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Abstract: In [M. A. Tawhid, On Characterization oE(EO)-Properties in Nonsmooth Functions. Applied Mathematicsl a
Computation. 175: 2: pp. 1609-1618, April 15, (2006)], Tavgave characterization of strictly semi-monotone (semiotone)
properties in nonsmooth functions that &tedifferentiable. He showed the usefulness of his resultsainear complementarity
problems. A natural question is: Can we extend these claizations in order to apply the results to nonsmooth gairet
complementarity problems? This paper give an affirmatigsvan. We introduce the concepts of relatively semi-monetomd relatively
strictly semi-monotone in order to give characterizatiafighe relatively semi-monotone and relatively strictlyréeanonotone
properties. Also, our results give characterizations ktieely P(Pg)- when the underlying functions a@-functions, semismooth-
functions, and locally Lipschitzian functions. Moreowere show useful applications of our results by giving illasions to nonsmooth
generalized complementarity problems that admitHheifferentiability.
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1 Introduction product and chain rules, se@2. The H-differentiable
function need not be locally Lipschitzian nor directiogall

In [6], the authors introduced the concepts of the differentiable 9.

H-differentiability and H-differential for a function

f : R" — R". They showed that the Fréchet derivative ofa ~ Our work in this article is motivated from some recent
Fréechet differentiable function, the Clarke generalizedresults: The characterization d?(Po)- properties in
Jacobian of a locally Lipschitzian functionl]] the = nonsmooth functions2?], the characterizatiorE(Eo)-
Bouligand subdifferential of a semismooth functidrl]] ~ Properties in nonsmooth functions2d, and some
[17], [19], and theC-differential of a C-differentiable  applications of H-differentiability to optimization,
function [18] are examples ofi-differentials. It turns out complementarity, and variational inequalitieS], [ [6],
(see (Bl, [6], [22], [29], [27], [26], [28], [29], [30]) that  [22], [25], [27], [26], [28], [29], [30].

these concepts give useful and unified treatments for The goal of this paper is to give a characterization of
many problems in optimization, complementarity relatively semi-monotoneEpy)— and relatively strictly
problems, and Vvariational inequalities when the semi-monotone E)— property when the underlying
underlying functions are not necessarily locally functions areH-differentiable. We establish our results by
Lipschitzian nor semismooth. Any superset of anintroducing the concepts of relatively semi-monotone
H-differential is an H-differential, H-differentiability = (Eg)— and relatively strictly semi-monoton&) which
implies continuity, andH-differentials enjoy simple sum, extend the concepts of semi-monotoig)- and strictly
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semi-monotone  K). Therefore, our results
extend/generalize the characterization
E(EO)-Properties in nonsmooth functions 2d.

Also, we show the usefulness of our results by giving
generalized

some illustrations to nonsmooth

complementarity problems.

2 Preliminaries

We regard vectors iR" as column vectors. For a matidx
A denotes théth row of A. For a differentiable function
f:R"— R™ Of(X) denotes the Jacobian matrix bfat

LetF : R" — R™ be Fréchet differentiable at € R" with

of Fréchet derivative matrix (= Jacobian matrix derivative)

{OF(x*)} such that
F(x)—F(xX") —OF(X")(x—

Then F is H-differentiable with {OF(x*)} as an
H-differential.
Example 2. (Locally Lipschitzian function)

X°) = o(|[x=x])-

Let F: Q C R" — R" be locally Lipschitzian at each
point of an open se®@. Forx* € Q, define the Bouligand
subdifferential ofF atx* by

AgF () = {lim OF (X¥) : XK — x*, X< € Qp}

x. Vector inequalities are interpreted componentwise. FofiwhereQf is the set of all points ir2 whereF is Fréchet

a setk C R", coK denotes the convex hull ¢ andK
denotes the closure & [20]. The p-norm ofx is denoted
[|X||p and the Euclidean norm afis denoted by|x||.

2.1 H-differentiability and H-differentials

From [6], we recall the following definition.

Definition 1. Given a function E Q C R" — R™ where
Q is an open set in Rand X € Q, we say that a
nonempty subset(X*) (also denoted byg(x*)) of R™"

is an H-differential of F at X if for every sequence
{x<} € Q converging to % there exist a subsequence
{xki} and a matrix Ac T (x*) such that

F) ~F(6) AR ) <ol )

We say that F is H-differentiable at*xif F has an
H-differential at X.

Remarks. In [27], it is shown that if a functiorF : Q C
R" — RMis H-differentiable at a poirt, then there exist a
constant. > 0 and a neighbourhodg(x, d) of x with
IF0—F(| <Lllx—%]. ¥xeB(Xd). (2
Conversely, T(x) := R™" can be taken as an
H-differential of F at x if condition (2) holds. Thus 2)
gives an alternate description idtdifferentiability.
Obviously, any function locally Lipschitzian atwill
satisfy @). For real valued functions, conditior?)(is
known as the ‘calmness’ ¢f atx. This concept has been

well studied in the literature of nonsmooth analysis (see

[21], Chapter 8).

differentiable. Then, the (Clarke) generalized Jacohblhn [
O0F (X*) = codgF (X*)

is anH-differential of F atx*.
Example 3. (Semismooth function)

Consider a locally Lipschitzian functidh: Q C R" — R™
that is semismooth a¢ € Q [11], [17], [19]. This means
for any sequence — x*, and forVi € F (xX),

F () = F(X) = Vi = x°) = o(|[x = x°|]).
Then the Bouligand subdifferential
AaF () = {lim OF (X¥) : XK — x*, X € Qe }.

is anH-differential of F atx*. In particular, this holds iF
is piecewise smooth, i.e., there exist continuously
differentiable function§; : R" — R™ such that

F(x) € {F1(x),F2(x),....,F3(x)} VxeR"
Example 4. C-differentiability)

Let F : R" - R" be C-differentiable 8§ in a
neighborhood of x*. This means that there is a compact
upper semicontinuous multivalued mapping— T(x)
with x € D and T(x) ¢ R™" satisfying the following
condition at anya € D: For anyV € T(x),

F(x) —F(a) =V(x—a) = o(|[x—al]).

Then, F is H-differentiable atx* with T(x") as an
H-differential.

Remark. It is noted that anH-differentiable function
need not be locally Lipschitzian nor directionally
differentiable. The following simple example, is taken
from [25], consider orR,

F(x) = xsin()—l() forx# 0 andF(0) =0.

The authors in§] showed the Fréchet derivative of a ThenF is H-differentiable orR with

Fréchet differentiable function, the Clarke generalized

Jacobian of a locally Lipschitzian function, the Bouligand T(0)=[-1,1] andT(c) = {sin(}) _ }COS(})} forc+£0.
c c

subdifferential of a semismooth function,
C-differential of aC-differentiable function are particular
examples oH-differentials.

Example 1. (Fréchet differentiability)

and the

c

We note thatF is not locally Lipschitzian around zero.
We also see thaf is neither Fréchet differentiable nor
directionally differentiable.
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3 The relatively E(Eq)— properties in
nonsmooth functions

Let us recall the definitions of semi-monotort&) and
strictly semi-monotoneH) functions (matrices), see e.g.,
[4], [9], and [12].

Definition 2. For a function f: R" — R", we say that f is
semi-monotoneH)) if for every0 # x > 0 there exists an
index j such that x> 0 and fj(x) > 0. It is strictly semi-

monotonek) if for every0 # x > 0 there exists an index j
such that x> 0 and fj(x) > 0.

A matrix M € R™" is said to be a&y(E)-matrix if the
function f (x) = Mx is aEg(E)-function.

The following Proposition in 23] is an analog of
proposition in R2] for strictly semi-monotone K)—
matrices.

Proposition 1. Let f: Q — R" be continuous wherg is
open set in Rand H-differentiable at each pointe Q
with an H-differential Tx) consisting of strictly

H-differentiable at each pointx € Q with an
H-differential T,(x) consisting of strictly semi-monotone
(E)— matrices. Then h is a strictly semi-monotq8—
function on Q.

In view of Lemmal and Theoreml, we have the
following.

Corollary 1. Let QC R, be a rectangular box of the
form Q= {x] 0 < x < a}. Suppose that fR" — R" and
g: R" — R" are continuous and H-differentiable at each
x € Q with H-differentials, respectively, by (&) and
Tg(X). Assume g is a homeomorphism. Let;h— R" be
continuous with ) = 0 where h:= f og™! and
H-differentiable at each pointx € Q with an
H-differential T,(x) consisting of strictly semi-monotone
(E)- matrices. Then f and g are relatively strictly
semi-monotone(E)-functions on Q, i.e., for every
x € Q,0 #£ g(x) > 0, there exists an index j such that
gj(x) > 0and fj(x) > 0.

Remark. Note that ifg(x) = x in Corollary 1, we get

semi-monotone matrices. Then there exists vectors u angheorem 1in23].

v arbitrarily close to zero such that

(hu<0 and f(X+u) < f(x);
()v>0 and f(x+v)> f(x).

Now we introduce the definitions of relatively semi-
monotone Ep) and relatively strictly semi-monoton&)
functions (matrices).

Definition 3. For a function fg: R" — R", we say that f
and g are relatively semi-monotone if for evéry g(x) >
0 there exists an index j such thaf(g) > 0 and fj(x) >
0. It is relativelystrictly semi-monotone if for evey-~
g(x) > Otherelativelyre exists an index j such thatx) >
Oand fj(x) > 0.

The following theorem characterizes the relatively
semi-monotoneH)—property visH-differentials.

Theorem 2. Let QC R", be a rectangular box of the
form Q= {x] 0 < x < a}. Suppose that fR" — R" and
g: R"— R" are continuous and H-differentiable at each
x € Q with H-differentials, respectively, by;{) and
Ty(X). Assume g is a homeomorphism. Leth— R" be
continuous with ) = 0 where h:= f og™! and
H-differentiable at each pointx € Q with an
H-differential |(X) consisting of semi-monotoné&g)—
matrices. Then h is a semi-monotdii®)— function on Q.

In view of Lemmal and Theoren®?, we have the
following.

The fO”OWing Lemma is needed in the SubsequentCOronary 2. Let Qg Rn+ be a rectangu|ar box of the

analysis. The proof s trivial so we omit it.

Lemma 1. Suppose fg: R"— R"and g is one-to-one and
onto. Define h R" — R” where h:= f og™'. Then f and
g are relativelyEq(E)-functions if and only if h i€ (E)-
function.

form Q= {x] 0 < x < a}. Suppose that fR" — R" and
g: R" — R" are continuous and H-differentiable at each
x € Q with H-differentials, respectively, by () and
Tg(X). Assume g is a homeomorphism. Let;h— R" be
continuous with ) = 0 where h:= f og™! and
H-differentiable at each pointx € Q with an

A continuous mapping is called a homeomorphism if H-differential T,(x) consisting of semi-monoton@&o)-
it is a one-to-one and onto mapping and if its inverseMatrices. Then f and g are relatively strictly

mapping is also continuous.

semi-monotonéEy)-functions on Q.

The proof of the following theorem based on Proposition gemark. Note that if g(x) = x in Corollary 2, we get

1, is similar to the proofs of Theorem 3.4 i®][and
Theorem 1 in 23].

Theorem 1. Let QC R", be a rectangular box of the
form Q= {x| 0 < x < a}. Suppose that fR" — R" and
g: R" — R" are continuous and H-differentiable at each
x € Q with H-differentials, respectively, by; ) and
Tg(X). Assume g is a homeomorphism. Let;h— R" be
continuous with ) = 0 where h:= f og™! and

Theorem 2 in 23]. In view of Example 2, we get the
following.

Corollary 3. Let QC R, be a rectangular box of the
form Q= {x] 0 < x < a}. Suppose that fR" — R" and

g: R" — R are continuous and locally Lipschitzian at
eachx € Q with generalized Jacobians, respectively, by
df(x) and dg(x). Assume g is a homeomorphism and
d9(X) consists of nonsingular matrices. Let ® — R" be
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continuous with t0) = 0 where h:= f o g~ and locally
Lipschitzian at each pointx € Q with generalized
Jacobian dh(x) consisting of semi-monotonéEg)—
matrices. Then

(i) his a semi-monotongEg)— function on Q.
(i) f and g are relatively strictly semi-monotori&y)-
functions on Q

In View of Example??, we get the following.

Corollary 4. Let QC R, be a rectangular box of the
form Q= {x| 0 < x < a}. Suppose that fR" — R" and
g: R" — R" are continuous and semismooth ofi

particular, piecewise affine or piecewise smooth) at each

x € Q with the Bouligand subdifferentials , respectively,

by dgf(x) and dgg(x). Assume g is a homeomorphlsm

and dgg(x) consists of nonsingular matrices. Let
h: Q — R' be continuous with (®) = 0 where
h:= fog ! and semismooth (in particular, piecewise
affine or piecewise smooth) at each pomt Q with
Bouligand  subdifferential dgh(x) consisting of
semi-monotonéEy)— matrices. Then

(i) his asemi-monotongEg)— function on Q.
(i) f and g are relatively strictly semi-monotori&y)-
functions on Q.

If g(x) = x in the above corollaries, we have the
following corollary.

Corollary 5. Under each of the following, fR" — R"
with  f(0) 0, is a strictly semi-monotone
(semi-monotone) function.

(a)f is Frechet differentiable on'Rand for every > R",
the Jacobian matrix2f (x) is a strictly semi-monotone
(semi-monotone) matrix.

(b)f is locally Lipschitzian on Rand for every x R", the
generalized Jacobia@d f (x) consists of strictly semi-
monotone (semi-monotone) matrices.

(c)f is semismooth on"Rin particular, piecewise affine
or piecewise smooth) and for every exR", the
Bouligand subdifferentiabs f (x) consists of strictly
semi-monotone (semi-monotone) matrices.

4 Some applications to generalized
complementarity problems

Before we start this section, we need the following

definition

Definition 4. A function¢ : R?2 — R is called a GCP
function if ¢(a,b) = 0« ab=0,a> 0,b > 0. For the
problem GCRf,g), we define

[@(121(x),91(x)),- -, @(Fn(X), Gn (X)) ]
and, we call®(x) a GCP function for GCPf, g).

T

®3)

®(x)

In this section, we give some illustrations to
generalized complementarity problems to illustrate the
usefulness of our results. Given any two functions
f,g: R"— R", the generalized complementarity problem
GCHf,g) is the problem of finding € R" such that

f(X) >0, g(x) >0 andf(x)"g(X) = 0.
The GCRf,g) can be regarded as a generalization of some
complementarity problems. Also, GCRg) is known as
the quasi/implicit complementarity problem wheg(x) =
x—W(x) with someW : R" — R", see, e.g., ], [13], [16].
We consider a GCP functio® : R” —+ R" associated
with GCP(f,g) and its merit function

W(x) = (4)

1
Z|lox)|?
SIELR
so that

x solves GCPf,g) < @(X) =0« W(x) =0.

In order to show the usefulness of our results, we need
to know theH -differential of some GCP functions.

The following illustration is Theorem 2 ir2{].
Example 5. Consider the GCP function based on the NCP
function in [8]

®(x) == () +9(x) - \/[f (X) 9>+ A f(x)g(x) (5)

whereA is a fixed parameter if0,4). We note that when
A — 0, ®(x) becomes

®(x) = f(x)+9(x) — /[F(x) —g(
=2min{f(x),g(x)},
while A = 2, @(x) reduces to the GCP function based
on Fischer-Burmeister function. Let
J) ={i:fi(}x) =0=gi(x)}.
Then® in (5) has arH-differential atx given by
To(X) = {VA+WB: (ABV,W,d)eTrl},

wherel™ is the set of all quintuple@, B,V,W.d) with A €
Tt (X), B € Tg(x), ||d|| = 1,V = diag(vi) andW = diag(w;)
are diagonal matrices satisfying the conditions

x)]?

(1-Vi)>+(1-w)? € (0,2) YVi=1,2...,n, where (6)
—2(gi(¥)—fi(x))+Agi(X) i
" 2/lgp A (0a 0 wheni ¢ J(x)
Vv = 2V Ald Bd>2+)\(A.d)(B d)
and(Aid — Bid)?+ A (Aid)(Bid) > 0
arbitrary wheri € J(X)
and(Aid — Bid)? + A (Ad)(Bid) = 0,
(7)
2(g(¥)—fi(x))+A fi(x) ;
IRCRENE wheni ¢ J(x
B 2(Bid—Aid)+A ;
wl Was Baramesg e €I
and(Aid — Bid)? + A (Aid)(Bid) > 0
arbitrary when € J(X)

and(Aid — Bid)? + A (Aid)(Bid) = 0.
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Example 6. Consider the following GCP function.

D1(X) == @p(f(x),0(x)) +af(x),g(x),,a>0.

K(x) :={i: fi(X) > 0,gi(x) > 0}.
Wheni ¢ K(X), (®3(X))i = |(Pp(X))i| = —(Pp(X))i-

TheH-differential of @3 atxis given by

where all the operations are performed componentwise

and gy(a,b) .= a+b—[[(ab)|p pis any fixed real
number in the interval(1,+), ||(a,b)|, denotes the

p-norm of (ab), i.e., |(ab)|lp = ¥/|aP+|blP and

a; = max{0,a}. This function for NCP context is studied

in[2].
Now let
IX):={i:fi}) =0=gi(x)} and
K(X) :={i: fi(X) > 0,gi(X) > 0}.
TheH-differential of @, atxis given by
To, (X) = {VA+WB: (A\V,W,d) € I},

wherefl is the set of all quadruplés\, B,V,W,d) with A €
Tt (X), Be Tg(x), [|[d|| =1,V = diagvi) andW = diag(w;)
are diagonal matrices with

1-— P2 Lag(x) KX,
(R9P+gi(RP) P
1— |Ad] Sgr’(Aip(i)l i EJ()?)

- (|Ad[P+|Bid|P) P~
Vi = and/Ad|P+|BidP >0, ®
2 —1 2
1- [fi ([P ng{f,(i)l i ¢ J(X) UK(X),
(fiCIP+gi()[P) P
arbitrary i € J(x) and|Aid|P+|Bid|P =0,
1-— 0P L af(x) i eK(X),
(5 (PG (0P) P
1 — Bid SgnB& i€ J(X
w={  (AdPEdp) )

and|Aid|P +[Bid|P > 0,

1_ \q(i)\p*lsgﬂgi(@)l i ¢ J(X) UK(X)
p— )
(fi[P+lgi(q|P) P
arbitrary i € J(x) and|Aid|P+ |Bid|P =0.

To,(X) = {VA+WB: (AV,W,d) € '},

wherefl is the set of all quadruplé#\, B,V,W,d) with A e
T (X), Be Tg(x), ||d|| =1,V = diagvi) andW = diag(w;)
are diagonal matrices with

(1i(%.6(X) (1 %) +afi(9g(X)

fi(P+gi(IP) P~
71\/fl%(fi(@:@i(@HU(fi(?LGi(?))z
|Ad[P Sgr{/‘\‘i)l 1 i€ J(X)
(IAd[P+[Bid[P) P
and|Ad|P +|Bid|P > 0,
LGRPISINGRD. 3 ¢ 3(%) UK(X),
(1G9 [P+gi (x)|P) P
arbitrary i € J(x) and|Aid|P+|Bid|P =0,

i€ KX,

Vv = (11)

(i(2.91(%) (1 "”"H) +af?(g (%)
(fi9P+gi(OP) P~
V@ (i(%),6 () +a (fi(X,0 ()2
BdPtsgned) 4 i€ X

(AdP+BdP)
and|Ad|P+|Bid|P > 0,
1o (PISgNe () 4 ¢ J(X) UK (X),

(£ P+]a (317 7
arbitrary

i €KX,

(12)

ieJ(X)
and|Aid|P+ |B;id|P = 0.

Before stating the results of this subsection, we call a
vector X is said to be feasible (strictly feasible) for
GCP(f,qg) if f(X) >0 (> 0), andg(X) > 0 (> 0). In the
following theorem we will minimize the merit function
underEg(E)-conditions. Since the proof of the following
theorem undeiEq(E)-conditions will be similar to the
proof of Theorem 3.5 inZ4], we omit the proof.

Theorem 3. Suppose ,fg: R" — R" are H-differentiable
at x with H-differentials, denoted by;{x) and T(X),

The above calculation relies on the observation that théespectively. Suppose@ is a GCP function of f and g.

following is anH-differential of the one variable function

t > t, atanyt:

{1} ift>0
A(t‘):{{o,l} ift=0
{0} ift<O.

Example 7. For the NCP functiong]

e(ab) =/ [g@b)2+aab, )2
wherea > 0, we consider the following GCP function

®3(x) = \/[%(f(x),g(x))]“r a(f(x),9(9,)%  (10)

wherea > 0, and all the operations irL(Q) are performed
componentwise. Let

I3 ={i: fi(}) =0=gi(x)} and

Assume tha# := 2||®||? is H-differentiable ak with an
H-differential given by

Ty(X) = {®(X)" VA+WB: Ac T¢(X),B € Ty(X),
V =diag(vi), and W= diag(w;),
with v > 0, w; > 0 (> 0) wheneve®;(x) # 0}.

Further suppose thatx is a strictly feasible
point(respectively, feasible point) of GCR¢) and
®;(x) > 0, Tg(x) consists of nonsingular matrices, and
S(X) consists of  Ep(E)-matrices where
Sx) = {AB!l: A € Ti(xX),B € Ty(X)} Then
0€ Ty(X) & O(X) =0.

Concluding Remarks. This paper is considered as a
generalization or an extension &J. In this paper, we
give characterization of relativel{e(EO)-properties in
nonsmooth functions when the underlying functions are
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H-differentiable.  For  continuously  differentiable [2] Jein-shan Chen, On Some NCP-Functions Based on

functions, the nonsingularity offy = {Og} is very the Generalized Fischer-Burmeister Function. Asia-Racifi
important from an algorithmic point of view and studying Journal of Operational Research, 24(3): 401-420 (2007).
the error bounds for GG, 9) [3] B. Chen, X. Chen and C. Kanzow, A Penalized Fischer-

We show the usefulness of our results by g|v|ng some Burmeister NCP-Function: Theoretical Investigation and
appllcat|ons to a generallzed Complementarlty problem Numerical Results. Mathematical Programm|ng. 88: 211-
corresponding toH-differentiable functions, with an 216 (2000).

associated GCP functio® and a merit function [41R:W. Cotlle, J-S. Pang and RE. Stone, The Linear
WY(x) = %HQJHZ Complementarity Problem. Academic Press, Boston, 1992.

[5] M.S. Gowda, Inverse and Implicit Function Theorems for
H-Differentiable and Semismooth Functions. Optimization
Methods and Software.19: 443-461 (2004).

[6] M.S. Gowda and G. Ravindran, Algebraic Univalence
Theorems for Nonsmooth Functions. Journal of
Mathematical Analysis and Applications. 252: 917-935

When the underlying functions are continuously
differentiable (locally Lipschitzian, semismooth, and
directionally differentiable) functions, our
characterizations are valid , new characterizations for
relatively E(EO)-properties, and generalization to

characterizations foE(EO)-properties. For example, we (2000).
have the following: [71G. Isac, Complementarity problemsLecture Notes in
—Whenf andg areCl in which casel; ()?) _ {Df()?)} Mathematics 1528, Springer Verlag, Berlin, Germany, 1992.

[8]C. Kanzow and H. Kleinmichel, A New Class of
Semismooth Newton-Type Methods for Nonlinear
Complementarity Problems. Computational Optimization

andTg(x) = {Jg(x)}, our results are true.
—Whenf is C! andg(x) = x (in which case we can let

Ti (X) = {0f(x)}), Our characterization of relatively and Applications. 11: 227-251 (1998).

E(EQ)-properties reduce to characterization of gjs. Karamardian, The Complementarity Problem.

E(EO)-properties in 23. Moreover, GCPRf,g) Mathematical Programming. 2: 107-12 (1972).
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