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Abstract: The reduction of software development time is an importaattical problem to be dealt with by contemporary computer
science. Resolving this problem is an object of researatiechout both in scientific and industrial centres. One ofrtia@n areas of
this research is compilation. Within compilation, a congoydrogram written in a programming language comprehemsiola man is
converted into an executable form comprehensible for a cbenpApplying appropriately selected transformatiofigf also known

as blocking) during compilation, one can transform a progreritten in a given programming language and for a giverdware
platform, to various yet semantically equivalent execlasfwhich however differ in execution times.

The paper presents a statistical model which allows forctalg from semantically equivalent, tiled source codeastis of a given
program the variants with best anticipated execution tifiee paper also demonstrates how the elaborated model cappbed in
iterative compilation for shortening software developtrténe.
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1 Introduction

Minimization of data processing time and reduction of saftsvdevelopment time are important practical problems to be
dealt with by contemporary computer science. These prabbe of particular importance in practical applications of
computers - as, irrespective of the application area, coenpusers expect the machines to solve problems and execute
tasks as quickly as possible and at the lowest possiblelcostder to meet these expectations, many different coscept
regarding the operation of computer hardware and software heen elaborated and implemented.

Particular attention should be paid here to parallel compund tiling (also known as blocking).

The essence of parallel computing is division of the taska@kecuted into smaller tasks which are then executed
simultaneously (or, in other words, in parallel); this imrtuesults in shortening of the time of execution of the aliti
task. In view of the multitude and variety of modern programgrianguages and software development methodologies,
there is great diversity in the structure of modern compptegrams. Despite this diversity, most of time consuming
operations - i.e. calculations made within programs - isceted in program loops, so as sequences of operations
repeated until the stop condition has been fulfilled (a gmgpetition of the sequence of operations defined in theibbop
called "iteration”). Therefore, loops and in particularsted loops (which are loops executed within other loops; the
entire structure comprising all the related loops is calledp nest”) are the primary areas for parallelization imgle|
programs.

To shorten the execution time of loop nests, one often toansf their source codes to semantically equivalent forms,
by applying the transformation known as tiling (blockingjithin tiling, the iteration space of a given loop nest isided
into smaller fragments (tiles/blocks),R7]; in consequence thereof iterations are executed not inrigéal order but in
the order imposed by tiling. The purpose of tiling is to irase the reuse of data already loaded into the processor cache
and decrease the number of data transfers from the main rp¢RAM) to the processor cache. As a result thereof, the
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program execution time is shortened. The shortening ofraragxecution time is observed when the program is executed
sequentially 26,28] - which makes it reasonable to suppose that tiling may adseffective when the program is executed
in parallel.

One of the most significant problems related to tiling is hoangiterations of a tiled loop should be executed within
a single tile, or, in other words, what tile size to adopt f@igen iteration space/[20]. The tile size should be such that
the reuse of data already loaded into the processor cachestegt possible.

Immanent characteristics of parallel computing and tilmgplve the following, significant consequences:

—Parallel computing may be applied only to these problemstaskis which are divisible into "parts” that can be
processed in parallel.

—Similarly to sequential processing combined with tilinlge torganization of processor cache should be taken into
account in parallel processing combined with tiling.

—If parallel computing may be applied to a given problem oktdken there isat leastone way of dividing the
problem/task into "parts” intended for parallel procegsin

If there exists more than one possible division of the ihfirmblem/task into "parts” intended for parallel processi
the inevitable question isVhich of the possible divisions is the best one, i.e. reBulte shortest time of solving/executing
a parallelized problem/task in the target hardware envir@nt?

In view of the complexity of contemporary hardware, the moanswer to this question cannot be found in a purely
theoretical way; it can only be found in an empirical way -otingh iterative compilation. Within iterative compilatigatl
considered and semantically equivalent source code vada given program are executed in a target environmegit; th
execution times are compared and the source code varigntivatshortest execution time is selected for final use. The
considered source code variants are executed in partiteitations of iterative compilation, in one source coddasar
per iteration manner.

In case of programs solving complex problems for large dets, # may take several hours or even days to execute
a single iteration of iterative compilation. Such a sitaattakes place e.g. for real life problems which, in view a th
necessity to be quickly solved, are subjected to being dddyeneans of parallel computing. For the sake of its potiytia
being very time consuming, iterative compilation can belgas practical applications, especially in case of comaier
software development. Therefore, a potential improvemeiterative compilation is to use a mathematical model in
order to select from possible source code variants of a givegram the ones with the shortest anticipated (estimated)
execution times and limit the empirical selection of thersewcode intended for final use to the so reduced set.

Potential practical advantages related to the proposetbiwement in iterative compilation and the scientific gap in
this area have become an inspiration for our solution ptesdn this paper and involving the selection of the optimum -
from the program execution time point of view - tile size faarallelized programs by means of applying iterative
compilation oriented statistical models for the estimataf program execution time. We have decided to base our
approach on statistical models because of a great numbeactdr§ influencing program execution time and the
complexity of their mutual relations.

The contribution of this paper over related work is as foow

—using pattern programs to elaborate a general model forstira&ion of program execution time,

—-using the general model and empirical data collected indhget hardware environment to elaborate a regression
specific model enabling one to estimate execution times fognams having the same, arbitrarily assumed
characteristics as pattern programs,

—applying the regression specific model to select the tile Bimimizing the execution time of a parallelized program
in the target hardware environment.

The rest of the paper is organized as follows. SecBi@xplains the role of memory hierarchy and how to increase
benefits resulting thereof by tiling. Secti@describes the idea and basic assumptions of a general acificcpedel
for the estimation of program execution time. Sectdbautlines a general model and its equation. Sectiaescribes
how we have estimated the values of parameters of an exgngplacific model derived from the general model. Section
6 discusses how we have verified the quality of estimationsenaadording to the obtained specific model. Sec#on
presents the results of our experimental research. Se®tistusses related work; conclusions are drawn in Se6tion

2 Tiling to increase benefits from memory hierarchy

A disproportion between the achievable speed of processittynetic/logical instructions by processors and theetim
of accessing the memory subsystem is one of fundamentadeof performance problems with data processing in a
computer system. It takes several times longer to fetch flata some given locations in the RAM memory than to

(@© 2016 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro5, No. 1, 1-18 (2016) www.naturalspublishing.com/Journals.asp NS = 3

execute basic arithmetic or logical operations on these. diattonsequence, memory is a bottleneck for data proggessin
in the entire computer systerf, 3,15,16,25,29,30].

To reduce the impact of this disproportion on program exenuime, hierarchical memory organization has been
introduced. It involves division of the entire memory agdike in a computer system into levels differing in their fiosi
(i.e. the physical distance) in relation to the processariarconsequence, their access tiné, 15,22,24]. Data which
are required to be provided within program execution ar¢ ditempted to be fetched from the memory hierarchy level
closest to the processor; if they are not found therein tmeysaarched for on the other (i.e. of a greater access time)
memory hierarchy levels.

The list of particular memory hierarchy levels, sorted ie #scending order by their physical distance from the
processor and access time, is as follows:

—processor registers,

—processor cache L1,

—higher level processor caches (L2 and L3; L3 is mainly usedifghly specific purposes),
—main memory (RAM),

—hard drives,

—offline memory.

Hierarchical memory organization results first and forenoslifferences between data localities of particular le\e#

the memory hierarchy. Data locality of a given memory hiengrlevel is a degree to which the data already loaded
therein are sufficient to meet new data requests relatecgrgam execution without fetching any new data from higher
memory hierarchy levels (i.e. the levels for which their piogl distance from the processor is greater than that of the
given memory hierarchy level). Increasing the data logalftthe given memory hierarchy level results in shortenihg o
program execution time.

Tiling is a software technique popularly used for increggifata locality. Tiling can be applied at various memory
hierarchy levels; most often it is used at the processoretiel.

The most general case of tiling is that of a loop nest contgipi nested loops which is transformed into a new,
semantically equivalent loop nest containi?g nested loops so that an appropriately selected numberratidas is
executed within the innermost loops thereoi[26]. As a result of such a transformation, the original, comdius iteration
space of the loop nest operating on table variables (majris@ivided into smaller, continuous subspaces knowness ti
or blocks; each tile operates on some continuous fragméritgedable variables (matrices) from the original iteratio
space.

The idea of tiling can be explained in a simple way by the eXarmpa source code for matrix multiplication. The
source code for matrix multiplication without tiling is [m@nted in Tabld. The source code for matrix multiplication
with tiling is presented in Tabl2.

Table 1: Matrix multiplication without tiling
for (i=0;i <N;i++)
for (j=0;] <N;j++)
for (k=0;k < N;k++)

Table 2: Matrix multiplication with tiling
for (ii = 0;ii < N;ii +B)
for (jj =0;jj <N;jj+B)
for (kk= 0;kk < N; kk+ B)

for (i = ;i < min(ii + B, N);ii ++)
for (j=jj; i <min(jj+B,N);jj++)
for (k— Kk k < min(kk-+- B,N); Kk-+ +)
D['v” = D['v]]"'E[Ik}*F[kv”v

Note:min(p,q) is a smaller of two valuep,q
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One of the most significant problems related to tiling is thlestion of size of the tiles into which the iteration space
of a loop nest shall be divided. The tile size is optimal if taeresponding program execution time is minimal. Despite
the extensive research in this area, the problem of sefegfithe optimum tile size on a non-empirical basis has nohbee
solved yet 1]. In practice, this means that only empirical selectionha tile size guarantees that the optimum tile size
is found - which, if there are many possible variants to clkedosm, makes this approach very time consuming and hence
impractical.

The alternative to time consuming, empirical selectionhef dptimum tile size in tiling is to formulate and then use
an algorithm which allows for finding a suboptimal tile simgiling [11]. A proposal of such an algorithm for tiling at the
processor cache level is presentedlid] [

In [14] it has been demonstrated that selecting the size of a stjleaf@r the processor cache level tiling of loop nests
one should take into account the organization of processthtecand size of table variables (matrices) processed in the
loops to be tiled. For a given loop nest, these 2 factors deterdata reuse and interference and, in consequencegihe lo
(hence, the entire program) execution time.

There are 2 types of data reuse: temporal data reuse andl sfzt reuse. Temporal data reuse takes place when the
data fetched from a given memory location are many timeseeirsthe program. Spatial data reuse takes place when the
data adjacent within a given cache line to the data fetched & given memory location are used in the progr&ygag.

Interference takes place when a cache line containing fiatacan be reused during execution of the program is
overwritten with new data despite the fact that there isdeffit unoccupied space in the processor cache wheretowhe ne
data could well be stored instead - however, because of tfeeaganization, a specific and already occupied cache line
has to be overwritteri]5,6,23].

There are 2 types of interference: self interference ansisdrgerference. Self interference takes place when tlze dat
that are already in the cache memory and the data that ar@lecesthem are the elements of one and the same table.
Cross interference takes place when the data that are gliretiie cache memory and the data that are to replace them
are not stored under the same scalar variable/t&bl].

Because of the specificity of cache memory operation, datserand interference are related to one another.

Namely, if for a given program (program loop) there is no tenap data reuse and the declared in the source code
total size of data to be processed in the program does notésthe size of the L2 processor cache, the probability that
interference occurs is negligibly low. When spatial dataseeis the only type of data reuse in the program, the data
fetched to the processor cache memory are fully used by theepsor in a very short time since fetching them, hence
the low probability in question. Thus, because of the vemsctiity of spatial data reuse, the probability of replacin
the data fetched to the cache memory and still to be usedglexiacution of the program, with other data, is negligibly
low. In consequence, we have assumed that non-occurreriempbral data reuse for a given program is equivalent to
non-occurrence of interference for that program.

If for a given program (program loop) there is temporal datsse, then the higher the temporal data reuse of the data
already fetched to the processor cache memory, the higheartibability of replacing with other data the data already
fetched to the cache memory and still to be used during execot the program. This is a consequence of the specificity
of temporal data reuse which involves reusing the data éet¢h the processor cache memory for a long time since the
moment of fetching them. Therefore, we have assumed thatri@tce of temporal data reuse for a given program is
equivalent to occurrence of interference for that program.

From the practical point of view, tiling is only profitable wh there is temporal data reuse in the tiled loBjp-[
which, in view of the discussion presented above, is egentdab occurrence of interference. However, on the othed han
according to 14] the side size of a square tile should be such as to preventreee of self interference (yet, occurrence
of cross interference is acceptable) since occurrencdfahgerference results in a much longer program execuiioie t
than that in the case when there is no self interference. (@auee of cross interference does notimpact program execut
time as strongly as occurrence of self interference.

Applying the approach proposed i), one can calculate for a square tile its boundary side Bigiee. the largest
possible side size that can be applied when tiling a squatexnaéd side sizeN with square tiles) which induces no self
interference.

The relationship betweeB, the actually used side sizBI(OCK _SIZE) of a square tile, the side sizB) of a square
matrix under tiling and the resultant self interferencesisalows:

If 0 < BLOCK SIZE < B then there is no self interference.

If B< BLOCK SIZE< N then there is self interference.

If BLOCK_SIZE > N then tiling is not profitable from the practical point of view

To quantitatively estimate the impact of cache level tilamgdata locality, one can use data footprint. Data footfisint
an estimate calculated for a given program based on its scoe.

Data footprint indicates the estimated minimum capacitydioéct mapped cache memory which is essential for
simultaneously storing all the data processed in the progaasuming that the data stored in the cache are fully reused
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(both in the temporal and spatial aspect). Thus, data foutimdicates the minimum estimated volume of data which
will be fetched from the main memory to the cache memory dpexecution of the program.

If a given program can be expressed by means of various butrgarally equivalent source codes, then the source
code variant which requires the smallest total volume o datbe fetched to the cache memory during execution of the
program involves the best data reuse and, in consequercghdintest execution time.

3 Statistical model for the estimation of program executiortime

Because most of time consuming operations - calculatiortemaéthin computer programs - are executed in loop nests,
we have decided to limit the scope of the applicability ofatistical model to be elaborated to a class of loop neststwhic
are often used in practice, namely: coarse grained patatipl nests, represented in the OpenMP C/C++ standard. We
have tiled the loop nests in question to shorten their exactitme in the target hardware environment.

Coarse grained granulatiohZ] takes place when the time of the execution of data procgssiated operations in
a program is longer than the total time of initializing thegerations and transferring the data needed for the executi
of these operations. This type of granulation corresporitistive loop nest structure in which the outermost loop of the
nest is parallelized. Coarse grained granulation is tylyicaed in parallelization of programs executed by cursevery
popular multiprocessor machines with shared memb8}; [

OpenMP L8] is currently a very popular standard for representing lfelism of applications written in C and C++
and intended for execution on multiprocessor machines stitved memory.

Our statistical model for the estimation of program examutime is based on a general model, i.e. a general equation
of a function to estimate the execution time of tiled coansergd program loop nests presented in the OpenMP C/C++
standard.

Program execution time has been assumed as the dependabtevaf the general model. We have assumed that
quantitative variables reflecting factors which signifitamfluence program execution time should be the independe
variables of the general model. Apart from dependent aneliaddent variables, the general model comprises paramneter
the values of which are unknown a priori.

We have decided that the values of these parameters shodlet®amined for a specific computer environment by
means of regression analysis carried out for empirical dallacted in this environment. Regression analysis has bee
selected for this purpose as it is a very well developed amdneonly used method of identification and description
of dependencies found in sets of empirical data; moreovelyaq regression analysis it is possible to obtain simple
analytical equations (regression models) which expresdéipendencies in question with very good accuracy.

In order to collect the required empirical data, we have wsgaogram prepared specially for this purpose and
representing some arbitrarily selected features whiclspeeific for tiling. This program is hereafter referred totlaes
pattern program. Taking into account the conclusions pitesein sectior?, the assumed exemplary pattern program
matmultakes account of data reuse and interference. The souresofthis program is presented in Tal3le

Table 3: Pattern programrmatmul
int ma[NJ[N], mb{NJ[NJ, mc[NJ[NJ;
inti,j,krN;

for (i=0;i <N;i++) {
for (k=0;k < N;k++) {
r =mdi][K];
for(j=0;j <N;j++){
, mdi][j] = mdi][j] +r+mblk][j];

After substituting the parameters of a general model witlies determined by means of regression analysis, the
general model becomes a specific one. The specific model défiegeneral model for a particular situation by assigning
relevant values to the parameters of the general model.

Each specific model is derived from the general model for &quaar pattern program. Since for each program loop
it is possible to clearly state whether the loop exposesmaise and interference and, more importantly, what program
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behaviour results thereof, these 2 criteria can be useditedbops (hence, programs) into groups. Then, specificatsod
for a given hardware environment could be elaborated onlyeforesentatives of particular groups (i.e. pattern o)

yet be used by entire groups. Thus, a specific model derivea particular pattern program can be applied both to the
pattern program and to other programs with the same data tgpe and interference as in case of the pattern program
(such programs we hereafter call non pattern).

Although the influence of data reuse and interference onrprogxecution time is clear, the same cannot be said
about the influence of tiling and it is so because the probledetermining a dependency between the tile size in tiled
code and the related program execution time has still nat beklved for a general case. For this reason we have decided
not to tile pattern programs, as the dependencies empyrigedsped from tiled pattern programs would be specific for
these programs and could hardly generalize to non pattemgrams. Still, as the data reuse type and interference are
the common characteristics of both untiled pattern progrand tiled non pattern programs, specific models derived for
untiled pattern programs can be supposed to generalizeisuffy well to non pattern tiled programs. We demonstrate
in section?7, based on the experimental results obtained for an exemgpecific model derived for the untiledatmul
pattern program, that the specific model in question casfaatorily be used for tiled non pattern programs.

In order to prevent the extrapolation of a specific model beyihe data range for which the model is constructed,
we have clearly defined what the scope of the applicabiliy specific model to non pattern programs is, by introducing
limitations on:

—the total size of data processed by a program,

—the maximum number of iterations in a single chunk of itemagi assigned to be executed by an OpenMP program
thread,

—program execution time,

—-the maximum tile side size for a square tile.

To assess whether, by applying a specific model, it is pastibéstimate with sufficient accuracy the execution time
of non pattern programs, we have elaborated a method ofsasgéise quality of estimates generated by a specific model.
This quality assessment method relates achieved estitoatesl values determined empirically in a target environine

Specific models can be used in iterative compilation to edtrthe execution times of various source code variants of
a given program. Based on resultant estimates, one seteetgdcution in a target environment the source code variant
with several shortest anticipated execution times. Froensthreduced set of source code variants, one selects for final
use the source code variant with the shortest executionrtieesured in the target hardware environment. As a result of
applying the specific models in such a way, the total time ofyirag out iterative compilation for non pattern programs,
which meet the limitations related to application of spedifiodels, will be shortened - since, instead of executingén t
target hardware environment all the source code varianesywould only execute the source code variants from a reduced
set of code variants.

4 General model

The execution time of a program is the resultant of the irtéra of a great number of various heteregenous factors. So,
it is not possible to identify and quantify them all so thdtadlthem could be included in a model for the estimation
of program execution time. Therefore, in order to elabothéemodel, we have decided to act in the following way:
select some factors which potentially influence prograncetien time, empirically prove that the selected factodeied
influence program execution time and quantify their infliesas the independent variables of the model.

Intuitively, the execution time of a given program depenalsfactors related to the environment of program execution,
the structure of an executed program and a way in which thgranois executed. Taking into account the expected area of
the application of our model for the estimation of prograra@xion time, these intuitively selected factors are eajeivt
to:

a) the structure of a parallel program and the type of pdisiteexposed by this program,

b) the specificity of a problem to be resolved in parallel,

c) parameters of the hardware environment in which a pam@ibgram is to be executed.

To derive a model, we have quantified the influence of factpiis)and c) on program execution time in the following
way.

a) A parallel program and the type of parallelism exposedis/drogram

In the OpenMP C/C++ standard, parallelism is realized bytiplelthreads. The time of the execution of a parallel
program depends on the number of invoked OpenMP threadseftine, the number of OpenMP threads executing the
program has been adopted as a potential independent eafiah)lof the general model.
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If a task to be executed is carried out within a program loogt,neach of invoked OpenMP threads is assigned to
execute a certain number of iterations of the loop nest. beipg on an adopted way of assigning loop nest iterations to
OpenMP threads, particular threads may be assigned totexaither identical or different numbers of loop nest itienas.

The time of the execution of a program loop nest is determimethe execution time of the thread which has been
assigned to execute the greatest number of iterationsnaratticular by the size of the largest chunk of iteratiorsigreed
to this thread.

Therefore, we have adopted as an independent variABleaf the general model the maximum number of iterations
in a single chunk of iterations assigned to be executed bymn@P thread.

b) The specificity of a problem to be resolved in parallel

From a low level perspective, the specificity and variety mijlems to be resolved in programs are reflected in the
number and type of arithmetic operations to be executed hyeepsor. A simple yet effective way of expressing this
observation quantitatively is to assign different weigtutslifferent types of arithmetic operations. Weights skoog
selected based on the analysis of execution times of inginscfor a given processor. With this approach, it is
guaranteed that different types of arithmetic operatieng. @ddition and multiplication) are comparable. Tharefthe
total weighted number of arithmetic operations per singtegpam thread has been adopted as an independent variable
(X2) of the general model.

c) Parameters of a hardware environment in which a paralgrpm is to be executed

Because of a significant disproportion between the procegps®d and memory access time of today’s computers, it
is the memory - and especially the quickly accessible psmresache memory - that is one of the hardware elements that
determine the program execution time.

Ideally, all the data needed by the processor during progseenution should be available in the processor cache at
the moment when they are requested, instead of being jusfebehed from the main memory into the processor cache.

On the other hand, the capacity of the cache memory and icepent policy (associativity) determine what fraction
of data processed in the program will be available in the eaigint at the moment they are requested.

This means that the time of program execution depends omtog/fng factors.

1. The actual capacity of processor cache memory in a givenpuater system and its replacement policy
(associativity).

2. The minimum data storage capacity of direct mapped psocamche, which is necessary in order to contain all
the data processed in a program, assuming that the datd sidhe cache memory are fully reused (both in the temporal
and spatial aspect) and that for tiling one used a squareftillee tile side sizeBLOCK SIZE) which induces no self
interference.

The minimum data storage capacity in question can be eglthist means of data footprint (according to the methods
presented in14] and [28]). In order to calculate the data footprint for a given pray it is sufficient to know its source
code; there is no need to execute this program. When tilisghlean applied, calculating data footprint one should take
into account the resultant tiles into which the iteratioacof a tiled loop nest has been divided. In practice, thsnse
that instead of adopting as the data footprint for the titedhition space a data footprint calculated for the entmfion
space, one should sum data footprints of the resultantditelstake this sum as the data footprint for the tiled iteratio
space.

To illustrate the above, let us consider an exemplary i@napace set by the 2 loops: lopand loopi (for simplicity,
it is assumed that for both the loops the number of iteratisridentical and equal tMATRIXSIZE i.e. N, = N; =
MAT RIX_SIZE), which is tiled with a square tile with thBLOCK_SIZE side size as presented in FiguteFor this
exemplary iteration space, the data footprint is equalécstim of data footprints of the below listed resultant tiles:

—tiles for which:j =i = BLOCK.SIZE

—tiles for which: j = BLOCK_SIZE andi = N; modBLOCK_SIZE= MAT RIX_SIZEmodBLOCK_SIZE

—tiles for which: j = Nj modBLOCK_SIZE= MAT RIX.SIZEmodBLOCK_SIZEandi = BLOCK_SIZE

—tiles for which: j = Nj mod BLOCK_SIZE= MAT RIX.SIZE mod BLOCK_SIZE andi = N mod BLOCK_SIZE =
MAT RIX.SIZEmodBLOCK SIZE

and not to the data footprint calculated for the entirg) iteration space.

3. Arelation between 1. and 2.

In connection with the above discussion, a relation betwieeand 2. has been adopted as an independent variable
(X1) of the general model.

Thus, the final list of the potential independent variablesus model comprises the following variablésl, X2, X3,
X4,

With such a list of the potential independent variables efrtiodel to be formulated and assuming that the dependent
variable isYt that estimates CPU time of the execution of a program loopmeall program threads, expressed by the
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Figure 1: Untiled vs tiled iteration space of a loop nest

number of CPU clock cycles, we have undertaken regressimigss. The object of the regression analysis was empirical
data collected for thenatmulpattern program prepared specially for that purpose. Theeteel method of regression
analysis was linear regression based on the classical thetheast squares.
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According to the assumptions of linear regression, a degarydbetween the observed values of dependent variable
Y and the corresponding values of independent variableX2, ..., X pis expressed by equatioh)(

Yi=ag+aXlj+aX2i+...+apXp+&§=Yi+§ (1)

where:

i is the identifier of observations£ 1,...,n),

ap,...,ap are parameters of unknown exact values; the values of thesengters are estimated by means of the
classical method of least squares,

X1;,...,Xp are known values of independent variabies X2, ..., X p, corresponding to the value of variaiMeor
theit" observation,

Y; is the value of dependent variabiefor theith observation,

Y1 is the theoretical (estimated) value of dependent varidltite theith observation,

& is the statistical error (disturbance, noise) for ifR@bservation.

Equation () can be applied when a dependency between empirically feahes of the dependent variable and
independent variables is either linear or linearly transf@ble nonlinear (i.e. power, exponential, logarithmic, o
hyperbolic).

Therefore, for independent variable&t, X2, X3, X4 and dependent variab¥g, the general model (which is a linear
regression model derived by means of the classical methteast squares) could take one of the following forms:

—a linear form, expressed by equati@: (
Yt=a; x X1+ apx X2+ azx X3+ ag x X4 (2)
—a power form, expressed by equati@: (
Y= X138 x X292 x X383 x X434 (3)
—an exponential form, expressed by equatidn (
Yt=a1*! x a2%? x a3*® x ag*4 (4)
—a logarithmic form, expressed by equati&j: (
Yt=al x logX1+ a2 x logX2+ a3 x logX3+ a4 x logX4 (5)

—a hyperbolic form, expressed by equatiéi (

1 1 1 1
Yt=alx — — —+adx —
a ><x1+a2><X2+a3><X3+a XX (6)
Note: Parameter gis not taken into account in equatiory) (- (6) because it has no practical sense for the modelled
phenomenon.
To determine the ultimate form of a general model, we havd:use

—coefficient of determinatio®? (in order to determine the character of a dependency bettheetependent variable
and particular independent variables of a model),

—adjustedr? (in order to select the ultimate list of independent vagatifom the potential independent variables of a
model).

Taking into account the nature of variablé§, X2, X3, X4, Yt and their mutual relations, we could assume that a
dependency between all these variables is a power one.

This assumption has been verified by the examination of the\af the coefficient of determinatioRy) calculated
for:

—variableYtand all the independent variables considered altogethse(t/),
—variableYt and particular independent variables considered indaligcases 2£ 5/).
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Table 4: Values of the coefficient of determination for various pbksforms of the general model - for theatmulprogram

1/ 2/ 3/ 4/ 5/
Form of the model R\Z(t.x1,x2,x3,x4 R¢ix1 R¢ix2 Réixs R¢ix4
linear 0.9506216 0.0002301| 0.9286567| 0.3616036| 0.4771490
power 0.9999514 0.6540767| 0.9982205| 0.9119271| 0.9183616
exponential 0.9645971 0.1066810| 0.5703056| 0.4310208| 0.9170599
logarithmic 0.8230448 0.8095558| 0.5858303| 0.5074892| 0.4774223
hyperbolic 0.8098927 0.7669016| 0.0014395| 0.3219836| 0.4602693

The values of the coefficient of determination obtained fi@mhatmulpattern program are presented in Tadbldhe
greatest value oR? for case 1/ has been obtained for power mo@gl Kloreover, the aforementioned power model is
very well fitted for cases 2£ 5/ as well. This proves that there exists a power dependesteyelen the dependent variable
and each of the considered potential independent variabtee model.

VariablesX1, X2, X3, X4 have been proposed as potential independent variablég gfeneral model. The reason
for defining these variables as potential is that the cawigidanalysis oR? calculated folY t andXi (whereXi denotes a
proposed independent variahle; 1, 2,3, 4) indicates that all these variables influence programugi@ttime. However,
only after calculating the adjusted coefficient of detemtion for each possible subset of variablels X2, X3, X4 one
can say which subset of the variables has the greatest Vidheeadjusted coefficient of determination and in consegegn
the strongest influence on program execution time.

The values of the adjusted coefficient of determinationiakthfor thematmulpattern program and power moda} (
are presented in Tab® The greatest value of adjust®d has been obtained when we take into account in power model
(3) all the potential independent variables, i.e. variab¥ls: X2, X3, X4.

Table 5: Values of the adjusted coefficient of determination for masi possible combinations of potential independent visabfor
thematmulprogram and power modeB)

Variables of the model| R? AdjustedR?
X1 0.6540767| 0.6458404
X2 0.9982205| 0.9981782

X3 0.9119271| 0.9098301

X4 | 0.9183616| 0.9164178

X1 | X2 0.9994628| 0.9994366
X1 X3 0.9383487| 0.9353413
X1 X4 | 0.9655228| 0.9638410
X2 | X3 0.9982451| 0.9981595

X2 X4 | 0.9982402| 0.9981543

X3 | X4 | 0.9549970| 0.9528018

X1 | X2 | X3 0.9994630| 0.9994227
X1 | X2 X4 | 0.9999501| 0.9999463
X1 X3 | X4 | 0.9796433| 0.9781166
X2 | X3 | X4 | 0.9982646| 0.9981345

X1 | X2 | X3 | X4 | 0.9999514| 0.9999464

Based on the obtained valuesRffand adjusted®?, we have adopted the following general model:

where:

Ytis the estimated CPU time for the execution of the prograrp loest by all program threads, expressed by the

number of CPU clock cycles,

X1 states for a value expressing the relation between thiesteéaof cache L1 and L2 per single OpenMP thread and

Y= X1 x X2%2 x X383 x X4*

data footprint per single OpenMP thread,

X2 is the total weighted number of arithmetic operations pegle OpenMP thread,
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X3 is the maximum number of iterations in a single chunk o#itiens assigned to be executed by an OpenMP thread
for a given assignment of iterations to OpenMP threads,

X4 is the number of OpenMP threads executing the program,

al, a2, a3, a4 are parameters the values of which are determined by méanggression analysis on empirical data
collected in a target software-hardware environment fguexglly prepared sample.

5 Estimation of parameter values for a specific model

Our goal is to determine the values of parameters for a speuifidel for a given computer environment by means of
applying such a method that could be reapplied for any coergurvironment. Therefore, we have decided to determine
the values of parameteed, a2, a3, a4 for a given environment by means of the statistical analg§iempirical data
collected in this environment.

To determine the values of parametatsa2, a3, a4, we have used th@atmulpattern program. The source code of
thematmulprogram is presented in Takde

Empirical data collected for a pattern program are the Hasidetermining the values of parametefs a2, a3, a4 of
a specific model referring to all such programs which repretbee same combination of data reuse and cache interference
as a pattern program. In this paper, a program, which is nattenm program, but represents the same combination of
data reuse and cache interference as the pattern progreeferised to as a non pattern program.

It should be stressed here that thatmulpattern program is aexemplarypattern program adopted simply in order to
determine an exemplary specific model on the basis of gem@deél 7). This realization of the pattern program (i.e. by
adopting thematmulprogram) is one ofnany possibleealizations. Assuming some other realization of a pagteogram,
one could derive a specific model with domains different ftbendomains of the specific model derived from mhatmul
pattern program. This in turn means that the proposed apprizahighly universal, as it provides the possibility of
changing the domain of a specific model simply by modifying#igrn program.

In order to obtain empirical data that are representativafoenvironment under analysis, it has been assumed that
for the adopted pattern program:

1. The total size of the data processed in a loop nest doesxnete@ the size of L2 cache available for a single
processor.

Assumption 1 is expressed by the following formula:

__total matrix sizgN)
~ L2_per_processor —

(8)

where:

total_matrix_siz&€N) is the total sizgin bytes)of the data occupied by the array variables processed inpariest,
with upper bounds of loop indices dependent\gn

L2_per_processotis the sizg(in bytes)of L2 cache memory available for a single processor.

2. The relative difference between the mean and maximum eupfhteration chunks per single OpenMP thread for
a given assignment of iterations to OpenMP threads doeskoeed 50 % (the value assumed a priori).
Assumption 2 is expressed by the following formula:

__no_chunkgyax— no_chunkgyerage

0
no_chunkgyerage

<05 9)

where:

no_chunksax is the maximum number of iteration chunks per single Openhtead for a given assignment of
iterations to OpenMP threads,

no_chunksyerageis the mean number of iteration chunks per single OpenMRthi@r a given assignment of iterations
to OpenMP threads.

3. The side size of a square tile in tiling should not be grethi@n the boundary siz@ inducing no self interference
and calculated in accordance with the approach proposddiin [

For assumptions 1= 3., the assumed pattern programatmu) and hardware environment of empirical research
(processor: Intel Core 2 Quad Q6600, number of processescdr number of processor threads: 4, L1 data cache: 4
x 32 KB (8-way set associative, 64-byte line sjZe) cache: 2 x 4096 KR16-way set associative, 64-byte line sjze)
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operating system: Linux Slax 6.1.2, compiler: gcc 4.2.4siom of OpenMP: 2.5, compilation level optimization: tacth
off, compilation with the option: -O0), we have derived tlodwing specific model:

Yt= X170298695>< )(20.623738>< )(30.014426>< X40.962976 (10)

A resultant regression model should not be extrapolatesidrithe data range for which the regression model has
been constructed because the character of a dependenaebetive values of independent and dependent variables is
unknown outside the data range in question.

To avoid the risk of such an extrapolation while applying ecfic model to non pattern programs, we have formulated
the following detailed assumptions regarding the scopa@tpplicability of specific models:

1. The value of\, calculated for a non pattern program as per equa@iprsfiould not exceed the minimum/maximum
value ofA calculated for a corresponding pattern program. This apgomis expressed by the following inequalities:

Amin(re ferenceLoop< A < Amax(referencelLoop (12)

where:

A holds the value oA calculated for a non pattern program,

Amin(re ferenceLooprepresents the minimum value dffor a corresponding pattern program,
Amax(re ferenceLooprepresents the maximum valuefor a corresponding pattern program.

2. The value 0B, calculated for a non pattern program as per equafrcannot exceed 0.5.

3. The actual time of the execution of a non pattern programtarget environment should be of the same order of
magnitude as the time of the execution of a correspondirignmgtrogram. This assumption is expressed by the following
inequalities:

ymin(re ferenceLoop< y < ymax(referenceLoop (12)

where:

yis the actual CPU time for the execution of a program by algpam threads, expressed by the number of CPU clock
cycles,

ymin(re ferenceLoopis the shortest (for a given sample of measured CPU timegabCPU time for the execution
of a program loop nest by all program threads, expressedeiyimber of CPU clock cycles,

ymax(re ferencelLoopis the longest (for a given sample of measured CPU timespbCRU time for the execution of
a program by all program threads, expressed by the numbdPdfcbck cycles.

The assumption expressed by inequalitie®) (has been introduced because there can be such programbitdr w
assumptions 1. and 2. are met, however, despite the sityitertiween these programs and corresponding pattern pnsgra
in respect of data reuse and cache interference, in othgectssthe programs may differ so much from corresponding
pattern programs as to have execution times of a complettigreht order of magnitude than that of corresponding
pattern programs. This situation is not a problem, thoughyachanging the number and type of arithmetic operations
executed in pattern programs one can easily change exedirties of pattern programs and consequently, tailor them
to various orders of magnitude - so that they can be used sspgarograms for real life programs with very different
execution times.

4. The side size of a square tile in tiling should not be grrethten the boundary siZ® inducing no self interference
and calculated in accordance with the approach proposéddiin [

6 Verification of the quality of estimations

The verification of the quality of estimations made accogdothe proposed general model is equivalent to the assassme
of the quality of an exemplary specific model derived fromdleaeral model for thenatmulpattern program.

The quality of the specific model has been assessed in aaiaiaspect and a quantitative aspect.

The qualitative quality assessment of the specific moddbban focused on recognizing whether applying the specific
model one can estimate with satisfactory accuracy the éxectime of non pattern programs meeting the assumptions
regarding the scope of the applicability of specific models.

In practice, this means that one should check whether, foremgize of the problem solved in a program (program
loop nest), the trend of changes in measured execution pere®penMP thread of particular variants of a given program
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matches the trend of changes in corresponding estimatedtxe times per OpenMP thread calculated according to the
elaborated model.

The quantitative quality assessment of the specific modebkan focused on determining the estimation errors that
one can expect to obtain while using the model. A relativeregton error has been calculated as follows:

Oy t(per_thread) IS the relative estimation error foft(per_thread), calculated according to formulag)

Yt(per_thread) — y(perthread)

— 0
5\((per_thread) 100%x V( per_thread) (13)
Yt(per_thread) = % (14)
y(per_thread) = ﬁyam (15)

where:

Ytis the estimated CPU time for the execution of a program laesgt hy all program threads, calculated according to
a relevant specific model and expressed by the number of GiRIM cl/cles,

Yt(per_thread) is Yt per thread,

y is the actual (i.e. empirically measured) CPU time spentx@tuating a program loop nest by all program threads,
expressed by the number of CPU clock cycles,

y(per_thread) is y per OpenMP thread,

X4 is the number of OpenMP threads executing the program,

a4 is parametead of a relevant specific model.

It should be stressed here that because the main goal of ttiel mygplication is iterative compilation, the qualitative
quality assessment and its results are much more impoftant the quantitative quality assessment and its results.
Within the trend matching verification carried out in the lifasive quality assessment, a sequence of various source
code variants of a given program sorted in the descendingy tngltheir estimated execution times per OpenMP thread
calculated according to the model is compared with a secuefthe same source code variants sorted in the descending
order by their measured execution times per OpenMP threlad.tfend matching verification allows us to find out
whether, applying only a model, one can properly select fatinsonsidered source code variants of a given program a
small subset of source code variants including the sourde eariant with the minimal actual execution time in a
hardware environment. Then, iterative compilation is iedrout only for the source code variants from the selected
subset. Therefore, if the subset in question is properlkgcsedl, the estimation errors obtained within the quaitéat
quality assessment are of minor importance.

7 Results of experimental research

In order to demonstrate that the obtained model is indeefuilugsaterative compilation, we have used the NAS Parallel
Benchmarks (NPB) suite9[17]. We have chosen NPB because it is a test suite dedicatethdoagsessment of the
performance of parallel computers and consists of a greabeuof very various loop nests.

4 loop nests (benchmarks) selected from the NPB test suite thie object of the experimental research. Selected
loop nests consist of 3 to 4 loops. For our experiments, e&theoselected loop nests was transformed to several
semantically equivalent forms, by parallelizing its ontest loop (so as to expose coarse grained parallelism) Emgl ti
its two innermost loops. There are no dependencies in thalelized loops - therefore, these loops were parallelized
and tiled manually. According to the conclusions preseirigd 4], in case of tiling a sequentially processed loop nest
the tile of the boundary side si&(i.e. the largest possible side size inducing no self isterice that could be applied
when tiling a square matrix of side sik§ is optimal from the execution time perspective. Thereforeur experimental
research carried out for loop nests processed in pardliehs assumed that the tile side size could not be greater than
the boundary side siZ&; the value ofB was calculated by applying the approach proposed4h [

The benchmarks selected for our experimental researcliffgeedt from the pattern program, but they represent the
same combination of data reuse and cache interference patthen program. By means of the exemplary specific model
derived for thematmulpattern program, we estimated execution times for variousce code variants of the 4 selected
benchmarks. In total, we estimated execution times for 5ibwag, tiled source codes.

For each selected benchmark, the experimental researctanésd out in the following way:

For each (semantically equivalent) source code variantgi¥@en benchmark, westimatedits execution time per
OpenMP thread in the target hardware environment, by apglyispecific model derived for tieatmulpattern program.
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The estimates were sorted in the descending order, formgggjaence. Then, source codes corresponding to particular
elements of the sequence were executed in the target emartrand their empirically measured execution times per
OpenMP thread were registered.

Let:

t be the number of all various input source code variants favengoenchmark,

k (0 < k <'t) be the value given by the user and denoting the assumed nuwhseurce code variants with shortest
estimated execution times for a given loop nest,

ks represent the minimum value &fwhich guarantees that one selects for final use from senadlytequivalent
source code variants the source code variant with the sti@tecution time measured in the target environment arid tha
the set of source code variants used for selection purpafiesclude this source code variant which

(hhas been tiled with the square tile of the maximum side siat inducing self interference and, at the same time,
(ihas the shortest measured execution time of all sourde wariants tiled with this tile side size.

kmin represent the minimum value &fwhich guarantees that one selects for final use from senadigtequivalent
source code variants the source code variant with the sti@tecution time measured in the target environment.

For each benchmark under analysis, we compared estimadedeasured execution times of its source code variants
having thek shortest estimated execution times. For each benchmarkelegeted for final use from thesource code
variants the variant with the shorteseasuredexecution time.

The fundamental problem here is what valué& should be adopted and whether, for a given benchmark anolitse
code variantSkmin = kg.

If k=t, then our approach does not reduce iterative compilatioe.ti

If k=1, itis not certain whether the source code variant with teetest measured execution time will be selected for
final use because the specific model estimates executiomtitherrors. It should be noted here that the larger the value
of variablek, the longer the time of iterative compilation. At the sammd;j the increase ik increases the probability
of selecting for final use the source code variant with theatsisb execution time from all input variants. So, what is
the minimum value ok (i.e. kmin) Which guarantees that the source code variant with theedtaneasured execution
time will be selected for final use is less thiaiterations? The value ddyin andkg can be determined by comparing the
measured and estimated execution times (per OpenMP ttoEaspurce code variants. Lbt be the source code variant
with the shortest measured execution time per OpenMP thtedd source codes be sorted in the descending order by
their estimated execution times per OpenMP thread, formisgquenc€ and lets be such a source code variant in
sequenc€ thats= M. Then,kmin is the position ok in sequenc€ taken in the reverse order. The valuekgfis equal
to the position, in sequené&taken in the reverse order, of this source code variant wiéshbeen tiled with the tile of
the maximum side size not inducing self interference (dated as per]4]) and which at the same time has the shortest
estimated execution time of all source code variants tiled thie tile side size in question.

For each of the selected benchmarks, we have assessed ttye guaestimates obtained by applying the specific
model. For each of the benchmarks, the trend of changes mélasured execution times per OpenMP thread of particular
variants of a given benchmark is matched by the trend of absung corresponding estimations per OpenMP thread
calculated according to a relevant specific model. The emimh about the matching trends has been formulated based
on the comparison of the respective linear trends.

The mean and maximum relative estimation errors calcuiateglation to execution times measured empirically for
all source code variants adopted for a given benchmark anglitle of a problem, solved within the benchmark, do not
exceed 45 and 60 per cent points (detailed results are peesi@nTables), respectively.

For each of the selected NPB benchmarks, we have also estirtegt reduction of iterative compilation time (hence,
software development time) that could be achieved by setgtte side size of a square tile for parallelized benchmsark
by means of applying the specific model derived for t@mulpattern program. The so obtained estimates have been
compared to the estimated shortening of iterative compiidime that could be achieved by applying the maximum side
size (of a square tile) inducing no self interference anduated according talH].

The results are presented in Tabfes 8.

The carried out empirical research indicates that the mamintile side size (of a square tile) inducing no self
interference and calculated according id][does not always optimize program execution time (see Tablm case of
benchmarks UAdiffuse.3 and UAdiffuse 4, the empirically found tile side size optimizing prograreeution time is
smaller than the maximum tile side size (of a square tiled@tg no self interference and calculated according . [

When selecting the side size of a square tile for a paradiélsource code based on our model and the procedure
described in this section, the source code variant seldéotdihal use from semantically equivalent source code vésia
is the one tiled with the tile of the size optimizing prograreeution time. This source code variant is found witkj,
iterations of iterative compilation. The results presdriteTable8 indicate that for the analysed benchmarks, finding the
optimum source code variants amdngemantically equivalent source code variants witaip instead ot iterations of
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Table 6: Quality assessment of estimates calculated accordingetfepmodel (0)
Loop nest (benchmark), problem side
UA3,50 | UA4,50 | UA4,66 | UALL, 100 | UA11, 267 | UA16, 100 | UALS6, 267
[ ]9 9 6 9 6 9 6
[2] | 34.59 27.41 26.46 41.76 39.94 40.90 37.38
[3] | 40.19 35.65 29.30 56.95 52.75 54.73 50.22

The loop nests are denoted as follows:
UA3 - UA _diffuse 3 (tiled)
UA4 - UA _diffuse 4 (tiled)
UA11 - UA_transferll (tiled)
UA16 - UA_transfer16 (tiled)

[1] Number of various, semantically equivalent source codamts subjected to the estimation
of execution time
[2] Resultant mean fody y per thread) [%0]

[3] Resultant maximum fody y(per_thread) [%0]

Table 7: Selection of the side size for a square tile in tiling

Loop nest (benchmark), problem si@e
UA3,50 | UA4,50 | UA4,66 | UA11, 100 | UA11, 267 | UA16, 100 | UA16, 267
[ |41 41 31 41 24 41 24
[2] | 26 32 24 41 24 41 24
[38] | 26 32 24 41 24 41 24

[1] Maximum side size (of a square tile) inducing no self intesfeee and calculated according fief]
[2] Tile side size optimizing program execution time - as perésailts of our experimental research
[3] Tile side size fokmin

The loop nests are denoted as follows:
UA3 - UA _diffuse.3 (tiled)

UA4 - UA _diffuse 4 (tiled)

UA11 - UA_transferll (tiled)

UA16 - UA_transfer16 (tiled)

iterative compilation results in reducing the iterativergolation time from approximately 4 to approximately 14 ¢isn
(detailed results are presented in Tak)le

If, according to 4], one assumes that the maximum tile side size (of a squajeriiucing no self interference is
the tile side size optimizing program execution time - thapplying our procedure of searching amdngemantically
equivalent source code variants for the source code vanidintoptimum execution time, the source code variant with
optimum execution time is found withikg iterations of iterative compilation. For benchmarks \dffuse.3 and
UA _diffuse 4, kmin < kg - and for these benchmarks finding amdngemantically equivalent source code variants the
source code variant with optimum execution time witkgninstead oft iterations of iterative compilation takes-2 3
times longer than in the situation when the optimum souraeoariant is found withirkmin iterations of iterative
compilation. For benchmarks Ukansferll and UAtransferl6, kmin = kg - hence, for these benchmarks, finding
amongt semantically equivalent source code variants the sourde eariant with optimum execution time withkg
instead oft iterations of iterative compilation takes the same timerathée situation when the optimum source code
variant is found withirky,, iterations of iterative compilation.

The experimental research has been focused on demongtitetinsefulness of our proposed approach when applied
to small benchmark codes. In view of the achieved, positageiits we plan to fully implement our approach, integrate it
with some parallelizing source to source compiler and eramising a greater number of various benchmark codes the
effectiveness of the so enhanced compiler in generatingsaodes optimized for execution time.
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Table 8: Reduction of iterative compilation time after applying sifie model (L0), derived for thematmulpattern program

Loop nest (benchmark), problem si@e

UA3, 50 | UA4,50 | UA4,66 | UAL1, 100 | UA11, 267 | UA16, 100 | UA16, 267
[ | 9 9 6 9 6 9 6
[2] | 1 1 1 1 2 1 2
[381 | 3 2 2 1 2 1 1
[4] | 372407 | 355263 | 585501 | 50 545 791 499 51 597 787 679
[5] | 29061 | 27649 | 83959 | 3620 219195 3727 219197
[6] | 87324 | 55458 | 168056 | 3620 219195 3727 219197
[7] | 4.26 6.41 3.48 13.96 3.61 13.84 3.59
[8] | 12.81 12.85 6.97 13.96 3.61 13.84 3.59
[1]t
[2] Kmin
(Bl ks

[4] Iterative compilation time fot source code variantsl-t

[5] Iterative compilation time fokmin source code variantsT-knin
[6] Iterative compilation time fokg source code variantsl-kg

[7] Reduction of iterative compilation tim%?%l

[8] Reduction of iterative compilation timﬁm

The loop nests are denoted as follows:
UAS - UA _diffuse 3 (tiled)

UA4 - UA _diffuse 4 (tiled)

UA11 - UA_transfer11l (tiled)

UAL16 - UA_transfer16 (tiled)

8 Related work

Program execution time, iterative compilation and sedectf the optimum tile size in tiling are objects of scientific
research carried out in many centres. Within this reseamfious solutions have been proposed, namely methods for:
selecting the optimum tile size in tilind.#,5, 31], forecasting program execution timd] [ estimating program execution
time [8] or selecting the program source code variant with the slsbenticipated execution tim#&q).

An algorithm for finding the maximum tile side size which, whapplied in order to tile square matrices with a
square tile, induces no self interference, is presented4h By applying this algorithm it is possible to very quickly
determine the side size of the searched tile however - asrshgwur experimental research described herein - in case
of parallelized source codes, applying the tile side sizasd by the algorithm does not always result in the optimum
program execution time.

An algorithm similar in the assumptions made to algoritidj jyet allowing for finding rectangular tiles is presented
in [5].

A proposal of using "synthetic” tiled programs which exp@sfeatures related to temporal and spatial data reuse in
order to determine the tile size optimizing program exegutime is presented irB[l]. The presence of the above features
can be easily detected based only on the source code of apro§ynthetic programs are used for generation, by means
of neural networks, of the model enabling one to select thienym tile size. The model is created for a given hardware
architecture and compiler. Preparation of the model islgiime consuming, because a lot of training data has to be
collected for teaching the neural network.

A method for elaborating models intended for forecastingcexion times of particular parallel and distributed
programs is presented id][ The proposed method is based on linear regression. Itreessthat a dedicated model for
forecasting program execution time should be formed fohgamgram in a target computer environment. Models
elaborated in such a way are very well fitted to empirical @ad, as such, are a valuable tool for forecasting program
execution time in the considered domains of independeiablas. However, elaborating a model in accordance with the
proposed method is time consuming (for each program, ontohelaborate a separate model).

A random search strategy algorithm is proposedin By applying this algorithm, it is possible to reduce thaéi
of iterative compilation. The algorithm makes use of a mdtfar finding the minimum execution time of a program.
The method in question lets one determine what the prograougion time is if no cache misses occurred during the
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execution of the program. However, it is not guaranteedapplying the random search strategy algorithm duringtitera
compilation of a given program, one will find such a sourceecedriant of the program whose execution time will be
approximately equal to the minimum execution time of thisggam.

A tournament predictor is presented . It is a model which for given input data - performance cletesistics of a
program and two different sequences of compiler level ogitions - indicates a sequence of optimizations, whicheon
applied, results in a shorter program execution time in canspn with the other sequence. The independent variables o
the model proposed irlP] are dynamic characteristics of the program (i.e. they allected and calculated at run time)

- in practice, this means that program profiling has to be@dwwut whenever the model is to be used for a new program.

In view of the above discussed limitations of the approaphesented in14,5,31,4,8,19] the approaches in question
are not adequate for carrying out the proposed improvenfig@atative compilation, which involves an analytical setlen
from semantically equivalent tiled source code varianta gfven program the ones with shortest anticipated exatutio
times in order to limit the empirical selection of the beatis® code variant to the so reduced set.

The solution we present in this paper is free from the lirotag mentioned in the aforementioned approaches. To our
best knowledge, it is the first attempt to use statistical @wfbr selection of the tile side size (of a square tile) mizing
program execution time.

Applying our solution, it is possible to quickly elaborat@dels for the estimation of program execution time, which
are adequate both for pattern programs from which models bagen derived and for completely different (non pattern)
programs which have only the presence of data reuse and ga&ehference in common with a corresponding pattern
program. Therefore, our solution is adequate for carryimgloe proposed improvement of iterative compilation.

9 Conclusion

This paper presents our statistical model for the estimatfoprogram execution time taking into account tiling. The
model has been elaborated based on empirical data colfectés matmulpattern program representing some arbitrarily
selected features related to the program structure angh#uifigity of program execution environment.

The elaborated specific model has been used to estimatetiexettmes of non pattern programs. The accuracy of
estimations is satisfactory.

We have also estimated the reduction of iterative compitatime (and in consequence, the related software
development time) which could be achieved by applying djpeciodels in accordance with the proposed procedure of
supporting iterative compilation with such models. For élxemplary programs presented in the paper and coming from
the NPB benchmark suite, we have selected the tile side simémiming program execution time within iterative
compilation supported with the elaborated specific modéhéway as described in secti@nBy applying the specific
model for this purpose, the time of iterative compilatiors theen shortened from approximately 4 to approximately 14
times (depending on the benchmark) in relation to the tim&kvivould be needed for carrying out the tile side size
selection if iterative compilation was not supported wiik specific model. Detailed results are presented in Table

The achieved results indicate that our solution presemtdle paper is adequate for use in iterative compilation for
selection of the tile side size (of a square tile) optimizinggram execution time and hence, gives a possibility aicad)
the time of software development.
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