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Abstract: In this paper we consider a fourth-order boundary value Iprolwith smooth coefficients. We found new expansions of
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1 Introduction supplementary transmission conditions at the point of
continuity have been investigated i8] We shall

It is well-known that many topics in mathematical physics ¢onsider the fourth-order differential equation:

require the investigation of eigenvalues and
eigenfunctions of Sturm Liouville type boundary value
problems. In recent years, many researchers are interested ) 4
in the continuous Sturm Liouville problem as we see in L(y) =y (x) +a(X)y(x) =A%y(x),x€ [0,a (1)
G. Hikmet, N. B. Kerimov, and U. Kaya in the articl&][
Also, H. Menken in the article 2] considered a
nonself-adjoint fourth-order differential operator with
periodic and anti-periodic boundary conditions. They
found asymptotic formulas for the eigenvalues and

()(0) = P
eigenfunctions. Many authors investigated the method of yr(0)=0 1=01
determining a bound for eigenfunctions of a boundary Yi(¥) = _ _ ()
value problem and its derivatives. As we see3m] the st (iw)"ly¢(@A)=0 j=23

authors found a bound for the eigenfunction and its

derivatives of a spectral problem of the form

—y" +q(x)y = A?p(x)y. Various physics applications of This paper tries to estimate a new expression for the
this kind of a problem are found in the literature, four linearly independent solutions of the differential
including some boundary value problems with equation {) as well as their derivatives. In section 2, we
transmission conditions that arise in the theory of heatfound an expression for the eigenfunction of the boundary
and mass transfer (se&,f]). The literature on such value problem I)-(2), which is a linear combination of
results is voluminous, and we refer t@].[ Fourth-order the linearly independent solutions. Also, in section 3-4,
continuous boundary value problems with eigenfunctionswe obtain upper bounds for the eigenfunction and its
dependent boundary conditions and with two derivatives that we obtained in section 2.
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2 Fundamental System of Solutions of the We want to find a non-zero solutions for
Differential equation |(Y)—/\4y:0 (10)

In this section, we find the expressions of four linearly that satisfy the initial conditions). First we reducel(0) to
independent solutions and their derivatives which satisfyan integro-differential equation of the form

the initial condition (4). These solutions mentioned % [

for higher order. In (], pp. 92) and ( §], pp.5) two y@ = A%y = m(y),m(y) = —q(x)y. (112)
linearly independent solutions are found for the secon
order boundary value problem which is generated by the
differential operatot(y) =y’ (x) + q(x)y(x) and they are
used in a view to prowdmg the existence of the eAWOX eVIX, ehv2X, WX, wherewo = 1wy =i,wp = —1,
eigenvalue for the probler(y) = A%y(x). Here, we use Wg = . Then by using the method variation of
the same technique to find four linearly independentp"’“"’uﬁnmerS we can express the solutions 1) (for
solutions for the fourth-order differential equatiofh).( k=0,1,23as _ _

Also, we use these solutions to find a bound for the y(x,A) = coe®*+ c;&*+ coe™** + cze X +
eigenfunctions of1)-(2).

X
Theorem 2.1. Consider the linear differential equation of /O {sm)\ (x—=¢&)+sinhA (x—¢&)|a(&)ys(x,A)dE. (12)
fourth order

he homogeneous linear differential equation
y*® — A% = 0 has for A # 0 the solutions

Now, applying (2) in (4), gives:

(4) — 4 ! " "
Y0 +a0oylx) = A"y B) y0(0,4) = 1p(0.1) = 0,5(0.1) = 0,y6(0.A) =0
Whereq(x) is a smooth function of0, a], then @) has the

fundamental system of solutionsyp(x,A),y1(X,A), Which gives a system of the form:

y2(X,A),y3(x,A), that satisfy the initial condition 11 1 17 [co 1
1i -1-if||ca| |0
(n)(o)\)_ 1 ,i=n-1 ) 1-1 1 -1| [c2| |0 (13)
0 Ji#n—1 1—-i-11i]|c3 0
Where Solving it forcj, we obtainc; = 1/4 for eachj =0:3
' , thenyg has the form
1 1 X
X —— - i —
Yo(x ) :%[cosh)\x+cos)\x]+ﬁ13/ [sin)\(x—é) Yo(X,A) = 2[cosh)\x+cos)\x]+2/\3/o [sm)\(x &)
0
T - SN - ) |a(Eyolx.A)de. (14

Hence B) is hold, and we can use the same technique for
1 X yl(xa)\)ayZ(Xa)\)ay3(X7)‘) and we get@)! (7)’ (8)
Y1(X,A) = 5 [sinhAX+sinAX] + 3/ {sin)\ (x—§&) Lemma 2.1. The first derivatives of the solutions of the
22 A differential equation ) can be represented as the

4 sinhA (x— E)]q(f)yl(X,)\)dE. ©) following expressions
L Lol Yo(X,A) zi)\[smh)\x—sm)\x]Jrﬁ/o [cos)\(x—f)
Ya(X,A) = W[cosh)\x—cos)\x]jtﬁ/ {sm/\(x—f)
° +coshA (- £)] (€ olx A)dE. (15)
S0 G- ) |a(E)yelx.A)de. @
y1(X,A) :%[cosh)\x+cos)\x]+$/ox[cos)\(x—f)
1 . 1 /.
ya(x,A) = m[smh)\x—sm)\x]qtm/o {sm)\ (x=¢) + coshh (X—E)]q(f)yl(x,)\)df- (16)

SN - ) |a(E)yalx.A)de. ®)

’ X
Vo A) = i[sinhAx+sinAx]+i2/ [Cosx\ (x—&)
Proof. Consider the linear differential operator 2 2A% Jo

I(y) = y@ (X) -+ q(x)y(X) 9) +CcosM (x— 5)] a(&)yz(x,A)dé. (17)
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/ 1 1 /x
Ya(X,A) = 2)\z[cosmx cosAX] + 2)\2/0 [COS/\(X—E)

1 cosh (x - E)} 4(E)y2(E. 1 )dE. (18)

3 Estimationsfor bounds of eigenfunctions of
boundary value problem (1)-(2)

In this section, we found an upper bound for the
eigenfunctions of the probleml)-(2), which can be
represented as a linear combination of the solutions

Lemma 2.2. The second derivatives of the solutions of (5)-(8). But first, we studied the simplicity of the

the differential equation3) can be represented as the
following expressions

yg(x,)\) ;)\ [cos x — cosA X] +—/[ sinA (x— &)

SN - )| a(E)yolE A ). (19)
= %)\ [sinhAx—sinAX] + %/OX [—sin)\ (x—8&)

1 sinhA (x - f)]q(f)yo(maf. (20)

yZ(Xv/\)

I\)lH

[cosh)\x+cos)\x+—/{ sinA (x— &)

1 sinhA (x - f)]q(f)yo(maf. (21)

" 1 . . 1 X .
y3(X,A) :5[3|nh)\x+sm)\x]+ﬁ/o [—sm/\(x—f)

SN - )| (€0l A ). 22)
Lemma 2.3. The third derivatives of the solutions of the
differential equation ) can be represented as the
following expressions

"

X
Yo (X, A) :%)\3[sinh)\x+sin)\x]+%/o [—cos)\(x—f)

-G0S (- £)| (€ ol A )dE. @3)
y1 (X, A) :%/\Z[cosh)\x—cos)\x]+%/ox[—cos)\(x—f)
+coshA (- £)| (€ ol A )dE. 24
V() = SA[sinhAx—sinAx] + = | sA
Yo (X,A) =5 [sinhAXx— sin x]+§/0 [—co (x—2¢&)
Fooshh (x—&)|[alEpp(EA0E. (25)
" )\ _1 m y\ 1 X y\
Y3 (X,A) _E[cos X+ CO X]+§/o [—co (x—¢&)

+coshA (x £)]a(E)olE A )dE. (26)

eigenfunctions of the boundary value probletj(2).

Theorem 3.1 The eigenfunctions of the boundary value
problem ()-(2) are simple.

Proof. let A be an eigenvalue for the boundary value
problem ()-(2). On the contrary, we suppose thaand

@ are two linearly independent eigenfunctions
corresponding td, thengand ¢ satisfy the differential
equation and the boundary conditions. Now, from first
and second boundary conditions we get

@(0,1)+¢(0,A) =0 (27)
@(0,1) +¢,(0,) =0 (28)
which can be represented as the system:

@(0,A) ¢ (0,A)] [1] _ [0

o o) 111= 19 29

Since ﬂ #* {8] so systemZ9) has non-zero solutions,

and from the theory of systems we found that
@(0,1)9,(0,A) — ¢ (0,A)@(0,A) = 0. Again, from the
theory of systems of differential equations, we get that
@(x,A) and @(x,A) are linearly dependent at = 0.
Then, @ (x,A) are linearly dependent for every which
contradicts our assumption.

Theorem 3.2. If A =r +it is an eigenvalue of boundary
value problem1)-(2) andgh(x,A) is the eigen-function of
the boundary value problef)¢(2) corresponding to\ ,
and

1€ lo(€ )l < o

Then,
MaXyc (0.2 | ¢h(X, )| < 2Celd AE)II@(E.A)1dE (30)
where,
C={$T:% I <1t a
o o=

Proof. If gn(x) is an eigen-function of the differential
equation, which implies that it is a solution for the
differential equation, then it can be written as a linear
combination ofyg, y1,Y2,y3. That is, there exists constants
ag, a1, ap,ag such that:

=agYo(X,A) +a1y1(X,A) +agy2(X, A ) +agys(x,A)
(32)

*h(%A)
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where yo(x,A),y1(%,A),y2(X,A) and y3(x,A) are the Now, sincee® is continuous irf0,a], so it has a maximum
fundamental system of solutions in the Theore®). ( value in[0,a]. We pUtmaXse[Oa]eE =M. Soef <M, and
Also, ¢ satisfies the boundary conditio@)( From first it],|r| > 0 thenetlé < M!tl andelé < MI" . And

boundary condition, we get sincelt|, |r| € R, so we havét| < |r| or|r| <]t|, if || < [t]

(0,A) =aoYo(0,A) +a1y1(0,A) +azy2(0,A) then&|r| < &|t| for all £ € [0,a], thenef " < efltl < M1t
+agy3(0,A) = If

and from second boundary condition, we get a

B(0.1) = 20¥5(0.A) +a1y;(0.4) + auy}(0.1) =~ M @) —oosa e

Henceap = 0 anda; = 0. Thus, the eigenfunction and its a

derivatives reduce to the following expressions I = |/ lisinA (a— &) —cosh (a— &)]q(&)gn(&,A)dE]|

0
(X,A) :azi[cosh)\x—cos)\x]Jrag ! [sinhAx —

2)3

x S/OaHSin)\(a—E)H|cos)\(a—E)I]|Q(5)||%(E,)\)|dE
sin)\x]+ﬁ13/0 [sin)\(x—E)Jrsinh)\(x—f)

< [t + @O ig(6) lgn(€ )l
0

}q@%(“)df @) <omil [“jae)llame.)de.
0
/ 1 1 So
Gh(X%A) = a5+ [SiNhAX+SINAX] + 8z [cosA X — a
T T <ot [l leE e @9)
cos)\x]+W/0 {cosA( §)+costh (x—§)
G = [i[—sinAa] + [cosA&]] (40)
EGEXEYT (34
,then
L (XA) =a }[Cosh)\x+cos2\x]+a i[sinh/\x+
heA) =8 ) G| = |—isinAa-+cos\al
1 X . . .
: - i - ; - dha iAa  dAa —iAa
sm)\x]+2)\/o{ SiNA (Xx— &) +sinhA (x— &) _ - 2ie . +2e |
[EGEXEYE @)  —ldiyeneidiaieiin
_ 1 ia, ira
@ (xA) :aZ%)\[sinh)\x—sin)\x] _2|e_ e
1 :|67|Aa|
+a3§[cosh>\x+ COSAX| —|dirg|
2)\/ [ cosA (x— &) + cosh (x— &) =dizelB>m il
So
EGEXEYE (36) 1w "

Also, from second boundary condition, we obtain: Then, from B7) we obtain an expression fap in terms of

az as follows
Uz (@h(x)) = [az[)\ [—sin)\a]+i)\[—cos)\a]}

ap [)\ [-sinAa] +iA[—cosAg]
+ag {[cosx\ al +i[—sinA a]}

+/Oa {isin)\ (@ &) cosh(a_é) +a3[[cos)\ a+i[—sinAa)] — I} =0.

}q(f)%(E,A)dE] =0 (37) _ | —ag[[cosral +i[—sinAa]]  asG—|
&= Tli[_sinAal + [coshal] | IAG
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Thus,
agG—1|
iAG

ap = (42)

So, the eigenfunction of the boundary value problem (1)-

(2) has the following form

G-I

S 2/\2[cosh)\x CosAX| +

mXA) = 2;3 [sinhA x

—sinAX|+ W/OX [inA (x— &) + sinhA (x— )

]Q(E)%(E,)\)ds‘]. (43)

Now, we want to find the maximum ofh(x,A )|. We have

[i(— 14—I

lp(x,A)| = G)3y3/cosMx—cosAX

2;3 [sinhAx —sinAX]

1 /X .
+W/o [sinA (x— &)

+sinhA (x—&)]a(&) (&, A)dé]|.

1
<li(-1+ gzl

|cosM x| + | cosAX|]

+2|Tl|3[| sinhAX| + | sinA (]

g ) ISM (= )]+ [sinhA (- )
lla(&)lIen(&,2)|dg
That means,
1 ], I
9] < W[|u<—1+5>|[|coshAx|+|cosAxn

+[|sinh)\x|+|sin)\x|]+/ox[|sin)\ (x—&)|

+|Sinh/\(X—E)I]IQ(E)II%(E,)\)IdE] (44)

If A =r+it, and by using the following relations
|sinz| < '™
|sinhz] < elRe,

|cosz] < &'™,
|coshy| < &R, (45)
Then, by replacing = Ax in the above relations we get:

|cosAx| < eltiX, |sinAx| < elt,

|coshA x| < e, |sinhAx| < &lx. (46)
and

|cosA (x— &)| < ell*=8) |cosm (x— &)| < €l

|sinA (x— &)| < ell*=%) |sinhA (x— &) < &%) (47)

Therefore, 44) has the following form:
Mt I

< 24
BN =t iG]
Mt
3 ) 1@l (€A e 48)
Again, from 39) and @1), we get :
lgh(x,A)| < 2Ce%CS3 la(@)lln(E.A)ldE. (49)

Where,C = “"'/\i";' And since we choosgas any arbitrary

number in[0, a], then

rnaxxe[qa”%(x’)\” < ZCEK:]g‘Q(E)H%(E)‘)‘dE (50)

4 Estimationsfor bounds of the derivatives of
the eigenfunctions of boundary value
problem (1)-(2)

This section studies the method of finding a bound for the
derivatives of eigenfunctions for the problei)(2).

Theorem 3.1. If A =r +it is an eigenvalue of boundary
value problem1)-(2) andgn(x,A ) is the eigen-function of
the boundary value problef)¢(2) corresponding to\ ,
and

[ 1a(&)l0(€ )l < o

Then,
M3|t|
(i) A3 ’
max XA)| < ; . 51
xeloal|@h (XA)] {Rﬂeg“c: >0 (51)

for j =1,2,3. where,C = [g'|a(&)[|9(¢,A)[dE.
Proof. Since from ¢3) we have

G-I

e 2)\z[cosmx cosAX] +

mXA) = 2)\3[S|nh)\x

—sinAd+ 55 /OX [SinA (x— &) + sinhA (x— )
]Q(f)%(fa)\)dfl- (52)

Then we can find the first, second and third derivatives of

@(x,A) in [0,a, which they have the following
expressions:

/ G-11 1

@A) = e 2A[smhx\x+5|n/\x] W[cosh)\x

_cos)\x]+%/ox[cos)\(x—f)

+COSM (x— E)}q(f)%(E,A)dfl : (53)
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By using @9) and @1), the right-hand side of the above
inequality reduces to

@ (XA) = E}[COSMX+COSAX]+i[sinh)\x
e i 20 +2M [lae) e e
a(&)|en(
+5SinAX] +—/ —sinA (x—¢&) A2 |‘i“|2
S ACGICIR3 (58)
+Sinh/\(><—<$)}c4(£)%(f,/\)d£]. (54)
Finally, we obtain
@ (XA) = %%[Sinh)\x—sin/\x]+%[cosh)\x
1 , M\t\ M3m X
reost+ L [ [—cosiix- 6 G0N < (25 +2757z [ 1G(E)IIam(E,2)10€]
+cosM(x—E)]q(E)qq1(E,)\)dE]. (55) +W/OIQ(E)II%(E,A)IdE- (59)

By calculating the right-hand side of this inequality as

/ G-11_. . follows
M) = || g o [SinAx-+sinAX] +
i[cosh)\x CosAX|
212
1 (X, A <2|\/|_\t\
+2A2/ [COSA (x— &)+ coshh (x— ) HOA <1257
VEl M\t\
}q(f)%(f,/\)dEH. e AR / a(&)[[gn(€,A)[dE]-
G-I 1 2|\/|3\I\
2 s i =12
< |i)\G 2|)\|[|S|nh)\x|+|sm)\x|] |\|/|)\3\|t\
+ﬂ%ﬂmﬁmﬂ—¢mgﬂ] MF /|q Nen(, Alz]
3l
+ﬂ%FA[mmuu—8%HaBm@—Eﬂ |AFZ+3/IQ Nlgn(&,A)|dé]
M3t
<-—-C
J1a(@)len(&,A)[d& |- ~ A2
|
It| It]
<I- 1+ G+ M whereC = 23 3 |a(&)] (& 1)|de].

It
e ) 6 (A 02

Simple calculation of the above inequality gives the

following inequality

mitl
el

G

()| < 2+|—I]

(57)

This means that:
(56)

, M3t
<
|%(Xa)\)| — |/\|ZC

Sincex s arbitrary in[0, a] then we can say that

M3t
maXera|(pn(X/\)|< —3C

AP ©0)
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From (63), we have
" G-11 1 " A _|G-11 h A 1 h
@ (% A)] = | Z[coSM X+ COSAX] + = [sinhAx g (XA)| = ?é[sm X—SiNAX] + 2[cos X
iAG 2 22
1 X
X
+sin)\x]+§/ [—sinA(x— &) +COS)\X]+§/O [—cosA (x— &)
0

+sinhA (x— E)]Q(E)%(E,)\)df‘

I
<|-1+

1
G|2|/\|[|cosh)\x| +|cosAx|]

1
2|/\ | [| sinhAX| + | SinAX]]

+M/ox [|SinA (x— )| + | sintA (x— &)

}Iq(f)ll%(f,)\)ldf‘ (61)
Simple calculation leads to
mitl Mt
A0 < el g+ T @) llen )i
mitl |\/|3\t\

A)ld
< 2y + 2 [ (@)l (€A 08

Mt

S TALGILR2

By using the same techniques as we did|f@(x,A)|,
we obtain

mltl
XA)| <2—
A <27
M3t M\t\
+(2—— (&,A)d
@+ ) A8 (€A 08
M3t |\/|3\t\
<[24+—+ (&,A)|dé&
2 + (%) [ a@)laE.A)jae]
3/t M3t
<—[2+3 A|dé] < ——C.
< T3 [ a0 1o < T
Where C = [2+ 3/5[a(£)[|gn(&.A)|dE]. Thus, we
have
VE
9006 ))] < T5rC (62)
Again, x is arbitrary in[0,a] so we obtain
M3t
Mexyc 0.4/ ¢h (X, A)] < —=—C. (63)

Al

Next, from 65) we have

+COSW\(X—f)}Q(E)%(E,)\)dE‘-

G-11, . . 1
<|=—]=2 =
<| c |2[|smh)\x|+|sm)\x|]+2[|Cosh)\x|
1 X
+|cos)\x|]+§/0 [[cosA (x— &)

+|cost (x—&)[]a(&)gn(&,A)|dE.
Some simple calculations give:

@ )] < M2+ )+ MY [l lan(E A )ldg
< [2M+2m%0 [ [(8)]n(E, )]

M [ (&) (€. A) 8.

(64)

By using the same techniques as we did|f@fx, A )|, we
obtain:

@ ()] < [2m"
M M) [%l(E)lgn(€, 2]
0
< M4 (@) [1(&) lgn(€. ) [de)

<M¥[2+3 [ 1a(€) lon(E. ) ld
< mdltc,
whereC = [2+ 3 5 |a(&)||gn(&,A)|dE]. That is,
@ (x.A)] <m3ic,

Again, x is arbitrary in[0,a] so we obtain

maXe (0.4 (x.A)| < M3C. (65)

So by the above calculations, we proved that the
derivatives of the eigenfunctions of the boundary value

problem ()-(2) are bounded. For complex number
A =r+itand|r| <|t|

(0 M3
maxxe[o,aﬂ% (Xv)‘)| < |/\|—3,JC71 =123 (66)
And for the complex numbek =r +it and|r| > [t| we
repeat the same process as above, and we get

3r|

i M .
Mol (X A)] < Gl =123 (67)

Hence, Theorem 4 was proved.
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