,

although it has larger length.
3. The HPD interval has less values of length than credible intervals. The coverage probability in case of HPD is greater

than credible intervals.

We also consider the analysis of a simulated data set to show how one can use the results, obtained in the previous sections,
to a real life problem. We generate a sample of size 20 from theNBD with probability of successθ = 0.35 andr = 6. The
first 15 observations are 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8 and9. The reliability function and hazard rate are evaluated at
the given timet0 = 8. On the basis of the this sample, the various estimates are given Table7.
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Table 1: Average values of ML and Bayes estimator ofθ , R(t) andh(t) with their MSE×10−2 (in Bracket)) forθ = 0.30, r = 5 and
t = 10.

n=30 θ̂ R̂(t) ĥ(t) θ̃ R̃(t) h̃(t)

10 0.308 0.516 0.124 0.306 0.515 0.12
(0.092) (1.007) (0.084) (0.050) (0.546) (0.045)

15 0.297 0.517 0.118 0.298 0.516 0.119
(0.056) (0.640) (0.049) (0.038) (0.423) (0.033)

20 0.298 0.519 0.117 0.298 0.517 0.118
(0.044) (0.506) (0.038) (0.032) (0.364) (0.028)

25 0.304 0.503 0.123 0.304 0.504 0.122
(0.043) (0.487) (0.038) (0.030) (0.336) (0.027)

30 0.299 0.517 0.118 0.300 0.516 0.119
(0.041) (0.476) (0.036) (0.026) (0.293) (0.023)

n=50

10 0.308 0.49 0.126 0.306 0.497 0.124
(0.076) (0.844) (0.072) (0.043) (0.462) (0.04)

20 0.302 0.509 0.121 0.302 0.510 0.120
(0.044) (0.504) (0.040) (0.031) (0.351) (0.029)

30 0.301 0.513 0.120 0.298 0.512 0.119
(0.040) (0.457) (0.036) (0.031) (0.345) (0.027)

40 0.303 0.515 0.118 0.301 0.514 0.119
(0.027) (0.303) (0.024) (0.025) (0.237) (0.02)

50 0.302 0.509 0.119 0.301 0.508 0.120
(0.026) (0.300) (0.023) (0.021) (0.241) (0.019)
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Table 2: Average values of ML and Bayes estimator ofθ , R(t) andh(t) with their MSE×10−2 (in Bracket) forθ = 0.50, r = 5 and
t = 4.

n=30 . θ̂ R̂(t) ĥ(t) θ̃ R̃(t) h̃(t)

10 0.503 0.626 0.183 0.497 0.636 0.178
(0.177) (0.859) (0.228) (0.056) (0.263) (0.067)

15 0.502 0.630 0.181 0.498 0.636 0.178
(0.126) (0.617) (0.158) (0.059) (0.280) (0.071)

20 0.505 0.623 0.184 0.502 0.631 0.180
(0.120) (0.576) (0.146) (0.050) (0.233) (0.059)

25 0.502 0.631 0.180 0.499 0.635 0.178
(0.088) (0.424) (0.108) (0.047) (0.223) (0.056)

30 0.498 0.634 0.179 0.501 0.637 0.177
(0.087) (0.417) (0.107) (0.045) (0.209) (0.053)

n=50

10 0.506 0.619 0.186 0.501 0.632 0.180
(0.160) (0.775) (0.204) (0.054) (0.253) (0.064)

20 0.501 0.632 0.179 0.499 0.637 0.177
(0.077) (0.364) (0.091) (0.040) (0.187) (0.047)

30 0.503 0.628 0.182 0.501 0.632 0.180
(0.066) (0.324) (0.082) (0.038) (0.186) (0.047)

40 0.502 0.631 0.180 0.501 0.634 0.179
(0.055) (0.264) (0.066) (0.038) (0.175) (0.043)

50 0.499 0.637 0.177 0.499 0.638 0.176
(0.055) (0.257) (0.063) (0.036) (0.169) (0.042)

Table 3: Average values of ML and Bayes estimator ofθ , R(t) andh(t) with their MSE×10−2 (in Bracket) forθ = 0.30, r = 8 and
t = 15.

n=30 θ̂ R̂(t) ĥ(t) θ̃ R̃(t) h̃(t)

10 0.303 0.604 0.083 0.303 0.604 0.083
(0.045) (0.671) (0.032) (0.031) (0.488) (0.024)

15 0.302 0.614 0.081 0.301 0.613 0.081
(0.041) (0.656) (0.031) (0.028) (0.444) (0.022)

20 0.301 0.613 0.081 0.302 0.611 0.081
(0.035) (0.558) (0.025) (0.027) (0.433) (0.02)

25 0.302 0.609 0.081 0.302 0.607 0.082
(0.025) (0.414) (0.019) (0.021) (0.337) (0.016)

30 0.301 0.614 0.080 0.301 0.612 0.081
(0.024) (0.386) (0.018) (0.019) (0.307) (0.015)

n=50
10 0.292 0.620 0.079 0.299 0.619 0.08

(0.05) (0.789) (0.037) (0.036) (0.561) (0.027)

20 0.298 0.620 0.079 0.299 0.619 0.08
(0.035) (0.562) (0.026) (0.028) (0.449) (0.021)

30 0.302 0.611 0.081 0.302 0.610 0.081
(0.027) (0.438) (0.021) (0.022) (0.365) (0.017)

40 0.305 0.598 0.084 0.305 0.598 0.084
(0.021) (0.350) (0.016) (0.019) (0.306) (0.015)

50 0.300 0.617 0.08 0.301 0.615 0.08
(0.015) (0.242) (0.011) (0.013) (0.211) (0.010)
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Table 4: Average values of ML and Bayes estimator ofθ , R(t) andh(t) with their MSE×10−2 (in Bracket) forθ = 0.50, r = 8 and
t = 6.

n= 30 θ̂ R̂(t) ĥ(t) θ̃ R̃(t) h̃(t)
10 0.497 0.611 0.146 0.496 0.614 0.145

(0.078) (0.646) (0.096) (0.041) (0.325) (0.048)

15 0.501 0.599 0.150 0.499 0.604 0.149
(0.068) (0.579) (0.087) (0.039) (0.323) (0.048)

20 0.498 0.610 0.146 0.497 0.611 0.146
(0.061) (0.502) (0.074) (0.040) (0.326) (0.048)

25 0.499 0.605 0.148 0.498 0.607 0.148
(0.059) (0.490) (0.071) (0.038) (0.304) (0.044)

30 0.500 0.603 0.149 0.499 0.605 0.148
(0.037) (0.318) (0.047) (0.025) (0.209) (0.031)

50
10 0.508 0.580 0.158 0.503 0.592 0.154

(0.092) (0.798) (0.125) (0.050) (0.407) (0.061)

20 0.499 0.605 0.148 0.498 0.608 0.147
(0.074) (0.619) (0.093) (0.046) (0.393) (0.061)

30 0.506 0.587 0.155 0.504 0.591 0.153
(0.040) (0.351) (0.053) (0.028) (0.245) (0.037)

40 0.498 0.608 0.147 0.498 0.609 0.147
(0.036) (0.307) (0.045) (0.029) (0.239) (0.035)

50 0.499 0.607 0.147 0.501 0.608 0.150
(0.033) (0.285) (0.042) (0.025) (0.213) (0.032)

Table 5: Average Length of ACI, boot-p, Bayesian credible and HPD intervals with their CP for r=5.
θ = 0.3 θ = 0.5

n= 30 ACI Boot-p BCI HPD ACI Boot-p BCI HPD

10 Length 0.113 0.115 0.074 0.073 0.164 0.166 0.094 0.083
CP 0.947 0.951 0.954 0.986 0.947 0.952 0.953 0.983

15 Length 0.099 0.108 0.069 0.069 0.140 0.143 0.088 0.080
CP 0.950 0.952 0.955 0.989 0.945 0.962 0.955 0.988

20 Length 0.090 0.095 0.066 0.063 0.127 0.131 0.082 0.077
CP 0.953 0.952 0.959 0.992 0.950 0.964 0.958 0.992

25 Length 0.084 0.088 0.063 0.061 0.119 0.123 0.078 0.075
CP 0.957 0.953 0.958 0.991 0.959 0.963 0.962 0.995

30 Length 0.081 0.081 0.062 0.058 0.113 0.115 0.074 0.073
CP 0.953 0.955 0.961 0.994 0.963 0.968 0.968 0.996

n= 50
Length 0.096 0.106 0.072 0.071 0.158 0.167 0.083 0.082

10 CP 0.952 0.961 0.957 0.986 0.958 0.956 0.947 0.989

Length 0.082 0.098 0.063 0.060 0.119 0.129 0.075 0.068
20 CP 0.958 0.963 0.958 0.989 0.962 0.963 0.952 0.991

Length 0.072 0.085 0.058 0.054 0.102 0.113 0.071 0.070
30 CP 0.959 0.964 0.961 0.988 0.964 0.965 0.958 0.993

Length 0.066 0.076 0.054 0.051 0.093 0.107 0.067 0.059
40 CP 0.962 0.965 0.963 0.992 0.975 0.969 0.958 0.992

Length 0.060 0.072 0.052 0.048 0.088 0.098 0.065 0.055
50 CP 0.968 0.968 0.965 0.996 0.979 0.968 0.962 0.996
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Table 6: Average Length of ACI, boot-p, Bayesian credible and HPD intervals with their CP for r=8.

θ = 0.3 θ = 0.5

n= 30 ACI Boot-p BCI HPD ACI Boot-p BCI HPD

10 Length 0.084 0.097 0.063 0.063 0.123 0.131 0.076 0.076
CP 0.946 0.956 0.951 0.981 0.952 0.962 0.975 0.992

15 Length 0.076 0.087 0.060 0.059 0.108 0.117 0.072 0.072
CP 0.948 0.957 0.952 0.982 0.952 0.965 0.976 0.994

20 Length 0.070 0.082 0.057 0.056 0.099 0.096 0.069 0.069
CP 0.948 0.960 0.962 0.986 0.960 0.970 0.982 0.994

25 Length 0.066 0.079 0.055 0.054 0.093 0.093 0.067 0.067
CP 0.946 0.964 0.968 0.992 0.961 0.976 0.986 0.995

30 Length 0.064 0.640 0.053 0.053 0.089 0.089 0.066 0.066
CP 0.950 0.965 0.975 0.995 0.959 0.985 0.989 0.996

n= 50
10 Length 0.079 0.092 0.061 0.061 0.115 0.118 0.074 0.068

CP 0.946 0.957 0.949 0.985 0.949 0.958 0.952 0.991

20 Length 0.063 0.086 0.053 0.052 0.090 0.093 0.066 0.063
CP 0.952 0.956 0.954 0.987 0.950 0.962 0.954 0.993

30 Length 0.062 0.072 0.048 0.046 0.079 0.088 0.061 0.059
CP 0.953 0.961 0.962 0.987 0.956 0.966 0.956 0.995

40 Length 0.052 0.067 0.046 0.045 0.073 0.079 0.058 0.054
CP 0.958 0.965 0.965 0.990 0.960 0.965 0.955 0.998

50 Length 0.052 0.065 0.046 0.043 0.069 0.072 0.058 0.054
CP 0.959 0.968 0.969 0.992 0.965 0.971 0.964 0.998

Table 7: ML and Bayes estimates of theθ , Reliability, hazard rate for the given data.

θ̂ R̂(t) ĥ(t) θ̃ R̃(t) h̃(t) ACI boot-p BCI HPD

0.351 0.638 0.106 0.351 0.635 0.108(0.297,0.405) (0.301,0.402) (0.306,0.398) (0.306,0.398)

6 Conclusion

In this paper, we discussed estimation procedures for parameter and reliability function of Negative Binomial distribution.
We have obtained ML and Bayes estimates of parameter, reliability and hazard rate functions for this distribution using
failure censored data. We also considered interval estimation of parameter. Here, we have provided ACI and bootstrap
CI as well as Bayesian credible and HPD intervals for the parameter. We have conducted extensive simulation study in
order to assess the performance of the estimators and presented result through figure and tables. We have mentioned the
findings based on simulation study in Section 5.
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