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Abstract: In this paper we generalize the BurrXII-poisson distribution and we refer to this generalization as the generalize BurrXII-
poisson distribution (GBXIIP). Several properties and inferences of the generalize BurrXII-poisson distribution are obtained and studied
including the shapes properties of its probability densityand hazard rate functions. Moreover the existence of its MLEs under some
certain conditions are analyzed. Two real data applications are used to demonstrate the performance and effectivenessof the proposed
distribution.
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1 Introduction

A new family of distribution known as exponential geometric(EG) was proposed by [1], by compounding the
exponential and geometric distribution. [2] introduced the complementary exponential-geometric (CEG) as a
complementry to the exponential-gometric(EG) distribution. In the same way, [3] introduced a new class of distribution
known as the Exponential Poisson distribution (EP) and recently [4] proposed the Generalize exponencial poisson (GEP)
distribution as the generalization of (EP) distribution, by exponentiating the cdf of the Exponential Poisson (EP)
distribution. [5] proposed a new family of distribution called the BurrXII-power series (BXIIPS), this distribution is
obtained using the procedure follows by the [1], the BurrXII-power series distribution includes the BurrXII-poisson
(BXIIP) distribution as its sub model. The cumulative distribution function of the BXIIP distribution with parameters
α > 0, β > 0 andλ > 0 is defined as

H(x) =
1−exp(λ ((1+ xα)−β −1))

(1−exp(−λ ))
, x > 0. (1)

Following the same approach, in this paper we introduces a new four parameter lifetime model named the generalized
BurrXII-poisson (GBXIIP) distribution by exponentiatingthe cdf (in Eq. (1)) of BXIIP distribution. In section2 we give
the density, hazard rate function and the quantile functionof the GBXIIP distribution. Moreover we derive the moments,
orderstatistics, moment of orderstatistics and the Renyi entropy. In section 3 Estimation by maximum likelihood and
inferences are analyzed. Section4 provides applications to two real data sets and section5 concludes the paper.

2 The GBXIIP distribution

A random variableX has the generalize BurrXII-poisson distribution with parametera,α,β andλ if its cdf is

F(x) =

(

1−exp(λ ((1+ xα)−β −1))
(1−exp(−λ ))

)a

, x > 0. (2)
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Notice that whena = 1 the GBXIIP be come BXIIP distribution. The pdf, hazard ratefunction (hrf) and the survival
function of the GBXIIP distribution are given respectively, by

f (x;a,α,β ,λ ) =
aαβ λ xα−1(1−exp(λ ((1+ xα)−β −1)))a−1exp(λ ((1+ xα)−β −1)

(1−exp(−λ ))a (1+ xα)(β+1)
, (3)

s(x) =
(1−exp(−λ ))a − (1−exp(λ ((1+ xα)−β −1)))a

(1−exp(−λ ))a , (4)

h(x) = aαβ λ xα−1(1+xα )−(β+1)(1−exp(λ ((1+xα)−β−1)))a−1exp(λ ((1+xα)−β−1))
(1−exp(−λ ))a−(1−exp(λ ((1+xα)−β−1)))a . (5)

The quantile functionψ(u) of the generalize BurrXII-poisson (GBXIIP) distribution given by Eq. ( 6), is
straightforward to be computed by inverting Eq. (2), and it can be used to generate random data.

ψ(u) =





(

log(1− u
1
a (1−exp(−λ )))

λ
+1

)− 1
β

−1





1
α

, u ∈ (0,1). (6)

Theorem 2.1 The limiting distribution of the GBXIIP(a, α, β , λ ) given by Eq. ( 2) when

λ → 0+ and a ∈N or a = 1
k , k(even) ∈N, is, limλ →0+ F(x) =

(

1− 1
(1+xα )β

)a
, i.e. It converges to exponentiated BurrXII

distribution with parameter a,α and β .

Theorem 2.2 The pdf of the generalize BurrXII-poisson (GBXIIP) given by Eq. ( 3) is monotone decreasing function for
0< α ≤ 1 and 0< a ≤ 1, and unimodal for α > 1 and a > 1.

Proof:

log( f (x)) = log

(

aαβ λ
(1−exp(−λ ))a

)

+(α −1) logx− (β +1) log(1+ xα)

+ (a−1) log(1−exp(λ ((1+ xα)−β −1)))+ (λ ((1+ xα)−β −1))

and

(log f (x))′ =
α −1

x
− α (β +1)xα−1

(1+ xα)
+

(a−1)αβ λ xα−1exp(λ ((1+ xα)−β −1))

(1−exp(λ ((1+ xα)−β −1))) (1+ xα)β+1
− αβ λ xα−1

(1+ xα)β+1
.

When 0< α ≤ 1 and 0< a ≤ 1, (log f (x))′ < 0, this impliesf (x) is monotone decreasing function. Suppose thatα > 1
anda > 1, then f (x) has exactly one root sayxo. Then, forx < xo, f (x) > 0 and forx > xo, f (x) < 0 so, f (x) gives a
unimodal shape with mode valuex = xo.

Theorem 2.3 If α ≤ 1 and a ≤ 1, the hrf of the generalize BurrXII-poisson (GBXIIP) given by Eq. ( 5) is monotone
decreasing function.

Proof:
Following the theorem of [6], we let

η(x) =
− f ′(x)

f (x)
=− (α −1)

x
+

α(β +1)xα−1

(1+ xα)
− (a−1)αβ λ xα−1 exp(λ ((1+ xα)−β −1)))

(1−exp(λ ((1+ xα)−β −1)))(1+ xα)β+1
+

αβ λ xα−1

(1+ xα)β+1
.

Where f ′(x) is the first derivative off (x) in Eq. (3). Then,η ′(x) is given by
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η ′(x) =
(α −1)

x2 +
α(α −1)(β +1)xα−2

(1+ xα)
− α2(β +1)x2(α−1)

(1+ xα)2

− (a−1)(α −1)αβ λ xα−2 z(x)

(1− z(x))(1+ xα)β+1
+

(a−1)α2β 2λ 2 x2(α−1) z(x)

(1− z(x))(1+ xα)2(β+1)

+
(a−1)α2β 2λ 2 x2(α−1) (z(x))2

(1− z(x))2(1+ xα)2(β+1)
+

(a−1)α2β λ x2(α−1) z(x)

(1− z(x))(1+ xα)2(β+2)

+
(α −1)αβ λ xα−2

(1+ xα)β+1
− α2β (β +1)x2(α−1)

(1+ xα)β+2
.

Wherez(x) = exp(λ ((1+ xα)−β − 1)), thus, forα ≤ 1 anda ≤ 1, η ′(x) < 0, hence the proof. We can also see from
Figure1 that Eq. (5) can take other shapes
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Fig. 1: plots of Probability density (f(x)) and hazard rate (h(x)) functions of the generalize BurrXII-poisson distribution for different
values of parameter.
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2.1 Useful expansions

We demonstrate that the Pdf of the generalize BurrXII-poisson distribution (GBXIIP) can be written as a infinite mixture
of the BXIIP or BXII densities. Using the following series representation

(1− u)a−1 =
∞

∑
j=0

(−1) jΓ (a)
Γ (a− j) j!

u j (7)

where|u|< 1, a > 0 real and non-intiger, then, we have an infinite mixture as

f (x) =
∞

∑
j=0

ϕ j g(x;α,β ,λ ( j+1)), (8)

where

ϕ j =
(−1) j a! (1−exp(−λ ( j+1)))

(1−exp(−λ ))a ( j+1)Γ (a− j) j!

andg(x;α,β ,λ ( j +1)) is the BurrXII-poisson probability density function with parameterα,β andλ ( j +1). Also by
applying the exponential expansion in Eq.( 8) above and some algebraic manipulation the GBXIIP density function can
be written as an infinite double mixture of BXII(α,β (i+1)) as

f (x) =
∞

∑
j=0

∞

∑
i=0

ϕ∗
i, j g∗(x;α,β (i+1)), (9)

where

ϕ∗
i, j =

(−1) j a! λ i+1( j+1)i(exp(−λ ( j+1)))
(1−exp(−λ ))a (i+1)Γ (a− j) j! i!

andg∗(x;α,β (i+1)) is the pdf of the BurrXII distribution with parametersα andβ (i+1).

2.2 Moments

Moments of a distribution are extremely essential in various statistical analysis, particularly in practical applications. Most
of the features and characteristics of a probability model can be analyzed through its skewness, kurtusis, tendency and
dispertion. The following lemma provide therth central moment of the generalize BurrXII-poisson (GBXIIP)distribution
which is extremely useful in computing some other properties of the proposed distribution.

Lemma 2.4 if X has GBXIIP(a,α,β ,λ ) and for a > 0 real and non-intigers, the rth central moment of X, say µ r is given
as

E(X r) =
a! β

(1−exp(−λ ))a

∞

∑
j=0

∞

∑
i=0

(−1) j λ i+1( j+1)i exp(−λ ( j+1))
Γ (a− j) j! i!

B(β (i+1)− r
α
,

r
α
+1).

Proof:

E(X r) =

∫ ∞

0
xr f (x)dx

Let u = (1+ xα)−β then, fora > 0 real and non-integers we can apply the series representation given by Eq. (7),
therefore,

E(X r) =
aΓ (a) λ

(1−exp(−λ ))a

∞

∑
j=0

(−1) j exp(−λ ( j+1))
Γ (a− j) j!

∫ 1

0
(1− u

1
β )

r
α u

− r
αβ exp(λ ( j+1)u)du,
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by apllying the exponential expansion for exp(λ ( j+1)u) and lettingu = vβ , we have

E(X r) =
aΓ (a) β λ

(1−exp(−λ ))a

∞

∑
j=0

∞

∑
i=0

(−1) j λ i( j+1)i exp(−λ ( j+1))
Γ (a− j) j! i!

∫ 1

0
(1− v)

r
α vβ (i+1)− r

α −1dv.

Thus,

E(X r) =
a! β

(1−exp(−λ ))a

∞

∑
j=0

∞

∑
i=0

(−1) j λ i+1( j+1)i exp(−λ ( j+1))
Γ (a− j) j! i!

B(β (i+1)− r
α
,

r
α
+1). (10)

The moment generating function (mgf) of GBXIIP distribution is computed byMx(t) = E(etX ) which can be express
as

Mx(t) =
∞

∑
r=0

tr

r!
E(X r). (11)

Putting Eq. (10) in Eq. (11) we have

Mx(t) =
a!β

(1−exp(−λ ))a

∞

∑
r=0

∞

∑
j=0

∞

∑
i=0

(−1) jtrλ i+1( j+1)i exp(−λ ( j+1))
Γ (a− j) i! j! r!

B(β (i+1)− r
α
,

r
α
+1). (12)

While the skewness(γ3) and kurtosis(γ4) of the GBXIIP distribution can be obtained by substituting Eq. ( 10) in the
followings below.

γ3 =
1

σ3

3

∑
r=0

(

3
r

)

(−1)r+1µ3−rE(X r), (13)

and

γ4 =
1

σ4

4

∑
r=0

(

4
r

)

(−1)rµ4−rE(X r). (14)

Whereµ and σ are the mean and standard deviation of the GBXIIP distribution. Futhermore, the skewness and
kurtosis of the generalize BurrXII-poisson (GBXIIP) distribution can be observed using its quantile function. The Bowley
skewness (B) and Moores kurtosis (M) provides the measure ofasymmetry and the degree of peakedness of a distribution
with respect to one of its parameter respectively. The Bowley skewness and Moores kurtosis are defined, respectively by

B =
ψ(3/4)+ψ(1/4)−2ψ(2/4)

ψ(3/4)−ψ(1/4)
, (15)

and

M =
ψ(3/8)−ψ(1/8)+ψ(7/8)−ψ(5/8)

ψ(6/8)−ψ(2/8)
. (16)

Whereψ(u) is a quantile fuction given by Eq. (6). Figure 2 shows the plots of the Bowley skewness and Moores
kurtosis of generalize BurrXII-poisson (GBXIIP) distribution.
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Fig. 2: plots of the Bowley skewness (B) and Moores kurtosis (M) of generalize BurrXII-poisson distribution for different values of
parameterβ

2.3 Order statistics

Let X1,X2, · · · ,Xn be a random sample obtained from GBXIIP(a,α,β ,λ ) distribution with cdf and pdf given by Eqs. (2)
and (3), respectively. LetX1:n ≤ X2:n ≤ ·· · ≤ Xn:n be the order statistics observed from this sample, then, thepdf of X j:n
that is f j:n(x), j = 1,2, · · · ,n can be computed by

f j:n(x) =
n!

( j−1)!(n− j)!
f (x) F(x) j−1(1−F(x))n− j, (17)

where F(x) and f(x) are given by Eqs. (2) and (3) respectively. By the binomial expansion for

((1−exp(−λ ))a − (1−exp(λ ((1+ xα)−β −1)))a)n− j =
n− j

∑
k=0

(−1)k (n− j)!
k! (n− j− k)!

× (1−exp(−λ ))a(n− j−k)

× (1−exp(λ ((1+ xα)−β −1)))ak,

then, subtitute in Eq. (17) above and after some algebraic manipulation, finally we obtain the following

f j:n(x) =
n− j

∑
k=0

(−1)k n!
(n− j− k)! ( j+ k) ( j−1)! k!

f (x;a( j+ k),α,β ,λ ) (18)

where f (x;a( j + k),α,β ,λ ) is the pdf of the generalize BurrXII-poisson (GBXIIP) modelwith parametera( j+ k),α,β
andλ . Therth ordinary moment of thejth order statistics of the GBXIIP(a,α,β ,λ ) distribution can be computed from

E(X r
j:n) =

∫ ∞

0
xr f j:n(x)dx. (19)

where f j:n(x) is the pdf of order statistics of the generalize BurrXII-poisson (GBXIIP) distribution given by Eq. (18).
Following the same approach as in (10), thus,

E(X r
j:n) =

n− j

∑
k=0

∞

∑
w=0

∞

∑
i=0

(−1)k+w aβ n! λ i+1 (w+1)i Γ (a( j+ k)) exp(−λ (w+1))

(1−exp(−λ ))a( j+k)( j−1)! (n− j− k)! Γ (a( j+ k)−w) i! k! w!
B(β (i+1)− r

α
,

r
α
+1).
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2.4 Renyi entropy

An entropy of a random variableX can be defined as a measure of variation of uncertainty. If a random variableX is
distributed according to generalize BurrXII-poisson (GBXIIP) distribution, then, the renyi entropy can be obtain from
IR(ρ) =

1
1−ρ log[

∫ ∞
0 f (x)ρ dx], whereρ > 0 andρ 6= 1, therefor, we start by computing

∫ ∞

0
f (x)ρ dx =

(

aαβ λ
(1−exp(−λ ))a

)ρ ∫ ∞

0

xρ(α−1)(1−exp(λ ((1+ xα)−β −1)))ρ(a−1)exp(λ ρ((1+ xα)−β −1))

(1+ xα)ρ(β+1)
dx.

Settingu = (1+ xα)−β and forρ(a−1)+1> 0 real and non-integers we can apply the series representation in Eq.
( 7), then,

∫ ∞

0
f (x)ρ dx =

(aλ )ρ(αβ )ρ−1

(1−exp(−λ ))aρ

∞

∑
j=0

(−1) j Γ (ρ(a−1)) exp(−λ (ρ + j))
Γ (ρ(a−1)− j) j!

×
∫ 1

0
(1− u

1
β )(1−

1
α )(ρ−1) u

( 1
αβ +1)(ρ−1) exp(λ (ρ + j)u) du.

Apllying the exponential expansion for exp(λ (ρ + j)u) and lettingu = vβ , we have

∫ ∞

0
f (x)ρ dx =

(aβ λ )ρ αρ−1

(1−exp(−λ ))aρ

∞

∑
j=0

∞

∑
i=0

(−1) j λ i (ρ + j)i Γ (ρ(a−1)) exp(−λ (ρ + j))
Γ (ρ(a−1)− j) i! j!

×
∫ 1

0
(1− v)(1−

1
α )(ρ−1) vβ (i+1)+( 1

α +β )(ρ−1)−1 dv.

∫ ∞

0
f (x)ρ dx =

(aβ λ )ρ αρ−1

(1−exp(−λ ))aρ

∞

∑
j=0

∞

∑
i=0

(−1) j λ i (ρ + j)i Γ (ρ(a−1)) exp(−λ (ρ + j))
Γ (ρ(a−1)− j) i! j!

×B(β (i+1)+ (
1
α
+β )(ρ −1),(1− 1

α
)(ρ −1)+1).

Thus, the renyi entropy is

IR(ρ) =
1

1−ρ
log

[

∞

∑
j=0

∞

∑
i=0

φi, j(ρ) B(β (i+1)+ (
1
α
+β )(ρ −1),(1− 1

α
)(ρ −1)+1)

]

.

Where

φi, j(ρ) =
(aβ λ )ρ αρ−1 (−1) j λ i (ρ + j)i Γ (ρ(a−1))

(1−exp(−λ ))aρΓ (ρ(a−1)− j) i! j!
.

3 Estimation and inference

Let Xi, i = 1,2, · · ·n., be a random sample of size n obtained from the generalize BurrXII-poisson (GBXIIP) distribution,
let θ = (a,α,β ,λ )T be the vetor of parameters of the generalize BurrXII-poisson (GBXIIP) distribution. Then we can
express the log-likelihood function for the vetor of parameters as

logℓ(θ ) = n loga+ n logα + n logβ + n logλ − an log(1−exp(−λ ))

+ (α −1)
n

∑
i=1

logxi − (β +1)
n

∑
i=1

log(1+ xα
i )

+ (a−1)
n

∑
i=1

log(1−exp(λ ((1+ xα
i )

−β −1)))+λ
n

∑
i=1

((1+ xα
i )

−β −1).
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And the first partial derivative of logℓ(θ ), that is ∂ℓ
∂a ,

∂ℓ
∂α ,

∂ℓ
∂β ,

∂ℓ
∂λ are computed as

∂ℓ
∂a

=
n
a
− n log(1−exp(−λ ))+

n

∑
i=1

log(1−exp(λ ((1+ xα
i )

−β −1))), (20)

∂ℓ
∂α

=
n
α
+

n

∑
i=1

logxi − (β +1)
n

∑
i=1

xα
i logxi

(1+ xα
i )

−β λ
n

∑
i=1

xα
i logxi

(1+ xα
i )

β+1

+(a−1)β λ
n

∑
i=1

xα
i logxi exp(λ ((1+ xα

i )
−β −1))

(1+ xα
i )

β+1 (1−exp(λ ((1+ xα
i )

−β −1)))
, (21)

∂ℓ
∂β

=
n
β
−

n

∑
i=1

log(1+ xα
i )−λ

n

∑
i=1

log(1+ xα
i )

(1+ xα
i )

β

+(a−1)λ
n

∑
i=1

log(1+ xα
i ) exp(λ ((1+ xα

i )
−β −1))

(1+ xα
i )

β (1−exp(λ ((1+ xα
i )

−β −1)))
, (22)

∂ℓ
∂λ

=
n
λ
− a nexp(−λ )

(1−exp(−λ ))
+

n

∑
i=1

((1+ xα
i )

−β −1)

− (a−1)
n

∑
i=1

((1+ xα
i )

−β −1) exp(λ ((1+ xα
i )

−β −1))

(1−exp(λ ((1+ xα
i )

−β −1)))
. (23)

The maximum likelihood estimate (MLEs)̂θ = (â, α̂, β̂ , λ̂ )T of θ = (a,α,β ,λ )T is obtained simultaneously by
solving Eqs. (20), ( 21), ( 22) and (23) equated to zero. These nonlinear equations can be solved numerically using
existing mathematical or statistical packages. For the asymptotic interval estimation and hypothesis tests of the four
parametersa,α,β andλ , we need 4×4 Fisher information matrix denoted by(J(θ )), under the usual condition that are
fulfilled for the parametersa,α,β , andλ in the interior of the parameter space but not on the boundary. The asymptotic
distribution of

√
n(θ̂ − θ ) is N4(0, I−1(θ )), which is a Normal 4−variate with zero mean and variance covarianceI(θ ).

This condition is also applicable ifI(θ ) is substitute by the information matrix evaluated atθ̂ , that isJ(θ̂ ). The Normal
4−variate distributionN4(0,J−1(θ )) can be used to establish an approximate confidence interval and region for the
model parametera,α,β , andλ . The 4×4 informtion matrix is given asJ(θ ) =−[∂ 2ℓ/∂θ∂θ T ], and the element ofJ(θ )
are given in Appendix(D4).

Theorem 3.1 Let g1(a;α,β ,λ ,xi) denote the function on the right of Eq. ( 20), where α, β and λ are the exact values of

the parameters, then, the equation g1(a;α,β ,λ ,xi) = 0 has at least one root for log(1−e−λ )> ∑n
i=1

log(1−e−λ((1+xα
i )−β −1)

)
n .

Theorem 3.2 Let g2(α;a,β ,λ ,xi) denote the function on the right of Eq. ( 21) where a,β and λ are the exact value of the
parameters, then, the equation g2(α;a,β ,λ ,xi) = 0 can take one of the following forms.
(i) For min{Xi}> 1 and a = 1.
(ii) For max{Xi}< 1 and a = 1.

Theorem 3.3 Let g3(β ;a,α,λ ,xi) be the function on the right of Eq. ( 22), where a, α and λ are the exact values of
the parameters , then, the equation g2(β ;a,α,λ ,xi) = 0, has at least one root for a 6= 1 and for a = 1, the root of
g3(β ;a,α,λ ,xi) = 0 lies in the interval (n((1+λ )∑n

i=1 log(1+ xα
i ))

−1,n(∑n
i=1 log(1+ xα

i ))
−1).

Theorem 3.4 Let g4(λ ;a,α,β ,xi) be the function on the right of Eq. ( 23), where a, α and β are the exact values of the
parameters, then, the equation g4(λ ;a,α,β ,xi) = 0, has at least one root.

Proofs. for theorem3.1, 3.2 and 3.3 see AppendixD1, D2 andD3 respectively. Theorem3.4 is similar to theorem3.3
for a 6= 1.

4 Applications

In this, section, we fit the GBXIIP distribution to two distinct real data set and we compare the performance with those of
the BXIIP, BXIIG by [5] and BurrXII by [7] distributions. The Akaike information criteria (AIC) andBayesian
information criteria (BIC) are used to assess the effectiveness of the models, the model with the smallest value of these
measures gives a better representation of the data set than the others. The histogram, empirical cdf and the fitted
distributions are plotted for each data set.
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First data set.

This data set represent the marks for the pace slow program inmathematics 2003, provided by [8], and recently studied
by [9]. the data set are: 29, 25, 50, 15, 13, 27, 15, 18, 7, 7, 8, 19, 12, 18, 5, 21,15, 86, 21, 15, 14, 39, 15, 14, 70, 44, 6, 23,
58, 19, 50, 23, 11, 6, 34, 18, 28, 34, 12, 37, 4, 60, 20, 23, 40, 65, 19, 31. As you can see from Table1 the GBXIIP has
the AIC=409.9288 and BIC=408.6538, this show that GBXIIP fitthis data better then the other distributions. Also Figure
3 provide the plots of the histogram and empirical cdf of the first data with the estimated densities obtained using MLE
procedure.

Table 1: MLEs, ℓ(θ ), AIC and BIC for the first data
Models Estimated parameters ℓ(θ ) AIC BIC

GBXIIP(a,α,β ,λ ) â = 39.0759, α̂ = 22.8287 −200.9644 409.9288 408.6538
β̂ = 0.0607, λ̂ = 0.03404

BXIIP(α,β ,λ ) α̂ = 6.9462, β̂ = 0.0478 −245.5362 497.0724 496.1161
λ̂ = 1.4×10−4

BXIIG(α,β , p) α̂ = 10.2248, β̂ = 0.0325 −245.5352 497.07 496.114
p̂ = 1.0×10−4

BXII( α,β ) α̂ = 9.994,β̂ = 0.0332 −245.5353 495.071 494.433
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Fig. 3: (i) Histogram (ii) Empirical cdf of the first data and the fitted GBXIIP, BXIIP, BXIIG & BXII densities.

Second data set.

This data set is provided by [10] and recently analyzed by [11]. It is the measured in GPa for the strength of single carbon
fibers and impregnated one thousand carbon fibers tows. Each single fiber of carbon was examined under the tension at
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gauge length of ten millimeters. 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397,2.445, 2.454, 2.474, 2.518,
2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937,
2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408,
3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. The values
presented in Table2 shows that the smallest AIC and BIC belongs to the GBXIIP distribution. Therefore, GBXIIP fit the
data better than the other distributions. Also Figure 4 provide the plots of the histogram and empirical cdf of the first data
with the estimated densities obtained by MLE method.

Table 2: MLEs, ℓ(θ ), AIC and BIC for the second data.
Models Estimated parameters ℓ(θ ) AIC BIC

GBXIIP(a,α,β ,λ ) â = 243.327, α̂ = 159.5948 −58.9453 125.8906 125.088
β̂ = 0.03397, λ̂ = 0.1397

BXIIP(α,β ,λ ) α̂ = 17.194, β̂ = 0.05294 −138.1271 282.2542 281.6522
λ̂ = 4.03×10−4

BXIIG(α,β , p) α̂ = 22.6217, β̂ = 0.0402 −138.1267 282.2534 281.6514
p̂ = 1.0×10−4

BXII( α,β ) α̂ = 22.293,β̂ = 0.0408 −138.1267 280.2534 279.8521
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Fig. 4: (i) Histogram (ii) Empirical cdf of the first data and the fitted GBXIIP, BXIIP, BXIIG & BXII densities.

5 Conclusion

We have introduce a new probability model called generalizeBurrXII-poisson (GBXIIP) distribution. The GBXIIP
distributions consist of the BXIIP distribution as its special case. We provide explicit mathematical formulas for therth

moment, order statistics, moment of order statistics and the Renyi entropy. The existence of its MLEs are investigated
under some certain conditions. Finally we fitted the generalize BurrXII-poisson (GBXIIP) distribution to two real life
data set, in which the GBXIIP fit better than BXIIP, BXIIG and BXII distributions as measured by AIC and BIC.
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Appendix

D1:
lima →0 g1 = ∞, we show that lima →∞ g1 < 0.

lima →∞ g1 =−n log(1− e−λ )+∑n
i=1 log(1− e−λ ((1+xα

i )
−β−1)), thus, lima →∞ g1 < 0 only

if log(1−e−λ )>∑n
i=1

log(1−e−λ((1+xα
i )−β −1))

n . therefore,g1(β ;a,α,λ ,xi) =0 has at least one root, since it is a contineous
function and monotone which decreases from positive valuesto negetive values.

D2:
It is clear that, limα →0 g2(α;a,β ,λ ,xi) = ∞, we show that, limα →∞ g2(α;a,β ,λ ,xi)< 0.

thus, limα →∞ g2(α;a,β ,λ ,xi) = ∑n
xi<1logxi −β ∑n

xi>1logxi .

To show thatg2(α;β ,λ ,xi)< 0 asα → ∞, we consider the following cases.

(i) If min{Xi}> 1, a = 1, then,g2(α;a,β ,λ ,xi) =−β ∑n
xi>1logxi < 0.

(ii) If max{Xi}< 1, a = 1, then,g2(α;a,β ,λ ,xi) = ∑n
xi<1logxi < 0.

(iii) If max{Xi}> 1 and min{Xi}< 1 then,
g2(α;a,β ,λ ,xi) = ∑n

xi<1logxi−β ∑n
xi>1logxi < 0. Thus,g2(α;a,β ,λ ,xi)< 0 for all the cases, if and only ifxi 6= 1 for

somei = 1,2, · · · ,n. Since,g2(α;a,β ,λ ,xi) is a continuous function which decreases monotonically from positive values
to negative values, hence,g2(α;a,β ,λ ,xi) = 0 has at least one root.

D3:
For a = 1, letw3 =−λ ∑n

i=1
log(1+xα

i )

(1+xα
i )

β , clearlyw3 is strictly decreasing inβ ,

limβ →0 w3 =−λ ∑n
i=1 log(1+ xα

i ), thus,

g3(β ;a,α,λ ,xi)>
n
β −∑n

i=1 log(1+ xα
i )+ limβ →0 w3 =

n
β − (λ +1)∑n

i=1 log(1+ xα
i ),

then,g3(β ;a,α,λ ,xi)> 0 whenβ < n
(λ+1)∑n

i=1 log(1+xα
i )
.

And
limβ →∞ w3 = 0,

g3(β ;a,α,λ ,xi)<
n
β −∑n

i=1 log(1+ xα
i )+ limβ →∞ w3 =

n
β −∑n

i=1 log(1+ xα
i ),

thus,g3(β ;a,α,λ ,xi)< 0 whenβ > n
∑n

i=1 log(1+xα
i )
.

Henceg3(β ;a,α,λ ,xi) = 0 has at least one root in the interval
( n
(1+λ )∑n

i=1 log(1+xα
i )
, n

∑n
i=1 log(1+xα

i )
).

For a 6= 1

limβ →0 g3 = ∞. We show that, limβ →∞ g3 < 0.

limβ →∞ g3 = −∑n
i=1 log(1+ xα

i ) < 0, thusg3(β ;a,α,λ ,xi) = 0, has at least one root, sinceg3(β ;a,α,λ ,xi) is
contineous function and monotone which decreases from positive to negetive values.

D4:

The elements ofJ(θ ) are given by

∂ 2ℓ

∂α2 =− n
α2 − (β +1)

n

∑
i=1

xα
i (logxi)

2

(1+ xα
i )

+ (β +1)
n

∑
i=1

x2α
i logxi

(1+ xα
i )

2

+(a−1)β λ
n

∑
i=1

xα
i (logxi)

2 zi

(1+ xα
i )

β+1(1− zi)
− (a−1)(β +1)β λ

n

∑
i=1

x2α
i (logxi)

2 zi

(1+ xα
i )

β+2(1− zi)

− (a−1)β 2λ 2
n

∑
i=1

x2α
i (logxi)

2 zi

(1+ xα
i )

2(β+1)(1− zi)
− (a−1)β 2λ 2

n

∑
i=1

xα
i (logxi) z2

i

(1+ xα
i )

2(β+1)(1− zi)2

−β λ
n

∑
i=1

xα
i (logxi)

2

(1+ xα
i )

β+1
+(β +1)β λ

n

∑
i=1

xα
i (logxi)

2

(1+ xα
i )

β+2
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∂ 2ℓ

∂β 2 =− n
β 2 − (a−1)λ

n

∑
i=1

(log(1+ xα
i ))

2 zi

(1+ xα
i )

β (1− zi)
− (a−1)λ 2

n

∑
i=1

(log(1+ xα
i ))

2 zi

(1+ xα
i )

2β (1− zi)

− (a−1)λ 2
n

∑
i=1

(log(1+ xα
i ))

2 z2
i

(1+ xα
i )

2β (1− zi)
− (a−1)λ 2

n

∑
i=1

(log(1+ xα
i ))

2 z2
i

(1+ xα
i )

2β (1− zi)2

+λ
n

∑
i=1

(log(1+ xα
i ))

(1+ xα
i )

β

∂ 2ℓ

∂λ 2 =− n
λ 2 +

an exp(−λ )
(1−exp(−λ ))2 − (a−1)

n

∑
i=1

((1+ xα
i )

−β −1)2zi

(1− zi)

− (a−1)
n

∑
i=1

((1+ xα
i )

−β −1)2z2
i

(1− zi)2

∂ 2ℓ

∂a2 =− n
a2

∂ 2ℓ

∂α ∂a
= β λ

n

∑
i=1

xα
i (logxi)zi

(1+ xα
i )

β+1(1− zi)

∂ 2ℓ

∂α ∂β
=−

n

∑
i=1

xα
i logxi)

(1+ xα
i )

+ (a−1)λ
n

∑
i=1

xα
i (logxi)zi

(1+ xα
i )

β+1(1− zi)

− (a−1)β λ
n

∑
i=1

xα
i (logxi) (log(1+ xα

i )) zi

(1+ xα
i )

β+1(1− zi)

− (a−1)λ 2
n

∑
i=1

xα
i (logxi) (log(1+ xα

i )) z2
i

(1+ xα
i )

2β+1(1− zi)2

∂ 2ℓ

∂α ∂λ
= (a−1)β

n

∑
i=1

xα
i (logxi)zi

(1+ xα
i )

β+1(1− zi)

+ (a−1)β λ
n

∑
i=1

xα
i (logxi) ((1+ xα

i )
−β −1) zi

(1+ xα
i )

β+1(1− zi)

+ (a−1)β λ
n

∑
i=1

xα
i (logxi) ((1+ xα

i )
−β −1) z2

i

(1+ xα
i )

β+1(1− zi)2
−β

n

∑
i=1

xα
i (logxi)

(1+ xα
i )

β+1

∂ 2ℓ

∂β ∂λ
= (a−1)

n

∑
i=1

(log(1+ xα
i )) zi

(1+ xα
i )

β (1− zi)
−

n

∑
i=1

(log(1+ xα
i ))

(1+ xα
i )

β

+(a−1)λ
n

∑
i=1

(log(1+ xα
i )) ((1+ xα

i )
−β −1) zi

(1+ xα
i )

β (1− zi)

+ (a−1)λ
n

∑
i=1

(log(1+ xα
i )) ((1+ xα

i )
−β −1) z2

i

(1+ xα
i )

β (1− zi)2

∂ 2ℓ

∂β ∂a
= λ

n

∑
i=1

(log(1+ xα
i ))zi

(1+ xα
i )

β (1− zi)

∂ 2ℓ

∂λ ∂a
=− n exp(−λ )

(1−exp(−λ ))
−

n

∑
i=1

((1+ xα
i )

−β −1)zi

(1− zi)
.

Wherezi = exp(λ ((1+ xα
i )

−β −1)).
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