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Abstract: Prediction of number of involved lymph nodes in breast cancer patients is an important criterion to assess the severity
and progression of disease. The number of involved nodes is count data which often displays over-dispersion, hence the Poisson
and Negative Binomial distribution is ultimate choice for modeling. In this paper we have made an attempt to estimate thenumber
of involved lymph nodes in breast cancer patients using Bayesian regression approach assuming multivariate normal prior for the
parameters. The posterior estimates have been derived using MCMC pack and the best model has been selected based on Deviance
Information Criterion (DIC) values. The Bayesian NegativeBinomial regression over performed than the Poisson regression. The
predictors’ viz., tumor size, tumor grade, CA 15-3 marker and progesterone receptor status are significantly associated with the involved
lymph nodes of the breast cancer patients.
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1 Introduction

Breast cancer is the most commonly diagnosed malignancy among women and has become a big threat to human beings
globally. It has been described as an alarmingly health problem in India [1]. According to Indian Council of Medical
Research (ICMR) report on the metropolitan citiesviz. Delhi, Mumbai, Bangalore and Chennai; from 1982 to 2005; has
shown that the incidences of breast cancer has doubled. Overthe years, the incidence of breast cancer in India has steadily
increased and as many as 100,000 new patients are being detected every year [2, 3]. As per Indian population census
data, the rate of mortality due to cancer in India is high and alarming with about 806000 existing cases by the end of
the last century [4]. The rising graph of breast cancer both in developed and developing countries is a great challenge for
biomedical researchers, especially in India it is the first common cancer of urban women and second of rural women.

The risk factors which are associated to cancer increased manifold in the last century, It includes air pollution, smoking,
diet changes, insufficient physical activity, obesity, stress and so on. It is possible to control 40 percent death caused
by cancer if the risk factors are recognized and managed properly [5, 6]. Besides these other prognostic factors that are
considered to be independent variables include lymph node status, tumor size, tumor grade, estrogen/progesterone receptor
(ER/PR) status.

The most significant prognostic indicator for patients withearly stage breast cancer is the presence or absence of
auxiliary lymph node involvement. Furthermore, there is a direct relationship between the number of involved auxiliary
nodes and the risk of distant recurrence [7,8]. The accurate prediction of lymph nodes in breast cancer patients helps in
grading severity of disease, according to which extensive auxiliary surgery dissections can be avoided [9,10]. Although it
is an important prognostic factor but it is not necessarily associated with stages of cancer, as the patient with same
number of lymph nodes may be in different stages and the patients with more number of lymph nodes are not necessarily
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in more advanced stage [11]. Many authors have tried to investigate the status of lymphnodes (present or absent) in
breast cancer patients [12, 21] and also to determine the prognostic value of the number of negative lymph nodes with
respect to disease free survival of breast cancer patients after mastectomy [13]. The number of involved lymph nodes
which is considered to be a discrete variable, are highly variable within the population, hence Poisson Regression
model [14] is found to be the most appropriate form of analysis. Dwivedi et. al. (2010) [15] explored a number of
statistical models (viz., Poisson, Negative Binomial, Zero hurdle and Zero inflated Negative Binomial) to test model
abilities to predict the number of involved nodes. Kendal (2007) [16] described how well Negative Binomial distribution
takes care of number of involved nodes in cancer patients. Yeh et.al. (2013) [17] applied a Bayesian model for censored
positive count data in evaluating breast cancer progression.

In this paper we have made an attempt to estimate the number oflymph nodes using Bayesian regression approach
assuming multivariate normal prior for the parameters. Bayesian approach is widely applied for fitting several models
such as zero inflated generalized Poisson model [18], zero inflated regression model [19].

Bayesian methods make it easier to estimate and analyze complicated problems, while using standard classical
inference methods are quite cumbersome. Also, the Bayesianapproach allows us to include any prior information that
we have on the parameters in the model and hence obtain a much refined set of posterior estimates. In this work, we
analyze the standard Poisson and Negative Binomial regression model in a Bayesian setting, by adding a multivariate
normal prior on the regression coefficients. The reason for choosing normal prior is that the likelihood of Poisson
distribution and Normal distribution belongs to exponential family, and when a family of conjugate priors exists,
choosing a prior from that family simplifies calculations ofthe posterior distribution.

The article is organized as follows; in section2, we have discussed the material and methods used. In section3,
results have been given, and finally the discussion and conclusion has been presented in section4.

2 Material and Methods

Data source

The study population includes all female primary breast cancer patients treated at breast clinic. (Dept of Gen. Surgery,
IPGMER, SSKM Hospital, Kolkata) from Jan 2009 to Dec 2010, and had their pre-op serum CA15-3 measured and it
was reported on 7, 30 post-op day and every 6 months for 2 years. Patients were excluded if any other malignancy was
known from their previous history or if staging investigations at the time of diagnosis revealed evidence of instant
metastasis. A total of 85 patients fulfilled the criteria forthis analysis. Patients were treated with either modified radical
mastectomy (MRM) or quandrantectomy and auxiliary lymph node dissection with local radiotherapy (RT). After
completion of surgery, RT and appropriate adjuvant chemotherapy or hormone therapy was not altered according to
marker levels but was administered as indicated based on international guidelines.

Methods

Poisson regression: Poisson regression analysis derives its name from the Poisson distribution which is a mathematical
distribution often used to describe the probability of occurrence of count data. LetYi denotes the number of nodes for the
ith breast cancer patient. Since these data are in terms of counts, therefore, we assume thatYi follows a Poisson distribution
with meanλi (mean number of involved nodes). Hence, the probability of observing any specific countYi is given by the
following formula:

P(Yi = yi) =
e−λiλ yi

i

yi!
yi = 0,1,2, ..., λi > 0

We postulate that the mean valueλi depends on a set of predictorsx1,x2,x3, ...,xp such that

log(λi) = β0+β1x1+ ...+βpxp

Or,
λi = exp(β0+β1x1+ ...+βpxp)

λi = eX
′β

Bayesian Poisson regression

We have, f (yi/λi) =
e−λiλ yi

i

yi!
yi = 0,1,2, ...
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Let λi = exp

(

p
∑
j=1

xi jβ j

)

, be the linear combination of covariates, wherexi j (i = 1,2, ...,n; j = 1,2, ..., p) are the covariates

andβ j
′

s are the regression coefficients, then

f (yi) =

exp

[

−exp

(

p
∑
j=1

xi jβ j

)][

exp

(

p
∑
j=1

xi jβ j

)]yi

yi!

=

exp

[

−exp

(

p
∑
j=1

xi jβ j

)

+∑
i

yiexp

(

p
∑
j=1

xi jβ j

)]i

yi!

ly (β ) =
n

∏
i=1

f (yi)

=

exp

[

−
n
∑

i=1
exp

(

p
∑
j=1

xi jβ j

)

+∑
j

β j

p
∑
j=1

xi jβ j

]

n
∏
i=1

yi!

Let us assume the prior distribution forβ as

β j ∼ N (a j,b j) f or j = 1,2, ..., p

Then the joint density ofβ ′

s can be written as:

p(β1,β2,β3, ...,βp) =
p

∏
j=1

1

(2πb j)
1
2

exp

[

−
(β j − a j)

2

2b j

]

;−∞ < a j < ∞,b j > 0

Therefore the posterior distribution forβ ′

s can be obtained as:

P(β j/Yi) = Ly · p(β )

=

exp

[

−
n
∑

i=1
exp
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xi jβ j
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puttingd j = ∑xi jy j +
a j
b j

f or j = 1,2, ..., p

We will get,

P(β j/Yi) ∝ exp

[

−

n

∑
i=1

exp

(

p

∑
j=1

xi jβ j

)

−
1
2 ∑

j

β 2
j

b j
+∑
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(1)

which on simplification will yield a normal distribution with meand j variance 2b j.
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Bayesian Negative Binomial Regression
The Poisson regression model does not suit well to over dispersed data (i.e. variance is greater than mean), in that case
the Negative Binomial model is the best alternate choice foranalysis [14]. For introducing Negative Binomial regression
model to breast cancer patient data Bayesian setting,
Let Yi be the number of nodes for theith breast cancer patient, following Negative Binomial distribution with parameterr
(number of negative nodes preceding the first positive node)and p (probability of having positive node). Then, the
probability of observing any specific countYi is given by:

P(Y = yi) =
Γ (yi + r)

yi!Γ r
pr (1− p)yi yi = 0,1,2,3, ...; 0≤ p ≤ 1

with E (yi) =
r (1− p)

p

and V (yi) =
r (1− p)

p2 = µ2
i +

µ2
i
r

P(yi) =
Γ (yi + r)

yi!Γ r

[

r
(µi + r)

]r [ µi

µi + r

]yi

Let µi = exp

(

p
∑
j=1

xi jβ j

)

, the mean number of involved nodes be the linear combinationof covariates, where

xi j (i = 1,2,3, ...,n; j = 1,2,3, ..., p) are the covariates andβ ′

js are the regression coefficients.

Then the likelihood ofYi can be written as:

L(Y ) =
n

∏
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P(yi)

=
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∏
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yi!Γ r

)




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
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∏
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[
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]yi

logL(Y ) =C+ nlogr−∑
i

log(µi + r)− yi ∑
i

[logµi − log(µi + r)]

=C1− (1+ yi)∑
i

log(µi + r)− yi ∑
i

logµi

=C1− (1+ yi)∑
i

log
(

exi jβ j+r
)

− yi ∑
i

∑
j

xi jβ j

Then the posterior forβ ′

s assuming the same normal prior can be obtained as:

P(β j/Yi) =

(

C1− (1+ yi)∑
i

log(µi + r)− yi ∑
i

logµi

)

p

∏
j=1

1

(2πb j)
1
2

exp

[

−
(β j − a j)

2

2b j

]
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log
(
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)
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1

2b j
∑

j
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2

(2)

Considering multivariate normal prior for regression coefficients β ′

s, we have obtained the posterior summaries of
regression coefficients under both Poisson and Negative Binomial distributions separately. The posterior summaries have
been obtained using MCMCpack [25] and INLA package in R [24].

3 Model Comparison

Deviance Information Criterion(DIC

The deviance information criterion (DIC) [20] is a model assessment tool, which is a Bayesian alternativeto Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC). DIC is a Bayesian measure that takes account of
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both the goodness of fit and the complexity of a fitted model. The DIC is defined as follows;

DIC = D̂+2
(

D̄− D̂
)

WhereD̄ is the average of deviance(−2lnl) over the posterior distribution, and̂D is the deviance calculated at the
posterior mean parameters.PD=

(

D̄− D̂
)

effective number of parameters as a penalty term on the goodness of fit. The
smaller DIC value will be treated as better model fit. The p-values less than 0.05 were considered as significant results.
All the statistical analysis have been performed in R (version 3.2.0).

4 Results

The study population includes 85 breast cancer patients, who were diagnosed from Jan, 2009 to Dec, 2010. The mean age
of patients at diagnosis is 50.09 years (SD=12.82), rangingfrom 25 to 85 years. The descriptive characteristics of various
prognostic factors are shown in Table1 Out of 85 patients in the study, the number of involved nodes is found in 35
(41.2%) patients. The mean and standard deviation of numberof involved nodes per patient are 4.4 and 4.7 respectively.
The Table2 shows the summary statistics of posterior estimates obtained from Poisson distribution and Negative Binomial
distribution. The larger tumor size of the range (2-5cm) is significantly associated with increased risk of higher number of
lymph nodes. Also it reveals that tumor size, tumor grade (III), and CA15-3 (preoperative value) is consistently significant
across both the models. PR status is found to be statistically significant in Poisson regression model. Whereas the other
predictors viz., age, ER status and HN2 status are not significant in the both models. Since the DIC value for Negative
Binomial regression model (445.62) is smaller than the Poisson regression model (613.04) implying that the Negative
Binomial distribution can better explain the distributionof number of involved lymph nodes. Figure1 shows the trace
plots for convergence diagnostics and marginal posterior kernel density plots. The trace plot indicates that the Markov
chain has stabilized with good mixing and hence MCMC algorithm converged, and the kernel density plot estimates the
posterior marginal distribution.

Table 1: Descriptive Characteristics of Breast Cancer Patients (N=85)
Factors Categories(Code) Frequency Percentage

CA 15-3 U/ml
<25 10 11.8
≥25 75 87.2

Tumor Size (cm)

<2 (0) 24 27.9
2-5 (1) 48 55.8
≥5 (2) 13 15.1

Lymph nodes

0-3 (0) 50 58.8
4-9 (1) 19 22.4
≥9 (2) 16 18.8

Tumor Grade

I (1) 23 27.1
II (2) 42 49.4
III (3) 20 23.5

ER Status
Negative (0) 40 47.1
Positive (1) 45 52.9

PR Status
Negative (0) 48 56.5
Positive (1) 37 43.5

HN2 Status
Negative (0) 53 62.4
Positive (1) 32 37.6
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Table 2: Posterior Estimates obtained by using Poisson Regression and Negative Binomial Regression Model

Parameters
Poisson regression model Negative Binomial regression model

Mean SD 95 % HPD Mean SD 95 % HPD
(Intercept) 0.216 0.309 (-0.403, 0.811) 0.186 0.851 (-1.841, 1.510)
Age 0.007 0.004 (-0.002 , 0.016) 0.01 0.013 (-0.014, 0.036)
Tumor Size(cm)
2-5 0.756 0.163 (0.444 , 1.083) 0.938 0.426 (0.097, 1.775)
≥5 1.181 0.19 (0.812, 1.558) 1.303 0.525 (0.293, 2.359)
Tumor Grade
II -0.052 0.15 (-0.345, 0.244) -0.049 0.415 (-0.871, 0.761)
III 0.165 0.154 (0.014, 0.469) 0.21 0.448 (0.071, 1.092)
ER Status 0.036 0.136 (-0.23, 0.304) 0.149 0.416 (-0.677, 0.959)
PR Status 0.137 0.125 (0.010, 0.383) 0.108 0.399 (-0.892, 0.678)
HN2 Status -0.057 0.116 (-0.286, 0.169) -0.088 0.35 (-0.593, 0.786)
CA15 (Pre-op) 0.124 0.201 (-0.258, 0.533) 0.322 0.518 (0.021, 1.310)
DIC 613.04 445.62

Fig. 1: Trace plots of intercept for convergence diagnostics and marginal posterior kernel density plots.
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Fig. 2: Trace plots of ERstatus for convergence diagnostics and marginal posterior kernel density plots.

5 Discussion

In this paper we have tried to determine the predictors associated with the involved lymph nodes in breast cancer
patients. The number of involved nodes is most important therapeutic and prognostic factor for breast cancer [9]. In fact,
it plays a very important role in assessing the severity and progression of disease stage. Generally, the clinicians need to
predict the number of involved nodes in breast cancer patients in order to improve health outcomes. Many studies have
been carried out to predict the nodal status (presence or absence) in breast cancer patients, but a few authors have
highlighted the prediction of the number of involved nodes using statistical models for count data. Number of involved
nodes which is a discrete variable exhibits count data, hence Poisson and Negative Binomial regression models can be
the best choice for modeling these types of data. Guern and Vin Hung (2008) [23] found that Negative Binomial model
better predicts the involved number of nodes than Poisson regression model. Another study by Rodriguez et
al.(2009) [26] shows that Negative Binomial provides a better fit to the total number of involved nodes as compared to
Poisson process in meta analysis. All these studies fit various statistical models over count data and compare them but to
the best of our knowledge none of them explored these models under Bayesian setting. In this paper we have
demonstrated the applications of Bayesian regression approach under Poisson regression model and Negative Binomial
regression models assuming multivariate normal prior. Therational behind Bayesian approach is that, it incorporate the
prior information on the parameters in the model and hence obtain a much refined set of posterior estimates. Earlier
results states that Negative Binomial model describes better the number of nodal involvement than the Poisson model
due to excess variability (over dispersion) [16, 23]. Our findings also support that, in a Bayesian analysis Negative
Binomial regression model performs better than the Poissonregression model. The predictors viz., tumor grade (III),
tumor size, PR status and CA 15-3 are found to be statistically significant for involved lymph nodes across both the
models. Also we find that the larger the tumor size the increased is the risk of involved number of nodes.
We acknowledge some limitations of our study that may be considered. Firstly, granted the additional knowledge of
predictor?s namely menstrual status, parity, types of surgery etc. one could be able to provide better prediction of
involved number of nodes. Secondly, the study is a single centre study and may not represent the majority of the
populations considering the regional diversity of India.

6 Conclusion

The Bayesian Negative Binomial regression is a viable approach to describe the nodal distribution than the Bayesian
Poisson regression. The predictors? viz., tumor size, tumor grade, CA 15-3 marker and progesterone receptor status are
significantly associated with the involved lymph nodes of the breast cancer patients. Focusing in these predictors willhelp
the medical practitioner to start the early diagnosis of breast cancer patients.
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