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Abstract: In this paper, we study an eight-neuron neural network modelwith multiple delays. By using the generalized Bendixson’s
criterion and second additive compound matrices, we will investigate that whether the nontrivial periodic solutions of the neural network
model exist globally or not. In fact, under suitable conditions, an area will be found that contains no simple closed invariant curves
including periodic orbits.
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1 Introduction

The dynamical characteristics of neural networks can be
applied in many sciences such as mathematics, physics
and computer sciences. As time delays always occur in
the signal transmission, Marcus and Westervelt proposed
a neural network model with delay [1].

Dynamical behaviors such as periodic phenomenon,
bifurcation and chaos have been discussed on these
systems. But, since the exhaustive analysis of the
dynamics of such large systems are complicated, some
authors have studied the dynamical behaviors of simple
systems[2,3,4].

Simplified neural networks with constant or
time-varying delays have also been widely studied e.g. [5,
6,7]. Most of them focused on the local and global
stability analysis. The properties of periodic solutions are
also significant in many applications.

Motivated by the above, we study the global existence
of periodic solutions by using the generalized Bendixson

criterion. In this paper, we consider the following system:
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ẋ1(t) =−µ1x1(t)+ c11 f11(y1(t − τ5))+ c12 f12(y2(t − τ5))
+c13 f13(y3(t − τ5))+ c14 f14(y4(t − τ5)),

ẋ2(t) =−µ2x2(t)+ c21 f21(y1(t − τ6))+ c22 f22(y2(t − τ6))
+c23 f23(y3(t − τ6))+ c24 f24(y4(t − τ6)),

ẋ3(t) =−µ3x3(t)+ c31 f31(y1(t − τ7))+ c32 f32(y2(t − τ7))
+c33 f33(y3(t − τ7))+ c34 f34(y4(t − τ7)),

ẋ4(t) =−µ4x4(t)+ c41 f41(y1(t − τ8))+ c42 f42(y2(t − τ8))
+c43 f43(y3(t − τ8))+ c44 f44(y4(t − τ8)),

ẏ1(t) =−µ5y1(t)+ c51 f51(x1(t − τ1))+ c52 f52(x2(t − τ2))
+c53 f53(x3(t − τ3))+ c54 f54(x4(t − τ4)),

ẏ2(t) =−µ6y2(t)+ c61 f61(x1(t − τ1))+ c62 f62(x2(t − τ2))
+c63 f63(x3(t − τ3))+ c64 f64(x4(t − τ4)),

ẏ3(t) =−µ7y3(t)+ c71 f71(x1(t − τ1))+ c72 f72(x2(t − τ2))
+c73 f73(x3(t − τ3))+ c74 f74(x4(t − τ4)),

ẏ4(t) =−µ8y4(t)+ c81 f81(x1(t − τ1))+ c82 f82(x2(t − τ2))
+c83 f83(x3(t − τ3))+ c84 f84(x4(t − τ4)).

(1)
whereci j, (i = 1, . . . ,8; j = 1, . . . ,4) are the connection
weights through the neurons in two layers: the X-layer
and the Y-layer. Also, The stability of internal neuron
processes on the X-layer and Y-layer have been described
by µi > 0, (i = 1, . . . ,8). τi, (i = 1, . . . ,8) correspond to
the finite time delays of neural processing and delivery of
signals. The activation functions have been denoted by
fi j, (i = 1, . . . ,8; j = 1, . . . ,4).

We will study that whether the nontrivial periodic
solutions of Eq. (1) exist globally or not by using the
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generalized Bendixson’s criterion and second additive
compound matrices.

This paper is organized in four sections. The next
section is devoted to the definition of second additive
compound matrices and generalized Bendixson’s
criterion. The main results on the global existence of
nontrivial periodic solutions will be presented in the third
section. Finally, in section 4, the conclusions will be
stated.

2 preliminaries

First, we state the following proposition that will be used
in our main results:

Theorem 2.1. Let D ⊂ Rn be a simply connected region.
Assume that the family of linear system

ż(t) =
∂ f [2]

∂x
(x(t,x0))z(t), x0 ∈ D (2)

is equi-uniformly asymptotic stable. Then
(a) D contains no simple closed invariant curves including
periodic orbits, homoclinic orbit, heteroclinic cycles;
(b) each semi-orbit in D converges to a single
equilibrium. In particular, if D is positively invariant and
contains a unique equilibrium ¯x, then ¯x is globally
asymptotically stable in D.

Proof. For the proof, see [8].

Here, ∂ f [2]

∂x is the second additive compound matrix of

the Jacobian matrix∂ f
∂x , where

ẋ = f (x), x ∈ Rn
, f ∈C1 (3)

is a system of ordinary differential equations.
Remark. The second additive compound matrixA[2] is

(n
2

)

×
(n

2

)

, where for eachi = 1, . . . ,
(n

2

)

, (i) = (i1, i2) is ith
member that 1≤ i1 < i2 ≤ n. The(i, j)-component ofA[2]

is defined as follows:
For (i) = ( j), the component isai1i1 + ai2i2. If just ir does
not exist in( j) and only js not in (i) then the component
is (−1)r+sair js , and the component is 0 if there exist no
common component in(i) and( j).

For more information on the second additive
compound matrix, see [9].

3 Main results

In order to establish the main results for model (1), it is
necessary to make the following assumptions:
(H1) fi j ∈ Ck, fi j(0) = 0(k = 1,2,3, . . . , j = 1, . . . ,4, i =
1, . . . ,8).
(H2) τ1+ τ5 = τ2+ τ6 = τ3+ τ7 = τ4+ τ8 = τ.

Let u1(t) = x1(t − τ1), u2(t) = x2(t − τ2),
u3(t) = x3(t − τ3), u4(t) = x4(t − τ4), u5(t) = y1(t),

u6(t) = y2(t), u7(t) = y3(t) andu8(t) = y4(t), then system
(1) changes to the following equivalent form:
{

u̇i(t) =−µiui(t)+∑4
j=1 ci j fi j(u j+4(t − τ)), (i = 1, . . . ,4)

u̇i(t) =−µiui(t)+∑4
j=1 ci j fi j(u j(t)), (i = 5, . . . ,8)

(4)
By the hypothesis (H1), we can easily see that system (4)
has a unique equilibrium(0,0,0,0,0,0,0,0).

Letting τ = 0 in the system (4), we have
{

u̇i(t) =−µiui(t)+∑4
j=1 ci j fi j(u j+4(t)), (i = 1, . . . ,4)

u̇i(t) =−µiui(t)+∑4
j=1 ci j fi j(u j(t)), (i = 5, . . . ,8)

(5)
We make the following assumption on system (5):
(H3) ∃α,β > 0s.t. η(t,α,β )< 0
where

η(t,α,β ) = max{−7(µ1+µ2)+(α +5)(|c12|| f
′
12(u6)|

+ |c21|| f
′
21(u5)|+ |c22|| f

′
22(u6)|+ |c11|| f

′
11(u5)|)+

(3+α +
1
β
)|c23|| f

′
23(u7)|+(4+α+

1
β
)(|c24|| f

′
24(u8)|+ |c13|| f

′
13(u7)|+ |c14|| f

′
14(u8)|)

+6(|c31|| f
′
31(u5)|+ |c32|| f

′
32(u6)|)+6(|c41|| f

′
41(u5)|

+ |c42|| f
′
42(u6)|)+ (5+

1
β
)(|c43|| f

′
43(u7)|+

|c44|| f
′
44(u8)|)+ (5+

1
α
)|c52|| f

′
52(u2)|+

6(|c53|| f
′
53(u3)|+ |c54|| f

′
54(u4)|)+ (5+

1
α
)|c62|| f

′
62(u2)|

+6(|c63|| f
′
63(u3)|+ |c64|| f

′
64(u4)|)+ (4+β+

1
α
)|c72|| f

′
72(u2)|+(β +5)(|c73|| f

′
73(u3)|+

|c74|| f
′
74(u4)|)+ (4+β +

1
α
)|c82|| f

′
82(u2)|+

(5+β )(|c83|| f
′
83(u3)|+ |c84|| f

′
84(u4)|)+ (5+

1
β
)(|c33|| f

′
33(u7)|+ |c34|| f

′
34(u8)|)+ (5+

1
α
)(|c51|| f

′
51(u1)|+ |c61|| f

′
61(u1)|)+ (4+β+

1
α
)(|c71|| f

′
71(u1)|+ |c81|| f

′
81(u1)|)−7(µ3+ µ4)

−7(µ5+ µ6)−7(µ7+ µ8)}.

Theorem 3.1. If the hypotheses (H1) and (H3) are
satisfied, then system (5) has no nonconstant periodic
solutions.

Proof. Assuming the right hand function of system (5) as
f (u(t)), and computing the second additive compound
matrix of ∂ f

∂u , we have the second compound system

ż =
∂ f [2]

∂u
z, z = (z1, . . . ,z28)

T
. (6)
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Let

W (z) = max{α|z1|, |z2|, |z3|, |z4|, |z5|, |z6|, |z7|, |z8|, |z9|,

|z10|, |z11|, |z12|, |z13|, |z14|, |z15|, |z16|, |z17|,

|z18|, |z19|, |z20|, |z21|, |z22|, |z23|, |z24|, |z25|,

|z26|, |z27|,β |z28|},

whereα,β > 0 are constants. Now, by using the right-hand
derivative, we can prove

d+

dt
W (z(t)) ≤ η(t,α,β )W (z(t)) (7)

This establishes the equi-uniform asymptotic stability of
the second compound system (6). By using (H3) and
Theorem 2.1 the proof is complete.

Theorem 3.2. System (4) has no nontrivial periodic
solution of periodτ.

Proof. It is easy to see that ifu(t) is aτ-periodic solution of
system (4), thenu(t) is τ-periodic solution of the ordinary
differential equation (5). So, the conclusion follows from
Theorem 3.1.

4 Conclusions

In this paper, we have proved that the system (4) has no
nontrivial τ-periodic solution and system (5) has no
nonconstant periodic solutions. Although, our analysis
was on the eight-neuron neural network model with
multiple delays, the complexity found in this case might
be carried over to larger scale neural networks. The
proposed method in this paper, can be useful in solving
problems of both theoretical and practical importance in
nonlinear dynamical systems.
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