
J. Stat. Appl. Pro.5, No. 1, 1-18 (2016) 1

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/050101

Application of Statistical Models to Select Tile Size
Minimizing the Execution Time of Parallelized Tiled Loop
Nests
Agnieszka Kamińska∗ and Włodzimierz Bielecki

Faculty of Computer Science and Information Technology, West Pomeranian University of Technology, ul.Żołnierska 49, 71-210
Szczecin, Poland

Received: 14 Oct. 2015, Revised: 14 Dec. 2015, Accepted: 16 Dec. 2015
Published online: 1 Mar. 2016

Abstract: The reduction of software development time is an important practical problem to be dealt with by contemporary computer
science. Resolving this problem is an object of research carried out both in scientific and industrial centres. One of themain areas of
this research is compilation. Within compilation, a computer program written in a programming language comprehensible for a man is
converted into an executable form comprehensible for a computer. Applying appropriately selected transformations (tiling also known
as blocking) during compilation, one can transform a program, written in a given programming language and for a given hardware
platform, to various yet semantically equivalent executables which however differ in execution times.
The paper presents a statistical model which allows for selecting from semantically equivalent, tiled source code variants of a given
program the variants with best anticipated execution times. The paper also demonstrates how the elaborated model can beapplied in
iterative compilation for shortening software development time.

Keywords: program execution time, tiling (blocking), iterative compilation, statistical models

1 Introduction

Minimization of data processing time and reduction of software development time are important practical problems to be
dealt with by contemporary computer science. These problems are of particular importance in practical applications of
computers - as, irrespective of the application area, computer users expect the machines to solve problems and execute
tasks as quickly as possible and at the lowest possible cost.In order to meet these expectations, many different concepts
regarding the operation of computer hardware and software have been elaborated and implemented.

Particular attention should be paid here to parallel computing and tiling (also known as blocking).
The essence of parallel computing is division of the task to be executed into smaller tasks which are then executed

simultaneously (or, in other words, in parallel); this in turn results in shortening of the time of execution of the initial
task. In view of the multitude and variety of modern programming languages and software development methodologies,
there is great diversity in the structure of modern computerprograms. Despite this diversity, most of time consuming
operations - i.e. calculations made within programs - is executed in program loops, so as sequences of operations
repeated until the stop condition has been fulfilled (a single repetition of the sequence of operations defined in the loopis
called ”iteration”). Therefore, loops and in particular nested loops (which are loops executed within other loops; the
entire structure comprising all the related loops is called”loop nest”) are the primary areas for parallelization in parallel
programs.

To shorten the execution time of loop nests, one often transforms their source codes to semantically equivalent forms,
by applying the transformation known as tiling (blocking).Within tiling, the iteration space of a given loop nest is divided
into smaller fragments (tiles/blocks) [1,27]; in consequence thereof iterations are executed not in theoriginal order but in
the order imposed by tiling. The purpose of tiling is to increase the reuse of data already loaded into the processor cache
and decrease the number of data transfers from the main memory (RAM) to the processor cache. As a result thereof, the

∗ Corresponding author e-mail:agnieszkakaminska@wp.pl

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jsap/050101

2 A. Kamińska, W. Bielecki: Application of statistical models to select...

program execution time is shortened. The shortening of program execution time is observed when the program is executed
sequentially [26,28] - which makes it reasonable to suppose that tiling may also be effective when the program is executed
in parallel.

One of the most significant problems related to tiling is how many iterations of a tiled loop should be executed within
a single tile, or, in other words, what tile size to adopt for agiven iteration space [7,20]. The tile size should be such that
the reuse of data already loaded into the processor cache is greatest possible.

Immanent characteristics of parallel computing and tilinginvolve the following, significant consequences:

–Parallel computing may be applied only to these problems andtasks which are divisible into ”parts” that can be
processed in parallel.

–Similarly to sequential processing combined with tiling, the organization of processor cache should be taken into
account in parallel processing combined with tiling.

–If parallel computing may be applied to a given problem or task, then there isat leastone way of dividing the
problem/task into ”parts” intended for parallel processing.

If there exists more than one possible division of the initial problem/task into ”parts” intended for parallel processing,
the inevitable question is:Which of the possible divisions is the best one, i.e. resultsin the shortest time of solving/executing
a parallelized problem/task in the target hardware environment?

In view of the complexity of contemporary hardware, the proper answer to this question cannot be found in a purely
theoretical way; it can only be found in an empirical way - through iterative compilation. Within iterative compilation, all
considered and semantically equivalent source code variants of a given program are executed in a target environment; their
execution times are compared and the source code variant with the shortest execution time is selected for final use. The
considered source code variants are executed in particulariterations of iterative compilation, in one source code variant
per iteration manner.

In case of programs solving complex problems for large data sets, it may take several hours or even days to execute
a single iteration of iterative compilation. Such a situation takes place e.g. for real life problems which, in view of the
necessity to be quickly solved, are subjected to being solved by means of parallel computing. For the sake of its potentially
being very time consuming, iterative compilation can be costly in practical applications, especially in case of commercial
software development. Therefore, a potential improvementin iterative compilation is to use a mathematical model in
order to select from possible source code variants of a givenprogram the ones with the shortest anticipated (estimated)
execution times and limit the empirical selection of the source code intended for final use to the so reduced set.

Potential practical advantages related to the proposed improvement in iterative compilation and the scientific gap in
this area have become an inspiration for our solution presented in this paper and involving the selection of the optimum -
from the program execution time point of view - tile size for parallelized programs by means of applying iterative
compilation oriented statistical models for the estimation of program execution time. We have decided to base our
approach on statistical models because of a great number of factors influencing program execution time and the
complexity of their mutual relations.

The contribution of this paper over related work is as follows:

–using pattern programs to elaborate a general model for the estimation of program execution time,
–using the general model and empirical data collected in the target hardware environment to elaborate a regression
specific model enabling one to estimate execution times for programs having the same, arbitrarily assumed
characteristics as pattern programs,

–applying the regression specific model to select the tile size minimizing the execution time of a parallelized program
in the target hardware environment.

The rest of the paper is organized as follows. Section2 explains the role of memory hierarchy and how to increase
benefits resulting thereof by tiling. Section3 describes the idea and basic assumptions of a general and specific model
for the estimation of program execution time. Section4 outlines a general model and its equation. Section5 describes
how we have estimated the values of parameters of an exemplary specific model derived from the general model. Section
6 discusses how we have verified the quality of estimations made according to the obtained specific model. Section7
presents the results of our experimental research. Section8 discusses related work; conclusions are drawn in Section9.

2 Tiling to increase benefits from memory hierarchy

A disproportion between the achievable speed of processingarithmetic/logical instructions by processors and the time
of accessing the memory subsystem is one of fundamental sources of performance problems with data processing in a
computer system. It takes several times longer to fetch datafrom some given locations in the RAM memory than to

c© 2016 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro.5, No. 1, 1-18 (2016) /www.naturalspublishing.com/Journals.asp 3

execute basic arithmetic or logical operations on these data. In consequence, memory is a bottleneck for data processing
in the entire computer system [2,3,15,16,25,29,30].

To reduce the impact of this disproportion on program execution time, hierarchical memory organization has been
introduced. It involves division of the entire memory available in a computer system into levels differing in their position
(i.e. the physical distance) in relation to the processor and in consequence, their access time [10,15,22,24]. Data which
are required to be provided within program execution are first attempted to be fetched from the memory hierarchy level
closest to the processor; if they are not found therein they are searched for on the other (i.e. of a greater access time)
memory hierarchy levels.

The list of particular memory hierarchy levels, sorted in the ascending order by their physical distance from the
processor and access time, is as follows:

–processor registers,
–processor cache L1,
–higher level processor caches (L2 and L3; L3 is mainly used for highly specific purposes),
–main memory (RAM),
–hard drives,
–offline memory.

Hierarchical memory organization results first and foremost in differences between data localities of particular levels of
the memory hierarchy. Data locality of a given memory hierarchy level is a degree to which the data already loaded
therein are sufficient to meet new data requests related to program execution without fetching any new data from higher
memory hierarchy levels (i.e. the levels for which their physical distance from the processor is greater than that of the
given memory hierarchy level). Increasing the data locality of the given memory hierarchy level results in shortening of
program execution time.

Tiling is a software technique popularly used for increasing data locality. Tiling can be applied at various memory
hierarchy levels; most often it is used at the processor cache level.

The most general case of tiling is that of a loop nest containing p nested loops which is transformed into a new,
semantically equivalent loop nest containing2p nested loops so that an appropriately selected number of iterations is
executed within thep innermost loops thereof [1,26]. As a result of such a transformation, the original, continuous iteration
space of the loop nest operating on table variables (matrices) is divided into smaller, continuous subspaces known as tiles
or blocks; each tile operates on some continuous fragments of the table variables (matrices) from the original iteration
space.

The idea of tiling can be explained in a simple way by the example of a source code for matrix multiplication. The
source code for matrix multiplication without tiling is presented in Table1. The source code for matrix multiplication
with tiling is presented in Table2.

Table 1: Matrix multiplication without tiling
for (i = 0;i < N; i++)

for (j = 0; j < N; j ++)
for (k= 0;k< N;k++)

D[i, j] = D[i, j]+E[i,k]∗F [k, j];

Table 2: Matrix multiplication with tiling
for (ii = 0;ii < N; ii +B)

for (j j = 0; j j < N; j j +B)
for (kk= 0;kk< N;kk+B)

for (i = ii ; i < min(ii +B,N); ii ++)
for (j = j j ; j < min(j j +B,N); j j ++)

for (k= kk;k < min(kk+B,N);kk++)
D[i, j] = D[i, j]+E[i,k]∗F [k, j];

Note:min(p,q) is a smaller of two values:p,q

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

4 A. Kamińska, W. Bielecki: Application of statistical models to select...

One of the most significant problems related to tiling is the selection of size of the tiles into which the iteration space
of a loop nest shall be divided. The tile size is optimal if thecorresponding program execution time is minimal. Despite
the extensive research in this area, the problem of selection of the optimum tile size on a non-empirical basis has not been
solved yet [21]. In practice, this means that only empirical selection of the tile size guarantees that the optimum tile size
is found - which, if there are many possible variants to choose from, makes this approach very time consuming and hence
impractical.

The alternative to time consuming, empirical selection of the optimum tile size in tiling is to formulate and then use
an algorithm which allows for finding a suboptimal tile size in tiling [11]. A proposal of such an algorithm for tiling at the
processor cache level is presented in [14].

In [14] it has been demonstrated that selecting the size of a squaretile for the processor cache level tiling of loop nests
one should take into account the organization of processor cache and size of table variables (matrices) processed in the
loops to be tiled. For a given loop nest, these 2 factors determine data reuse and interference and, in consequence, the loop
(hence, the entire program) execution time.

There are 2 types of data reuse: temporal data reuse and spatial data reuse. Temporal data reuse takes place when the
data fetched from a given memory location are many times reused in the program. Spatial data reuse takes place when the
data adjacent within a given cache line to the data fetched from a given memory location are used in the program [1,28].

Interference takes place when a cache line containing data that can be reused during execution of the program is
overwritten with new data despite the fact that there is sufficient unoccupied space in the processor cache whereto the new
data could well be stored instead - however, because of the cache organization, a specific and already occupied cache line
has to be overwritten [1,5,6,23].

There are 2 types of interference: self interference and cross interference. Self interference takes place when the data
that are already in the cache memory and the data that are to replace them are the elements of one and the same table.
Cross interference takes place when the data that are already in the cache memory and the data that are to replace them
are not stored under the same scalar variable/table [5,14].

Because of the specificity of cache memory operation, data reuse and interference are related to one another.
Namely, if for a given program (program loop) there is no temporal data reuse and the declared in the source code

total size of data to be processed in the program does not exceed the size of the L2 processor cache, the probability that
interference occurs is negligibly low. When spatial data reuse is the only type of data reuse in the program, the data
fetched to the processor cache memory are fully used by the processor in a very short time since fetching them, hence
the low probability in question. Thus, because of the very specificity of spatial data reuse, the probability of replacing
the data fetched to the cache memory and still to be used during execution of the program, with other data, is negligibly
low. In consequence, we have assumed that non-occurrence oftemporal data reuse for a given program is equivalent to
non-occurrence of interference for that program.

If for a given program (program loop) there is temporal data reuse, then the higher the temporal data reuse of the data
already fetched to the processor cache memory, the higher the probability of replacing with other data the data already
fetched to the cache memory and still to be used during execution of the program. This is a consequence of the specificity
of temporal data reuse which involves reusing the data fetched to the processor cache memory for a long time since the
moment of fetching them. Therefore, we have assumed that occurrence of temporal data reuse for a given program is
equivalent to occurrence of interference for that program.

From the practical point of view, tiling is only profitable when there is temporal data reuse in the tiled loop [5] -
which, in view of the discussion presented above, is equivalent to occurrence of interference. However, on the other hand,
according to [14] the side size of a square tile should be such as to prevent occurrence of self interference (yet, occurrence
of cross interference is acceptable) since occurrence of self interference results in a much longer program execution time
than that in the case when there is no self interference. Occurrence of cross interference does not impact program execution
time as strongly as occurrence of self interference.

Applying the approach proposed in [14], one can calculate for a square tile its boundary side sizeB (i.e. the largest
possible side size that can be applied when tiling a square matrix of side sizeN with square tiles) which induces no self
interference.

The relationship betweenB, the actually used side size (BLOCK SIZE) of a square tile, the side size (N) of a square
matrix under tiling and the resultant self interference is as follows:

If 0 < BLOCK SIZE≤ B then there is no self interference.
If B< BLOCK SIZE< N then there is self interference.
If BLOCK SIZE≥ N then tiling is not profitable from the practical point of view.
To quantitatively estimate the impact of cache level tilingon data locality, one can use data footprint. Data footprintis

an estimate calculated for a given program based on its source code.
Data footprint indicates the estimated minimum capacity ofdirect mapped cache memory which is essential for

simultaneously storing all the data processed in the program, assuming that the data stored in the cache are fully reused

c© 2016 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro.5, No. 1, 1-18 (2016) /www.naturalspublishing.com/Journals.asp 5

(both in the temporal and spatial aspect). Thus, data footprint indicates the minimum estimated volume of data which
will be fetched from the main memory to the cache memory during execution of the program.

If a given program can be expressed by means of various but semantically equivalent source codes, then the source
code variant which requires the smallest total volume of data to be fetched to the cache memory during execution of the
program involves the best data reuse and, in consequence, the shortest execution time.

3 Statistical model for the estimation of program executiontime

Because most of time consuming operations - calculations made within computer programs - are executed in loop nests,
we have decided to limit the scope of the applicability of a statistical model to be elaborated to a class of loop nests which
are often used in practice, namely: coarse grained parallelloop nests, represented in the OpenMP C/C++ standard. We
have tiled the loop nests in question to shorten their execution time in the target hardware environment.

Coarse grained granulation [12] takes place when the time of the execution of data processing related operations in
a program is longer than the total time of initializing theseoperations and transferring the data needed for the execution
of these operations. This type of granulation corresponds with the loop nest structure in which the outermost loop of the
nest is parallelized. Coarse grained granulation is typically used in parallelization of programs executed by currently very
popular multiprocessor machines with shared memory [13].

OpenMP [18] is currently a very popular standard for representing parallelism of applications written in C and C++
and intended for execution on multiprocessor machines withshared memory.

Our statistical model for the estimation of program execution time is based on a general model, i.e. a general equation
of a function to estimate the execution time of tiled coarse grained program loop nests presented in the OpenMP C/C++
standard.

Program execution time has been assumed as the dependent variable of the general model. We have assumed that
quantitative variables reflecting factors which significantly influence program execution time should be the independent
variables of the general model. Apart from dependent and independent variables, the general model comprises parameters
the values of which are unknown a priori.

We have decided that the values of these parameters should bedetermined for a specific computer environment by
means of regression analysis carried out for empirical datacollected in this environment. Regression analysis has been
selected for this purpose as it is a very well developed and commonly used method of identification and description
of dependencies found in sets of empirical data; moreover applying regression analysis it is possible to obtain simple
analytical equations (regression models) which express the dependencies in question with very good accuracy.

In order to collect the required empirical data, we have useda program prepared specially for this purpose and
representing some arbitrarily selected features which arespecific for tiling. This program is hereafter referred to asthe
pattern program. Taking into account the conclusions presented in section2, the assumed exemplary pattern program
matmultakes account of data reuse and interference. The source code of this program is presented in Table3.

Table 3: Pattern programmatmul
int ma[N][N],mb[N][N],mc[N][N];
int i, j ,k, r,N;

for (i = 0;i < N; i++) {
for (k= 0;k < N;k++) {

r = ma[i][k];
for (j = 0; j < N; j ++) {

mc[i][j] = mc[i][j]+ r ∗mb[k][j];
}

}
}

After substituting the parameters of a general model with values determined by means of regression analysis, the
general model becomes a specific one. The specific model defines the general model for a particular situation by assigning
relevant values to the parameters of the general model.

Each specific model is derived from the general model for a particular pattern program. Since for each program loop
it is possible to clearly state whether the loop exposes datareuse and interference and, more importantly, what program

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

6 A. Kamińska, W. Bielecki: Application of statistical models to select...

behaviour results thereof, these 2 criteria can be used to divide loops (hence, programs) into groups. Then, specific models
for a given hardware environment could be elaborated only for representatives of particular groups (i.e. pattern programs)
yet be used by entire groups. Thus, a specific model derived for a particular pattern program can be applied both to the
pattern program and to other programs with the same data reuse type and interference as in case of the pattern program
(such programs we hereafter call non pattern).

Although the influence of data reuse and interference on program execution time is clear, the same cannot be said
about the influence of tiling and it is so because the problem of determining a dependency between the tile size in tiled
code and the related program execution time has still not been solved for a general case. For this reason we have decided
not to tile pattern programs, as the dependencies empirically grasped from tiled pattern programs would be specific for
these programs and could hardly generalize to non pattern programs. Still, as the data reuse type and interference are
the common characteristics of both untiled pattern programs and tiled non pattern programs, specific models derived for
untiled pattern programs can be supposed to generalize sufficiently well to non pattern tiled programs. We demonstrate
in section7, based on the experimental results obtained for an exemplary specific model derived for the untiledmatmul
pattern program, that the specific model in question can satisfactorily be used for tiled non pattern programs.

In order to prevent the extrapolation of a specific model beyond the data range for which the model is constructed,
we have clearly defined what the scope of the applicability ofa specific model to non pattern programs is, by introducing
limitations on:

–the total size of data processed by a program,
–the maximum number of iterations in a single chunk of iterations assigned to be executed by an OpenMP program
thread,

–program execution time,
–the maximum tile side size for a square tile.

To assess whether, by applying a specific model, it is possible to estimate with sufficient accuracy the execution time
of non pattern programs, we have elaborated a method of assessing the quality of estimates generated by a specific model.
This quality assessment method relates achieved estimatesto real values determined empirically in a target environment.

Specific models can be used in iterative compilation to estimate the execution times of various source code variants of
a given program. Based on resultant estimates, one selects for execution in a target environment the source code variants
with several shortest anticipated execution times. From the so reduced set of source code variants, one selects for final
use the source code variant with the shortest execution timemeasured in the target hardware environment. As a result of
applying the specific models in such a way, the total time of carrying out iterative compilation for non pattern programs,
which meet the limitations related to application of specific models, will be shortened - since, instead of executing in the
target hardware environment all the source code variants, one would only execute the source code variants from a reduced
set of code variants.

4 General model

The execution time of a program is the resultant of the interaction of a great number of various heteregenous factors. So,
it is not possible to identify and quantify them all so that all of them could be included in a model for the estimation
of program execution time. Therefore, in order to elaboratethe model, we have decided to act in the following way:
select some factors which potentially influence program execution time, empirically prove that the selected factors indeed
influence program execution time and quantify their influence as the independent variables of the model.

Intuitively, the execution time of a given program depends on: factors related to the environment of program execution,
the structure of an executed program and a way in which the program is executed. Taking into account the expected area of
the application of our model for the estimation of program execution time, these intuitively selected factors are equivalent
to:

a) the structure of a parallel program and the type of parallelism exposed by this program,
b) the specificity of a problem to be resolved in parallel,
c) parameters of the hardware environment in which a parallel program is to be executed.

To derive a model, we have quantified the influence of factors a), b) and c) on program execution time in the following
way.

a) A parallel program and the type of parallelism exposed by this program
In the OpenMP C/C++ standard, parallelism is realized by multiple threads. The time of the execution of a parallel

program depends on the number of invoked OpenMP threads - therefore, the number of OpenMP threads executing the
program has been adopted as a potential independent variable (X4) of the general model.

c© 2016 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro.5, No. 1, 1-18 (2016) /www.naturalspublishing.com/Journals.asp 7

If a task to be executed is carried out within a program loop nest, each of invoked OpenMP threads is assigned to
execute a certain number of iterations of the loop nest. Depending on an adopted way of assigning loop nest iterations to
OpenMP threads, particular threads may be assigned to execute either identical or different numbers of loop nest iterations.

The time of the execution of a program loop nest is determinedby the execution time of the thread which has been
assigned to execute the greatest number of iterations, and in particular by the size of the largest chunk of iterations assigned
to this thread.

Therefore, we have adopted as an independent variable (X3) of the general model the maximum number of iterations
in a single chunk of iterations assigned to be executed by an OpenMP thread.

b) The specificity of a problem to be resolved in parallel
From a low level perspective, the specificity and variety of problems to be resolved in programs are reflected in the

number and type of arithmetic operations to be executed by a processor. A simple yet effective way of expressing this
observation quantitatively is to assign different weightsto different types of arithmetic operations. Weights should be
selected based on the analysis of execution times of instructions for a given processor. With this approach, it is
guaranteed that different types of arithmetic operations (e.g. addition and multiplication) are comparable. Therefore, the
total weighted number of arithmetic operations per single program thread has been adopted as an independent variable
(X2) of the general model.

c) Parameters of a hardware environment in which a parallel program is to be executed
Because of a significant disproportion between the processor speed and memory access time of today’s computers, it

is the memory - and especially the quickly accessible processor cache memory - that is one of the hardware elements that
determine the program execution time.

Ideally, all the data needed by the processor during programexecution should be available in the processor cache at
the moment when they are requested, instead of being just then fetched from the main memory into the processor cache.

On the other hand, the capacity of the cache memory and its replacement policy (associativity) determine what fraction
of data processed in the program will be available in the cache right at the moment they are requested.

This means that the time of program execution depends on the following factors.
1. The actual capacity of processor cache memory in a given computer system and its replacement policy

(associativity).
2. The minimum data storage capacity of direct mapped processor cache, which is necessary in order to contain all

the data processed in a program, assuming that the data stored in the cache memory are fully reused (both in the temporal
and spatial aspect) and that for tiling one used a square tileof the tile side size (BLOCK SIZE) which induces no self
interference.

The minimum data storage capacity in question can be estimated by means of data footprint (according to the methods
presented in [14] and [28]). In order to calculate the data footprint for a given program, it is sufficient to know its source
code; there is no need to execute this program. When tiling has been applied, calculating data footprint one should take
into account the resultant tiles into which the iteration space of a tiled loop nest has been divided. In practice, this means
that instead of adopting as the data footprint for the tiled iteration space a data footprint calculated for the entire iteration
space, one should sum data footprints of the resultant tilesand take this sum as the data footprint for the tiled iteration
space.

To illustrate the above, let us consider an exemplary iteration space set by the 2 loops: loopj and loopi (for simplicity,
it is assumed that for both the loops the number of iterationsis identical and equal toMATRIX SIZE, i.e. Ni = Nj =
MATRIX SIZE), which is tiled with a square tile with theBLOCK SIZE side size as presented in Figure1. For this
exemplary iteration space, the data footprint is equal to the sum of data footprints of the below listed resultant tiles:

–tiles for which: j = i = BLOCK SIZE
–tiles for which: j = BLOCK SIZEandi = Ni modBLOCK SIZE= MATRIX SIZEmodBLOCK SIZE
–tiles for which: j = Nj modBLOCK SIZE= MATRIX SIZEmodBLOCK SIZEandi = BLOCK SIZE
–tiles for which: j = Nj modBLOCK SIZE= MATRIX SIZE modBLOCK SIZEand i = Ni modBLOCK SIZE=
MATRIX SIZEmodBLOCK SIZE

and not to the data footprint calculated for the entire(i, j) iteration space.
3. A relation between 1. and 2.
In connection with the above discussion, a relation between1. and 2. has been adopted as an independent variable

(X1) of the general model.

Thus, the final list of the potential independent variables of our model comprises the following variables:X1, X2, X3,
X4.

With such a list of the potential independent variables of the model to be formulated and assuming that the dependent
variable isYt that estimates CPU time of the execution of a program loop nest by all program threads, expressed by the

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

8 A. Kamińska, W. Bielecki: Application of statistical models to select...

Figure 1: Untiled vs tiled iteration space of a loop nest

number of CPU clock cycles, we have undertaken regression analysis. The object of the regression analysis was empirical
data collected for thematmulpattern program prepared specially for that purpose. The selected method of regression
analysis was linear regression based on the classical method of least squares.

c© 2016 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro.5, No. 1, 1-18 (2016) /www.naturalspublishing.com/Journals.asp 9

According to the assumptions of linear regression, a dependency between the observed values of dependent variable
Y and the corresponding values of independent variablesX1, X2, . . . ,X p is expressed by equation (1):

Yi = a0+a1X1i +a2X2i + . . .+apX pi + εi =Yti + εi (1)

where:
i is the identifier of observations (i = 1, . . . ,n),
a0, . . . ,ap are parameters of unknown exact values; the values of these parameters are estimated by means of the

classical method of least squares,
X1i , . . . ,X pi are known values of independent variablesX1, X2, . . . ,X p, corresponding to the value of variableY for

the ith observation,
Yi is the value of dependent variableY for the ith observation,
Yti is the theoretical (estimated) value of dependent variableY for the ith observation,
εi is the statistical error (disturbance, noise) for theith observation.

Equation (1) can be applied when a dependency between empirically foundvalues of the dependent variable and
independent variables is either linear or linearly transformable nonlinear (i.e. power, exponential, logarithmic, or
hyperbolic).

Therefore, for independent variables:X1, X2, X3, X4 and dependent variableYt, the general model (which is a linear
regression model derived by means of the classical method ofleast squares) could take one of the following forms:

–a linear form, expressed by equation (2):

Yt= a1×X1+a2×X2+a3×X3+a4×X4 (2)

–a power form, expressed by equation (3):

Yt= X1a1
×X2a2

×X3a3
×X4a4 (3)

–an exponential form, expressed by equation (4):

Yt= a1X1
×a2X2

×a3X3
×a4X4 (4)

–a logarithmic form, expressed by equation (5):

Yt= a1× logX1+a2× logX2+a3× logX3+a4× logX4 (5)

–a hyperbolic form, expressed by equation (6):

Yt= a1×
1

X1
+a2×

1
X2

+a3×
1

X3
+a4×

1
X4

(6)

Note: Parameter a0 is not taken into account in equations (2) ÷ (6) because it has no practical sense for the modelled
phenomenon.

To determine the ultimate form of a general model, we have used:

–coefficient of determinationR2 (in order to determine the character of a dependency betweenthe dependent variable
and particular independent variables of a model),

–adjustedR2 (in order to select the ultimate list of independent variables from the potential independent variables of a
model).

Taking into account the nature of variablesX1, X2, X3, X4, Yt and their mutual relations, we could assume that a
dependency between all these variables is a power one.

This assumption has been verified by the examination of the value of the coefficient of determination (R2) calculated
for:

–variableYt and all the independent variables considered altogether (case 1/),
–variableYt and particular independent variables considered individually (cases 2/÷ 5/).

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

10 A. Kamińska, W. Bielecki: Application of statistical models to select...

Table 4: Values of the coefficient of determination for various possible forms of the general model - for thematmulprogram
1/ 2/ 3/ 4/ 5/

Form of the model R2
Yt.X1,X2,X3,X4 R2

Yt.X1 R2
Yt.X2 R2

Yt.X3 R2
Yt.X4

linear 0.9506216 0.0002301 0.9286567 0.3616036 0.4771490
power 0.9999514 0.6540767 0.9982205 0.9119271 0.9183616
exponential 0.9645971 0.1066810 0.5703056 0.4310208 0.9170599
logarithmic 0.8230448 0.8095558 0.5858303 0.5074892 0.4774223
hyperbolic 0.8098927 0.7669016 0.0014395 0.3219836 0.4602693

The values of the coefficient of determination obtained for thematmulpattern program are presented in Table4. The
greatest value ofR2 for case 1/ has been obtained for power model (3). Moreover, the aforementioned power model is
very well fitted for cases 2/÷ 5/ as well. This proves that there exists a power dependency between the dependent variable
and each of the considered potential independent variablesof the model.

VariablesX1, X2, X3, X4 have been proposed as potential independent variables of the general model. The reason
for defining these variables as potential is that the carriedout analysis ofR2 calculated forYt andXi (whereXi denotes a
proposed independent variable;i = 1,2,3,4) indicates that all these variables influence program execution time. However,
only after calculating the adjusted coefficient of determination for each possible subset of variablesX1, X2, X3, X4 one
can say which subset of the variables has the greatest value of the adjusted coefficient of determination and in consequence,
the strongest influence on program execution time.

The values of the adjusted coefficient of determination obtained for thematmulpattern program and power model (3)
are presented in Table5. The greatest value of adjustedR2 has been obtained when we take into account in power model
(3) all the potential independent variables, i.e. variables:X1, X2, X3, X4.

Table 5: Values of the adjusted coefficient of determination for various possible combinations of potential independent variables - for
thematmulprogram and power model (3)

Variables of the model R2 AdjustedR2

X1 0.6540767 0.6458404
X2 0.9982205 0.9981782

X3 0.9119271 0.9098301
X4 0.9183616 0.9164178

X1 X2 0.9994628 0.9994366
X1 X3 0.9383487 0.9353413
X1 X4 0.9655228 0.9638410

X2 X3 0.9982451 0.9981595
X2 X4 0.9982402 0.9981543

X3 X4 0.9549970 0.9528018
X1 X2 X3 0.9994630 0.9994227
X1 X2 X4 0.9999501 0.9999463
X1 X3 X4 0.9796433 0.9781166

X2 X3 X4 0.9982646 0.9981345
XXX111 XXX222 XXX333 XXX444 0.9999514 0.9999464

Based on the obtained values ofR2 and adjustedR2, we have adopted the following general model:

Yt= X1a1
×X2a2

×X3a3
×X4a4 (7)

where:
Yt is the estimated CPU time for the execution of the program loop nest by all program threads, expressed by the

number of CPU clock cycles,
X1 states for a value expressing the relation between the total size of cache L1 and L2 per single OpenMP thread and

data footprint per single OpenMP thread,
X2 is the total weighted number of arithmetic operations per single OpenMP thread,

c© 2016 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro.5, No. 1, 1-18 (2016) /www.naturalspublishing.com/Journals.asp 11

X3 is the maximum number of iterations in a single chunk of iterations assigned to be executed by an OpenMP thread
for a given assignment of iterations to OpenMP threads,

X4 is the number of OpenMP threads executing the program,
a1, a2, a3, a4 are parameters the values of which are determined by means of a regression analysis on empirical data

collected in a target software-hardware environment for a specially prepared sample.

5 Estimation of parameter values for a specific model

Our goal is to determine the values of parameters for a specific model for a given computer environment by means of
applying such a method that could be reapplied for any computer environment. Therefore, we have decided to determine
the values of parametersa1, a2, a3, a4 for a given environment by means of the statistical analysis of empirical data
collected in this environment.

To determine the values of parametersa1, a2, a3, a4, we have used thematmulpattern program. The source code of
thematmulprogram is presented in Table3.

Empirical data collected for a pattern program are the basisfor determining the values of parametersa1, a2, a3, a4 of
a specific model referring to all such programs which represent the same combination of data reuse and cache interference
as a pattern program. In this paper, a program, which is not a pattern program, but represents the same combination of
data reuse and cache interference as the pattern program, isreferred to as a non pattern program.

It should be stressed here that thematmulpattern program is anexemplarypattern program adopted simply in order to
determine an exemplary specific model on the basis of generalmodel (7). This realization of the pattern program (i.e. by
adopting thematmulprogram) is one ofmany possiblerealizations. Assuming some other realization of a patternprogram,
one could derive a specific model with domains different fromthe domains of the specific model derived from thematmul
pattern program. This in turn means that the proposed approach is highly universal, as it provides the possibility of
changing the domain of a specific model simply by modifying a pattern program.

In order to obtain empirical data that are representative for an environment under analysis, it has been assumed that
for the adopted pattern program:

1. The total size of the data processed in a loop nest does not exceed the size of L2 cache available for a single
processor.

Assumption 1 is expressed by the following formula:

λ =
total matrix size(N)

L2 per processor
≤ 1 (8)

where:
total matrix size(N) is the total size(in bytes)of the data occupied by the array variables processed in a loop nest,

with upper bounds of loop indices dependent onN,
L2 per processoris the size(in bytes)of L2 cache memory available for a single processor.

2. The relative difference between the mean and maximum number of iteration chunks per single OpenMP thread for
a given assignment of iterations to OpenMP threads does not exceed 50 % (the value assumed a priori).

Assumption 2 is expressed by the following formula:

θ =
no chunksmax−no chunksaverage

no chunksaverage
≤ 0.5 (9)

where:
no chunksmax is the maximum number of iteration chunks per single OpenMP thread for a given assignment of

iterations to OpenMP threads,
no chunksaverageis the mean number of iteration chunks per single OpenMP thread for a given assignment of iterations

to OpenMP threads.

3. The side size of a square tile in tiling should not be greater than the boundary sizeB inducing no self interference
and calculated in accordance with the approach proposed in [14].

For assumptions 1.÷ 3., the assumed pattern program (matmul) and hardware environment of empirical research
(processor: Intel Core 2 Quad Q6600, number of processor cores: 4, number of processor threads: 4, L1 data cache: 4
x 32 KB (8-way set associative, 64-byte line size), L2 cache: 2 x 4096 KB(16-way set associative, 64-byte line size),

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

12 A. Kamińska, W. Bielecki: Application of statistical models to select...

operating system: Linux Slax 6.1.2, compiler: gcc 4.2.4, version of OpenMP: 2.5, compilation level optimization: turned
off, compilation with the option: -O0), we have derived the following specific model:

Yt= X1−0.298695
×X20.623738

×X30.014426
×X40.962976 (10)

A resultant regression model should not be extrapolated outside the data range for which the regression model has
been constructed because the character of a dependency between the values of independent and dependent variables is
unknown outside the data range in question.

To avoid the risk of such an extrapolation while applying a specific model to non pattern programs, we have formulated
the following detailed assumptions regarding the scope of the applicability of specific models:

1. The value ofλ , calculated for a non pattern program as per equation (8), should not exceed the minimum/maximum
value ofλ calculated for a corresponding pattern program. This assumption is expressed by the following inequalities:

λmin(re f erenceLoop)≤ λ ≤ λmax(re f erenceLoop) (11)

where:
λ holds the value ofλ calculated for a non pattern program,
λmin(re f erenceLoop) represents the minimum value ofλ for a corresponding pattern program,
λmax(re f erenceLoop) represents the maximum value ofλ for a corresponding pattern program.

2. The value ofθ , calculated for a non pattern program as per equation (9), cannot exceed 0.5.

3. The actual time of the execution of a non pattern program ina target environment should be of the same order of
magnitude as the time of the execution of a corresponding pattern program. This assumption is expressed by the following
inequalities:

γmin(re f erenceLoop)≤ γ ≤ γmax(re f erenceLoop) (12)

where:
γ is the actual CPU time for the execution of a program by all program threads, expressed by the number of CPU clock

cycles,
γmin(re f erenceLoop) is the shortest (for a given sample of measured CPU times) actual CPU time for the execution

of a program loop nest by all program threads, expressed by the number of CPU clock cycles,
γmax(re f erenceLoop) is the longest (for a given sample of measured CPU times) actual CPU time for the execution of

a program by all program threads, expressed by the number of CPU clock cycles.
The assumption expressed by inequalities (12) has been introduced because there can be such programs for which

assumptions 1. and 2. are met, however, despite the similarity between these programs and corresponding pattern programs
in respect of data reuse and cache interference, in other respects the programs may differ so much from corresponding
pattern programs as to have execution times of a completely different order of magnitude than that of corresponding
pattern programs. This situation is not a problem, though, as by changing the number and type of arithmetic operations
executed in pattern programs one can easily change execution times of pattern programs and consequently, tailor them
to various orders of magnitude - so that they can be used as pattern programs for real life programs with very different
execution times.

4. The side size of a square tile in tiling should not be greater than the boundary sizeB inducing no self interference
and calculated in accordance with the approach proposed in [14].

6 Verification of the quality of estimations

The verification of the quality of estimations made according to the proposed general model is equivalent to the assessment
of the quality of an exemplary specific model derived from thegeneral model for thematmulpattern program.

The quality of the specific model has been assessed in a qualitative aspect and a quantitative aspect.
The qualitative quality assessment of the specific model hasbeen focused on recognizing whether applying the specific

model one can estimate with satisfactory accuracy the execution time of non pattern programs meeting the assumptions
regarding the scope of the applicability of specific models.

In practice, this means that one should check whether, for a given size of the problem solved in a program (program
loop nest), the trend of changes in measured execution timesper OpenMP thread of particular variants of a given program

c© 2016 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro.5, No. 1, 1-18 (2016) /www.naturalspublishing.com/Journals.asp 13

matches the trend of changes in corresponding estimated execution times per OpenMP thread calculated according to the
elaborated model.

The quantitative quality assessment of the specific model has been focused on determining the estimation errors that
one can expect to obtain while using the model. A relative estimation error has been calculated as follows:

δYt(per thread) is the relative estimation error forYt(per thread), calculated according to formula (13)

δY(per thread) = 100%×

∣

∣

∣

∣

Yt(per thread)− γ(per thread)
γ(per thread)

∣

∣

∣

∣

(13)

Yt(per thread) =
Yt

X4a4 (14)

γ(per thread) =
γ

X4a4 (15)

where:
Yt is the estimated CPU time for the execution of a program loop nest by all program threads, calculated according to

a relevant specific model and expressed by the number of CPU clock cycles,
Yt(per thread) is Yt per thread,
γ is the actual (i.e. empirically measured) CPU time spent on executing a program loop nest by all program threads,

expressed by the number of CPU clock cycles,
γ(per thread) is γ per OpenMP thread,
X4 is the number of OpenMP threads executing the program,
a4 is parametera4 of a relevant specific model.

It should be stressed here that because the main goal of the model application is iterative compilation, the qualitative
quality assessment and its results are much more important than the quantitative quality assessment and its results.
Within the trend matching verification carried out in the qualitative quality assessment, a sequence of various source
code variants of a given program sorted in the descending order by their estimated execution times per OpenMP thread
calculated according to the model is compared with a sequence of the same source code variants sorted in the descending
order by their measured execution times per OpenMP thread. The trend matching verification allows us to find out
whether, applying only a model, one can properly select fromall considered source code variants of a given program a
small subset of source code variants including the source code variant with the minimal actual execution time in a
hardware environment. Then, iterative compilation is carried out only for the source code variants from the selected
subset. Therefore, if the subset in question is properly selected, the estimation errors obtained within the quantitative
quality assessment are of minor importance.

7 Results of experimental research

In order to demonstrate that the obtained model is indeed useful in iterative compilation, we have used the NAS Parallel
Benchmarks (NPB) suite [9,17]. We have chosen NPB because it is a test suite dedicated for the assessment of the
performance of parallel computers and consists of a great number of very various loop nests.

4 loop nests (benchmarks) selected from the NPB test suite were the object of the experimental research. Selected
loop nests consist of 3 to 4 loops. For our experiments, each of the selected loop nests was transformed to several
semantically equivalent forms, by parallelizing its outermost loop (so as to expose coarse grained parallelism) and tiling
its two innermost loops. There are no dependencies in the parallelized loops - therefore, these loops were parallelized
and tiled manually. According to the conclusions presentedin [14], in case of tiling a sequentially processed loop nest
the tile of the boundary side sizeB (i.e. the largest possible side size inducing no self interference that could be applied
when tiling a square matrix of side sizeN) is optimal from the execution time perspective. Therefore, in our experimental
research carried out for loop nests processed in parallel, it was assumed that the tile side size could not be greater than
the boundary side sizeB; the value ofB was calculated by applying the approach proposed in [14].

The benchmarks selected for our experimental research are different from the pattern program, but they represent the
same combination of data reuse and cache interference as thepattern program. By means of the exemplary specific model
derived for thematmulpattern program, we estimated execution times for various source code variants of the 4 selected
benchmarks. In total, we estimated execution times for 54 various, tiled source codes.

For each selected benchmark, the experimental research wascarried out in the following way:
For each (semantically equivalent) source code variant of agiven benchmark, weestimated its execution time per

OpenMP thread in the target hardware environment, by applying a specific model derived for thematmulpattern program.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

14 A. Kamińska, W. Bielecki: Application of statistical models to select...

The estimates were sorted in the descending order, forming asequence. Then, source codes corresponding to particular
elements of the sequence were executed in the target environment and their empirically measured execution times per
OpenMP thread were registered.

Let:
t be the number of all various input source code variants for a given benchmark,
k (0< k < t) be the value given by the user and denoting the assumed numberof source code variants with shortest

estimated execution times for a given loop nest,
kB represent the minimum value ofk which guarantees that one selects for final use from semantically equivalent

source code variants the source code variant with the shortest execution time measured in the target environment and that
the set of source code variants used for selection purposes will include this source code variant which

(i)has been tiled with the square tile of the maximum side size not inducing self interference and, at the same time,
(ii)has the shortest measured execution time of all source code variants tiled with this tile side size.

kmin represent the minimum value ofk which guarantees that one selects for final use from semantically equivalent
source code variants the source code variant with the shortest execution time measured in the target environment.

For each benchmark under analysis, we compared estimated and measured execution times of its source code variants
having thek shortest estimated execution times. For each benchmark, weselected for final use from thek source code
variants the variant with the shortestmeasuredexecution time.

The fundamental problem here is what value ofk should be adopted and whether, for a given benchmark and its source
code variants,kmin = kB.

If k= t, then our approach does not reduce iterative compilation time.
If k= 1, it is not certain whether the source code variant with the shortest measured execution time will be selected for

final use because the specific model estimates execution timewith errors. It should be noted here that the larger the value
of variablek, the longer the time of iterative compilation. At the same time, the increase ink increases the probability
of selecting for final use the source code variant with the shortest execution time from all input variants. So, what is
the minimum value ofk (i.e. kmin) which guarantees that the source code variant with the shortest measured execution
time will be selected for final use is less thant iterations? The value ofkmin andkB can be determined by comparing the
measured and estimated execution times (per OpenMP thread)of t source code variants. LetM be the source code variant
with the shortest measured execution time per OpenMP thread. Let t source codes be sorted in the descending order by
their estimated execution times per OpenMP thread, forminga sequenceC and lets be such a source code variant in
sequenceC thats= M. Then,kmin is the position ofs in sequenceC taken in the reverse order. The value ofkB is equal
to the position, in sequenceC taken in the reverse order, of this source code variant whichhas been tiled with the tile of
the maximum side size not inducing self interference (calculated as per [14]) and which at the same time has the shortest
estimated execution time of all source code variants tiled with the tile side size in question.

For each of the selected benchmarks, we have assessed the quality of estimates obtained by applying the specific
model. For each of the benchmarks, the trend of changes in themeasured execution times per OpenMP thread of particular
variants of a given benchmark is matched by the trend of changes in corresponding estimations per OpenMP thread
calculated according to a relevant specific model. The conclusion about the matching trends has been formulated based
on the comparison of the respective linear trends.

The mean and maximum relative estimation errors calculatedin relation to execution times measured empirically for
all source code variants adopted for a given benchmark and the size of a problem, solved within the benchmark, do not
exceed 45 and 60 per cent points (detailed results are presented in Table6), respectively.

For each of the selected NPB benchmarks, we have also estimated the reduction of iterative compilation time (hence,
software development time) that could be achieved by selecting the side size of a square tile for parallelized benchmarks
by means of applying the specific model derived for thematmulpattern program. The so obtained estimates have been
compared to the estimated shortening of iterative compilation time that could be achieved by applying the maximum side
size (of a square tile) inducing no self interference and calculated according to [14].

The results are presented in Tables7÷ 8.
The carried out empirical research indicates that the maximum tile side size (of a square tile) inducing no self

interference and calculated according to [14] does not always optimize program execution time (see Table7). In case of
benchmarks UAdiffuse 3 and UAdiffuse 4, the empirically found tile side size optimizing program execution time is
smaller than the maximum tile side size (of a square tile) inducing no self interference and calculated according to [14].

When selecting the side size of a square tile for a parallelized source code based on our model and the procedure
described in this section, the source code variant selectedfor final use from semantically equivalent source code variants
is the one tiled with the tile of the size optimizing program execution time. This source code variant is found withinkmin
iterations of iterative compilation. The results presented in Table8 indicate that for the analysed benchmarks, finding the
optimum source code variants amongt semantically equivalent source code variants withinkmin instead oft iterations of

c© 2016 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro.5, No. 1, 1-18 (2016) /www.naturalspublishing.com/Journals.asp 15

Table 6: Quality assessment of estimates calculated according to specific model (10)

Loop nest (benchmark), problem sizeS

UA3, 50 UA4, 50 UA4, 66 UA11, 100 UA11, 267 UA16, 100 UA16, 267
[1] 9 9 6 9 6 9 6
[2] 34.59 27.41 26.46 41.76 39.94 40.90 37.38
[3] 40.19 35.65 29.30 56.95 52.75 54.73 50.22

[1] Number of various, semantically equivalent source code variants subjected to the estimation
of execution time
[2] Resultant mean forδYt(per thread) [%]
[3] Resultant maximum forδYt(per thread) [%]

The loop nests are denoted as follows:
UA3 - UA diffuse 3 (tiled)
UA4 - UA diffuse 4 (tiled)
UA11 - UA transfer11 (tiled)
UA16 - UA transfer16 (tiled)

Table 7: Selection of the side size for a square tile in tiling

Loop nest (benchmark), problem sizeS

UA3, 50 UA4, 50 UA4, 66 UA11, 100 UA11, 267 UA16, 100 UA16, 267
[1] 41 41 31 41 24 41 24
[2] 26 32 24 41 24 41 24
[3] 26 32 24 41 24 41 24

[1] Maximum side size (of a square tile) inducing no self interference and calculated according to [14]
[2] Tile side size optimizing program execution time - as per theresults of our experimental research
[3] Tile side size forkmin

The loop nests are denoted as follows:
UA3 - UA diffuse 3 (tiled)
UA4 - UA diffuse 4 (tiled)
UA11 - UA transfer11 (tiled)
UA16 - UA transfer16 (tiled)

iterative compilation results in reducing the iterative compilation time from approximately 4 to approximately 14 times
(detailed results are presented in Table8).

If, according to [14], one assumes that the maximum tile side size (of a square tile) inducing no self interference is
the tile side size optimizing program execution time - then,applying our procedure of searching amongt semantically
equivalent source code variants for the source code variantwith optimum execution time, the source code variant with
optimum execution time is found withinkB iterations of iterative compilation. For benchmarks UAdiffuse 3 and
UA diffuse 4, kmin < kB - and for these benchmarks finding amongt semantically equivalent source code variants the
source code variant with optimum execution time withinkB instead oft iterations of iterative compilation takes 2÷ 3
times longer than in the situation when the optimum source code variant is found withinkmin iterations of iterative
compilation. For benchmarks UAtransfer11 and UAtransfer16, kmin = kB - hence, for these benchmarks, finding
amongt semantically equivalent source code variants the source code variant with optimum execution time withinkB
instead oft iterations of iterative compilation takes the same time as in the situation when the optimum source code
variant is found withinkmin iterations of iterative compilation.

The experimental research has been focused on demonstrating the usefulness of our proposed approach when applied
to small benchmark codes. In view of the achieved, positive results we plan to fully implement our approach, integrate it
with some parallelizing source to source compiler and examine using a greater number of various benchmark codes the
effectiveness of the so enhanced compiler in generating source codes optimized for execution time.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

16 A. Kamińska, W. Bielecki: Application of statistical models to select...

Table 8: Reduction of iterative compilation time after applying specific model (10), derived for thematmulpattern program

Loop nest (benchmark), problem sizeS

UA3, 50 UA4, 50 UA4, 66 UA11, 100 UA11, 267 UA16, 100 UA16, 267
[1] 9 9 6 9 6 9 6
[2] 1 1 1 1 2 1 2
[3] 3 2 2 1 2 1 1
[4] 372 407 355 263 585 501 50 545 791 499 51 597 787 679
[5] 29 061 27 649 83 959 3 620 219 195 3 727 219 197
[6] 87 324 55 458 168 056 3 620 219 195 3 727 219 197
[7] 4.26 6.41 3.48 13.96 3.61 13.84 3.59
[8] 12.81 12.85 6.97 13.96 3.61 13.84 3.59

[1] t
[2] kmin
[3] kB
[4] Iterative compilation time fort source code variants -Tt
[5] Iterative compilation time forkmin source code variants -T kmin
[6] Iterative compilation time forkB source code variants -TkB

[7] Reduction of iterative compilation timeTt
TkB

[8] Reduction of iterative compilation timeTt
Tkmin

The loop nests are denoted as follows:
UA3 - UA diffuse 3 (tiled)
UA4 - UA diffuse 4 (tiled)
UA11 - UA transfer11 (tiled)
UA16 - UA transfer16 (tiled)

8 Related work

Program execution time, iterative compilation and selection of the optimum tile size in tiling are objects of scientific
research carried out in many centres. Within this research,various solutions have been proposed, namely methods for:
selecting the optimum tile size in tiling [14,5,31], forecasting program execution time [4], estimating program execution
time [8] or selecting the program source code variant with the shortest anticipated execution time [19].

An algorithm for finding the maximum tile side size which, when applied in order to tile square matrices with a
square tile, induces no self interference, is presented in [14]. By applying this algorithm it is possible to very quickly
determine the side size of the searched tile however - as shown by our experimental research described herein - in case
of parallelized source codes, applying the tile side size asfound by the algorithm does not always result in the optimum
program execution time.

An algorithm similar in the assumptions made to algorithm [14] yet allowing for finding rectangular tiles is presented
in [5].

A proposal of using ”synthetic” tiled programs which expose6 features related to temporal and spatial data reuse in
order to determine the tile size optimizing program execution time is presented in [31]. The presence of the above features
can be easily detected based only on the source code of a program. Synthetic programs are used for generation, by means
of neural networks, of the model enabling one to select the optimum tile size. The model is created for a given hardware
architecture and compiler. Preparation of the model is highly time consuming, because a lot of training data has to be
collected for teaching the neural network.

A method for elaborating models intended for forecasting execution times of particular parallel and distributed
programs is presented in [4]. The proposed method is based on linear regression. It assumes that a dedicated model for
forecasting program execution time should be formed for each program in a target computer environment. Models
elaborated in such a way are very well fitted to empirical dataand, as such, are a valuable tool for forecasting program
execution time in the considered domains of independent variables. However, elaborating a model in accordance with the
proposed method is time consuming (for each program, one hasto elaborate a separate model).

A random search strategy algorithm is proposed in [8]. By applying this algorithm, it is possible to reduce the time
of iterative compilation. The algorithm makes use of a method for finding the minimum execution time of a program.
The method in question lets one determine what the program execution time is if no cache misses occurred during the

c© 2016 NSP
Natural Sciences Publishing Cor.

J. Stat. Appl. Pro.5, No. 1, 1-18 (2016) /www.naturalspublishing.com/Journals.asp 17

execution of the program. However, it is not guaranteed thatapplying the random search strategy algorithm during iterative
compilation of a given program, one will find such a source code variant of the program whose execution time will be
approximately equal to the minimum execution time of this program.

A tournament predictor is presented in [19]. It is a model which for given input data - performance characteristics of a
program and two different sequences of compiler level optimizations - indicates a sequence of optimizations, which, once
applied, results in a shorter program execution time in comparison with the other sequence. The independent variables of
the model proposed in [19] are dynamic characteristics of the program (i.e. they are collected and calculated at run time)
- in practice, this means that program profiling has to be carried out whenever the model is to be used for a new program.

In view of the above discussed limitations of the approachespresented in [14,5,31,4,8,19] the approaches in question
are not adequate for carrying out the proposed improvement of iterative compilation, which involves an analytical selection
from semantically equivalent tiled source code variants ofa given program the ones with shortest anticipated execution
times in order to limit the empirical selection of the best source code variant to the so reduced set.

The solution we present in this paper is free from the limitations mentioned in the aforementioned approaches. To our
best knowledge, it is the first attempt to use statistical models for selection of the tile side size (of a square tile) minimizing
program execution time.

Applying our solution, it is possible to quickly elaborate models for the estimation of program execution time, which
are adequate both for pattern programs from which models have been derived and for completely different (non pattern)
programs which have only the presence of data reuse and cacheinterference in common with a corresponding pattern
program. Therefore, our solution is adequate for carrying out the proposed improvement of iterative compilation.

9 Conclusion

This paper presents our statistical model for the estimation of program execution time taking into account tiling. The
model has been elaborated based on empirical data collectedfor thematmulpattern program representing some arbitrarily
selected features related to the program structure and the specificity of program execution environment.

The elaborated specific model has been used to estimate execution times of non pattern programs. The accuracy of
estimations is satisfactory.

We have also estimated the reduction of iterative compilation time (and in consequence, the related software
development time) which could be achieved by applying specific models in accordance with the proposed procedure of
supporting iterative compilation with such models. For theexemplary programs presented in the paper and coming from
the NPB benchmark suite, we have selected the tile side size minimizing program execution time within iterative
compilation supported with the elaborated specific model inthe way as described in section7. By applying the specific
model for this purpose, the time of iterative compilation has been shortened from approximately 4 to approximately 14
times (depending on the benchmark) in relation to the time which would be needed for carrying out the tile side size
selection if iterative compilation was not supported with the specific model. Detailed results are presented in Table8.

The achieved results indicate that our solution presented in the paper is adequate for use in iterative compilation for
selection of the tile side size (of a square tile) optimizingprogram execution time and hence, gives a possibility of reducing
the time of software development.

References

[1] A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman. Compilers: Principles, Techniques, and Tools (2nd Edition), Addison Wesley, 2006.
[2] K. Asanovic et al. The landscape of parallel computing research: A view from Berkeley, EECS Department, University of California,

Berkeley, 2006.
[3] G. Bell, R. Sites, W. Dally, D. Ditzel, Y. Patt. Architects Look to Processors of Future, Microprocessor Report,10, 1-7 (1996).
[4] J. Berlińska, Methods of creating statistical models characterizing parallel and distributed applications. PhDthesis (in Polish),

Politechnika Szczecińska, 2005.
[5] S. Coleman, K.S. McKinley. Tile Size Selection Using Cache Organization and Data Layout, ACM SIGPLAN Notices,30, 279-290

(1995).
[6] K. Esseghir, Improving data locality for caches. Master’s thesis, Rice University, 1993.
[7] B.B. Fraguela, M.G. Carmueja, D. Andrade. Optimal tile size selection guided by analytical models, Parallel Computing: Current

& Future Issues of High-End Computing, Proceedings of the International Conference ParCo 2005, 565-572 (2005).
[8] G. Fursin, Iterative Compilation and Performance Prediction for Numerical Applications. PhD thesis, University of Edinburgh,

2004.
[9] J. Haoqiang, M. Frumkin, J. Yan. The OpenMP implementation of NAS parallel benchmarks and its performance, NASA Ames

Research Center, 1999.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

18 A. Kamińska, W. Bielecki: Application of statistical models to select...

[10] J.L. Hennessy, D.A. Patterson. Computer architecture: a quantitative approach, Elsevier, 2007.
[11] C. Hsu, U. Kremer. A quantitative analysis of tile size selection algorithms, The Journal of Supercomputing,27, 279-294 (2004).
[12] K. Ishizaka, M. Obata, H. Kasahara. Coarse grain task parallel processing with cache optimization on shared memory

multiprocessor, Languages and Compilers for Parallel Computing, 352-365 (2003).
[13] I.H. Kazi, D.J. Lilja. Coarse-grained Speculative Execution in Shared-memory Multiprocessors, Proceedings of the 1998

International Conference on Supercomputing - ICS ’98, Melbourne, Australia, 93-100 (1998).
[14] M.S. Lam, E.E. Rothberg, M.E. Wolf. The Cache Performance and Optimization of Blocked Algorithms, ACM SIGARCH

Computer Architecture News,19, 63-74 (1991).
[15] N.R. Mahapatra, V. Balakrishna. The processor-memorybottleneck: problems and solutions, Crossroads,5 (1999).
[16] S.A. McKee, Reflections on the memory wall, Proceedingsof the 1st conference on Computing frontiers, 162-167 (2004).
[17] NAS Parallel Benchmarks (2015), http://www.nas.nasa.gov/publications/npb.html
[18] The OpenMP API specification for parallel programming (2015), http://www.openmp.org/
[19] E. Park, S. Kulkarni, J. Cavazos. An Evaluation of Different Modeling Techniques for Iterative Compilation, Proceedings of the

14th international conference on compilers, architectures and synthesis for embedded systems, 65-74 (2011).
[20] J. Ramanujam, P. Sadayappan. Tiling of Iteration Spaces for Multicomputers, ICPP,2, 179-189 (1990).
[21] J. Shirako et al. Analytical bounds for optimal tile size selection, Compiler Construction, 101-121 (2012).
[22] W. Stallings, Computer Organization and Architecture: Designing for Performance (5th Edition), Prentice Hall, 2000.
[23] O. Temam, C. Fricker, W. Jalby. Cache interference phenomena, ACM SIGMETRICS Performance Evaluation Review,22, 261-

271 (1994)
[24] R. Van Der Pas, Memory hierarchy in cache-based systems, Sun Blueprints, 2002.
[25] G.V. Wilson, Practical parallel programming, The MIT Press, Cambridge, MA, 1995.
[26] M.E. Wolf, M.S. Lam. A Data Locality Optimizing Algorithm, ACM Sigplan Notices,26, 30-44 (1991).
[27] M. Wolfe, More iteration space tiling, Proceedings of the 1989 ACM/IEEE conference on Supercomputing, 655-664 (1989).
[28] M. Wolfe, High Performance Compilers for Parallel Computing, Addison-Wesley, 1996.
[29] W.A. Wulf, S.A. McKee. Hitting the memory wall: implications of the obvious, ACM SIGARCH computer architecture news,23,

20-24 (1995).
[30] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, F. Gustavson. An experimental comparison of cache-oblivious and cache-conscious

programs, Proceedings of the nineteenth annual ACM symposium on Parallel algorithms and architectures, 93-104 (2007).
[31] T. Yuki et al. Automatic creation of tile size selectionmodels, Proceedings of the 8th annual IEEE/ACM international symposium

on Code generation and optimization, 190-199 (2010).

Agnieszka Kamińska received the MSc degree in computer science
from the West Pomeranian University of Technology in Szczecin in 2009.
In 2014, she received the PhD degree in computer science fromthe West Pomeranian
University of Technology in Szczecin. Her research interests include parallel computing,
optimization of compilation and application of statistical methods in software engineering.

Włodzimierz Bielecki received the MSc degree in computer science from
the Kiev International University of Civil Aviation in 1975, the Candidate of Sciences (PhD)
degree in computer science from the Kiev Institute of Electrodynamics of the Ukrainian
Academy of Sciences in 1980, the Doctor of Sciences degree incomputer science from
the Kiev Institute of Simulation Problems in Power Engineering of the Ukrainian Academy
of Sciences in 1989 and in 1996 - the Professor title from the Ukrainian Education Ministry.
Since 1994, he is with the West Pomeranian University of Technology in Szczecin where he
works as the head of the Department of Software Engineering.His research interests include
parallel and distributed computing, optimizing compilersand compilation techniques.

c© 2016 NSP
Natural Sciences Publishing Cor.

	Introduction
	Tiling to increase benefits from memory hierarchy
	Statistical model for the estimation of program execution time
	General model
	Estimation of parameter values for a specific model
	Verification of the quality of estimations
	Results of experimental research
	Related work
	Conclusion

