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Abstract: In this paper the commutator subgroups of the affine Weyl group of typeC̃n−1 (n≥ 3) and the triangle Coxeter groups are

studied. Also it is given all power subgroups of the affine Weyl group of typeÃn−1 (n≥ 3). We should note that, as in our knowledge,
although the concept of this study seems in pure mathematics, it is known that affine Weyl groups have a direct relationship between
discrete dynamical systems and Painlevé equations (cf. [16]).
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1 Introduction

A Coxeter group, named after H. S. M. Coxeter, is an
abstract group that admits a formal description in terms of
mirror symmetries. Coxeter groups were introduced in[8]
as abstractions of reflection groups. These groups find
applications in many areas of mathematics. Examples of
finite Coxeter groups include the symmetry groups of
regular polytopes, and Weyl groups of simple Lie
algebras. The triangular groups corresponding to regular
tessellations of the Euclidean plane and the hyperbolic
plane, and the Weyl groups of infinite-dimensional
Kac-Moody algebras can be given as examples of infinite
Coxeter groups ([9]). Also it has been interested to obtain
some solutions for the decision problems in Coxeter
groups (cf. [13]).

In this paper we are interested in the affine Weyl
groups of typeÃn−1, C̃n−1 (n ≥ 3) and the triangle
Coxeter group. These groups have been studied
extensively for many aspects in the literature. Affine Weyl
groups, in particular, play a crucial role in the study of
compact Lie groups ([4,5]). But, in here, we concern with
these groups from the point of abstract group structure
and find commutator subgroups of them and power
subgroups of̃An−1. To obtain this kind of subgroups we

use the Reidemeister-Schreier method (for more detail
about this method, see[14]). This subgroups have been
studied in detailed in [6,11,12] and [17] for Hecke and
extended Hecke groups which are special Coxeter groups.

Thecommutator subgroupof a groupG is denoted by
G

′
and defined by < [g,h] ; g,h ∈ G >, where

[g,h] = ghg−1h−1. SinceG
′

is a normal subgroup ofG,
we can form the factor-groupG/G

′
which is the smallest

abelian quotient group ofG. Now let k be a positive
integer. Let us defineGk to be the subgroup generated by
the kth powers of all elements of the groupG. So the
groupGk is called thekth power subgroupof G. As fully
invariant subgroups, they are normal inG. In [18], the
authors studied the commutator and the power subgroups
of Hecke groups. Actually, our results in here can be
thought as the generalization of the theories in reference
[18].

At some part of the rest of this paper, for a good useage
of space of the text, we will not use the notation<> to
define a presentation of related structers. We will give our
results in seperate sections under the name of Affine Weyl
group of typeÃn−1, Affine Weyl group of typẽCn−1 and
Triangle Coxeter group.
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2 Affine Weyl group of type Ãn−1

The affine Weyl group of typẽAn−1 (n≥ 3) is actually an
irreducible Coxeter groupwhich the Coxeter graph is a
polygon withn vertices [15]. A presentation (let us label it
by (1) ) for Ãn−1 is defined by the generatorsa1,a2, · · · ,an
and the relators

a2
i = 1 (1≤ i ≤ n),

(aiai+1)
3 = 1 (1≤ i ≤ n−1), (a1an)

3 = 1,

and

(aia j)
2 = 1 (1≤ i < j −1< n, (i, j) 6= (1,n)),

In [1], Albar showed that

Ãn−1
∼= Z

n−1
⋊Sn,

whereS is the symmetric group of degreen. Then in[2],
Albar et al. proved howÃn−1 appears naturally as a
subgroup of the natural wreath productW = ZSn. Again
in [1], the author pointed out the isomorphism

Ãn−1/Ã
′

n−1 =< a1;a2
1 = 1>∼=C2

and so the index
∣∣∣Ãn−1 : Ã

′

n−1

∣∣∣= 2. By taking{1,a1} is a

Schreier transversal for̃A
′

n−1 and then applying the
Reidemeister-Schreier process, the following result is
obtained.

Theorem 1.[1] The commutator subgroup of the affine
Weyl groupÃn−1 (n≥ 3), sayÃ

′

n−1, is presented by

< b1,b2, · · · , bn−1 ; b3
1 = b2

i = b3
n−1 (1≤ i ≤ n−2),

(bib
−1
i+1)

3 = 1(1≤ i ≤ n−2),

(bib
−1
j )2 = 1(1≤ i ≤ j −1< n−1)> .

As a generalization of this above result, we will find
a presentation for the quotient̃An−1/Ãt

n−1 (t ∈ Z
+) by

adding relationsRt = 1 to the presentation of̃An−1 given
in (1) for all relationsR in Ãn−1.

Theorem 2.Let Ãt
n−1 (n ≥ 3) be the power subgroup of

Ãn−1. Then

Ãt
n−1 =





{1} ; t = 6s1, s1 ≥ 1,
Ã

′

n−1; t = 6s2+2 or t = 6s2+4, s2 ≥ 0,
Ãn−1; otherwise.

Proof.Let us first assume thatt = 6s1, wheres1 ≥ 1. Then,
for the group Ãn−1/Ã6s1

n−1, we get the generators
a1,a2, · · · ,an while the relators

a2
i = 1(1≤ i ≤ n),

(aiai+1)
3 = 1(1≤ i ≤ n−1), (a1an)

3 = 1,

(aia j)
2 = 1(1≤ i < j −1< n and (i, j) 6= (1,n)),

a6s1
i = 1(1≤ i ≤ n),

(aiai+1)
6s1 = 1(1≤ i ≤ n−1)

On account of the power of relations in(1), it is easily seen
thatÃn−1/Ã6s1

n−1 = Ãn−1 and thus̃A6s1
n−1 = {1}.

Now assumet = 6s2 + 2, s2 ≥ 0 and consider the
following presentation for the group̃An−1/Ã6s2+2

n−1 . As
previously the generators area1,a2, · · · ,an while the
relators are

(aiai+1)
3 = 1 (1≤ i ≤ n−1), (a1an)

3 = 1,

(aia j)
2 = 1 (1≤ i < j −1< n, (i, j) 6= (1,n)),

a6s2+2
i = 1 (1≤ i ≤ n),

(aiai+1)
6s2+2 = 1 (1≤ i ≤ n−1).

Since(aiai+1)
6s2+2 = (aiai+1)

3 = 1 for all 1≤ i ≤ n−1,
we haveai = ai+1 (1≤ i ≤ n−1). Hence we get

Ãn−1/Ã6s2+2
n−1 =< a1;a2

1 = 1>∼=C2.

So by considering Theorem1, we deduce that
Ã6s2+2

n−1 = Ã
′

n−1. Similarly, one can apply same progress

for t = 6s2+4, s2 ≥ 0, and so obtaiñA6s2+4
n−1 = Ã

′

n−1.
Until now we have investigated even power subgroups

of Ãn−1. On the other hand the odd power subgroups of
Ãn−1 can be classified as in the following.

Let t = 2s3+ 1, s3 ≥ 1. With respect to this case, we
obtain the following presentation (having generators
a1,a2, · · · ,an) for the group̃An−1/Ã2s3+1

n−1 :

a2
i = 1 (1≤ i ≤ n),

(aiai+1)
3 = 1 (1≤ i ≤ n−1), (a1an)

3 = 1,

(aia j)
2 = 1 (1≤ i < j −1< n, (i, j) 6= (1,n)),

a2s3+1
i = 1 (1≤ i ≤ n),

(aiai+1)
2s3+1 = 1 (1≤ i ≤ n−1).

Sincea2s3+1
i = a2

i = 1, for all 1≤ i ≤ n, we clearly

haveai = 1. Hence we obtaiñAn−1/Ã2s3+1
n−1 = {1} and so

Ã2s3+1
n−1 = Ãn−1.

Hence the result.

3 Affine Weyl group of type C̃n−1

The affine Weyl group of typẽCn−1 (n ≥ 3) is another
infinite irreducible Coxeter groupand, according to the
[3], it has the following presentation:

C̃n−1 =< y1,y2, · · · ,yn ; y2
i = 1 (1≤ i ≤ n),

(yiy j)
2 = 1 (1≤ i < j −1≤ n−1),

(yiyi+1)
3 = 1 (2≤ i ≤ n−1),

(y1y2)
4 = (yn−1yn)

4 = 1> .

Let us label this above presentation by(2).
A simple calculation shows that̃C2 is the triangle

group ∇(2,4,4) which is one of the Euclidean triangle
groups. In[3], the authors proved that

C̃n−1
∼= Dn−1

I
⋊Sn−1,
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whereI denotes the infinity,DI is the infinite dihedral
group andSn−1 is the symmetric group of degreen−1.

The main result of this section is as follows:

Theorem 3.The commutator subgroup of the affine Weyl
group C̃n−1 (n≥ 3), sayC̃

′

n−1, is the free product of four
cyclic groups of order2. In other words,

C̃
′

n−1 =C2∗C2∗C2∗C2.

Proof.We adjoin the commutator relationsykyl = yl yk
(1 ≤ k < l ≤ n) to the presentation(2). This gives us a
presentation forC̃n−1/C̃

′

n−1 of which order gives the
index. Then we have

C̃n−1/C̃
′

n−1 =< y1,y2, · · · ,yn ; y2
i = 1(1≤ i ≤ n),

(yiyi+1)
3 = 1(2≤ i ≤ n−1),

(yiy j)
2 = 1(1≤ i < j −1< n),

(y1y2)
4 = (yn−1yn)

4 = 1,

(ykyl )
2 = 1(1≤ k< l ≤ n)> .

Since(yiyi+1)
3 =1 (2≤ i ≤n−1) and(ykyl )

2 =1 (1≤
k < l ≤ n) we have(yiyi+1)

3 = (yiyi+1)
2 = 1 for 2≤ i ≤

n−1. This implies thatyi = yi+1 (2≤ i ≤ n−1). Therefore

C̃n−1/C̃
′

n−1 =< y1,y2;y2
1,y

2
2,(y1y2)

2 >∼=C2×C2.

Thus
∣∣∣C̃n−1 : C̃

′

n−1

∣∣∣= 4. Let{1,y1,y2,y1y2} be a Schreier

transversal for̃C
′

n−1. Applying the Reidemeister-Schreier
process we obtain all possible products as follows:

S1y1 = y1.y1 = 1, Sy1y1 = y2
1.y

2
1 = 1,

S1y2 = y2.y2 = 1, Sy1y2 = y1y2.y2y1 = 1,

S1yi = yi .1= yi , Sy1yi = y1yiy1,

Sy2y1 = y2y1.y1y2 = 1, Sy1y2y1 = y1y2y1.y1y2y1 = 1,

Sy2y2 = y2
2.y

2
2 = 1, Sy1y2y2 = y1y2

2.y
2
2y1 = 1,

Sy2yi = y2yiy2, Sy1y2yi = y1y2yiy2y1,

where 3≤ i ≤ n. For convenience, let us label the
generators obtained in above as in the following:

y3 = x1, y4 = x2, · · · ,yn = xn−2,

y1y3y1 = z1, y1y4y1 = z2, · · · , y1yny1 = zn−2,

y2y3y2 = t1, y2y4y2 = t2, · · · , y2yny2 = tn−2,

y1y2y3y2y1 = m1, y1y2y4y2y1 = m2, · · ·

· · · ,y1y2yny2y1 = mn−2.

Then by using Reidemeister rewriting process we get the
defining relations as follows:

τ(yiyi) = S1yi S1yi = y2
i = x2

i−2 (3≤ i ≤ n),

τ(yiyi+1yiyi+1yiyi+1) = S1yi S1yi+1S1yi S1yi+1S1yi S1yi+1

= (yiyi+1)
3 = (xi−2xi−1)

3

(3≤ i ≤ n−1),

τ(yiy jyiy j) = S1yi S1yj S1yi S1yj

= (yiy j)
2 = (xi−2x j−2)

2

(3≤ i < j −1≤ n−1),

τ(yn−1ynyn−1ynyn−1ynyn−1yn) = S1yn−1S1ynS1yn−1S1yn

S1yn−1S1ynS1yn−1S1yn

= (yn−1yn)
4 = (xn−3xn−2)

4,

τ(y1yiyiy1) = Sy1yi Sy1yi Sy1y1 = (y1yiy1)
2 = z2

i−2 (3≤ i ≤ n),

τ(y1yiyi+1yiyi+1yiyi+1y1) = Sy1yi Sy1yi+1Sy1yi

Sy1yi+1Sy1yi Sy1yi+1Sy1y1

= (y1yiy1.y1yi+1y1)
3

= (zi−2zi−1)
3

(3≤ i < j −1≤ n−1),

τ(y1yiy jyiy jy1) = Sy1yi Sy1yj Sy1yi Sy1yj Sy1y1

= (y1yiy1.y1y jy1)
2

= (zi−2zj−2)
2 (3≤ i < j −1≤ n−1),

τ(y1yn−1ynyn−1ynyn−1ynyn−1yny1) = Sy1yn−1Sy1ynSy1yn−1Sy1yn

Sy1yn−1Sy1ynSy1yn−1

Sy1ynSy1y1

= (y1yn−1y1.y1yny1)
4

= (zn−3zn−2)
4,

τ(y2yiyiy2) = Sy2yi Sy2yi Sy2y2 = (y2yiy2)
2 = t2

i−2 (3≤ i ≤ n),

τ(y2yiyi+1yiyi+1yiyi+1y2) = Sy2yi Sy2yi+1Sy2yi Sy2yi+1Sy2yi

Sy2yi+1Sy2y2

= (y2yiy2.y2yi+1y2)
3

= (ti−2ti−1)
3

(3≤ i < j −1≤ n−1),

τ(y2yiy jyiy jy2) = Sy2yi Sy2yj Sy2yi Sy2yj Sy2y2

= (y2yiy2y2y jy2)
2

= (ti−2t j−2)
2

(3≤ i < j −1≤ n−1),

τ(y2yn−1ynyn−1ynyn−1ynyn−1yny2) = Sy2yn−1Sy2ynSy2yn−1Sy2yn

Sy2yn−1Sy2ynSy2yn−1

Sy2ynSy2y2

= (y2yn−1y2.y2yny2)
4

= (tn−3tn−2)
4,

τ(y1y2yiyiy2y1) = Sy1y2yi Sy1y2yi Sy1y2y2Sy1y1

= (y1y2yiy2y1)
2 = m2

i−2 (3≤ i ≤ n),

τ(y1y2yiyi+1yiyi+1yiyi+1y2y1) = Sy1y2yi Sy1y2yi+1Sy1y2yi Sy1y2yi+1

Sy1y2yi Sy1y2yi+1Sy1y2y2Sy1y1

= (y1y2yiy2.y1y1y2yi+1y2y1)
3

= (mi−2mi−1)
3

(3≤ i < j −1≤ n−1),
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τ(y1y2yiy jyiy jy2y1) = Sy1y2yi Sy1y2yj Sy1y2yi

Sy1y2yj Sy1y2y2Sy1y1

= (y1y2yiy2y1.y1y2y jy2y1)
2

= (mi−2mj−2)
2

(3≤ i < j −1≤ n−1),

τ(y1y2yn−1ynyn−1yn yn−1ynyn−1yny2y1) = Sy1y2yn−1Sy1y2yn

· · ·Sy1y2yn−1Sy1y2yn

Sy1y2y2Sy1y1

= (y1y2yn−1y2y1.y1y2yny2y1)
4

= (mn−3mn−2)
4.

Hence we obtain the following presentation for the
subgroup̃C

′

n−1: The generators are

xp,zp, tp,mp,

and the relators are

x2
p = z2

p = t2
p = m2

p (1≤ p≤ n−2),

(xpxp+1)
3 = (zpzp+1)

3 = (tptp+1)
3 =

(mpmp+1)
3 (1≤ p≤ n−3),

(xpxq)
2 = (zpzq)

2 = (tptq)
2 = (mpmq)

2

(1≤ p< q−1≤ n−3),

(xn−3xn−2)
4 = (zn−3zn−2)

4 =

(tn−3tn−2)
4 = (mn−3mn−2)

4.

Let us takep= n−3 for the relation(xpxp+1)
3. Then

we get(xn−3xn−2)
4 = (xn−3xn−2)

3. Hencexn−3xn−2 = 1
and soxn−3 = xn−2. Since the relation(xpxq)

2 = 1 holds
for 1≤ p< q−1≤ n−3 andxn−3 = xn−2, we definitely
have(xpxp+1)

2 = 1 for some 1≤ p ≤ n− 3. So we get
(xpxp+1)

3 = (xpxp+1)
2 = 1 and thusxp = xp+1 for 1 ≤

p ≤ n− 3. Similarly we obtainzp = zp+1, tp = tp+1 and
mp = mp+1. Therefore we get

C̃
′

n−1 =< x1,z1, t1,m1;x2
1 = z2

1 = t2
1 = m2

1 = 1>

and after labelingx1 = x, z1 = z, t1 = t andm1 =m in above
presentation, it is easy to see that

C̃
′

n−1
∼=C2∗C2∗C2∗C2.

Consequently, the commutator subgroup ofC̃n−1 (n ≥ 3)
is free product of four cyclic groups of order 2.

These complete the proof.

4 Triangle Coxeter group

Let us consider the Coxeter group, sayG, having three
generators{a,b,c}, and relations

a2 = 1, b2 = 1, c2 = 1, (ab)p = 1, (bc)q = 1, (ca)r = 1,

where p,q, r ∈ Z, p,q, r ≥ 2 and 1
p +

1
q +

1
r < 1. Let us

label this presentation by(3). This group is called
triangular Coxeter group(see [10] for the details about
triangle groups).

Theorem 4.The commutator subgroup of triangular
Coxeter group G given in presentation(3) is defined by

G
′
=





G1 ; p,q, r even

G2 ; p,q, r odd and
p even, q, r odd

C2∗C2∗C2∗C2 ; p,q even, r odd

where G1 is the free product of the groups< (ab)2 >, <
(ca)2 >, < (bc)2 >, < bcacba> and< a(cb)2a >, and
moreover G2 is the free product of two(2,2,q)-generated
groups.

Proof.Let us consider the presentation of triangular
Coxeter groupG given in (3). If we adjoin the relations
(ab)2 = (bc)2 = (ca)2 = 1 to presentation(3), then we get

G/G
′
=< a,b,c ; a2 = 1,b2 = 1,c2 = 1(ab)p = 1

(bc)q = 1,(ca)r = 1,(ab)2 = 1,

(bc)2 = 1,(ca)2 = 1> .

We need to investigate our aim as in the following
cases:

Case(i) p,q, r even: Assume thatp,q, r > 2. Then we
get

G/G
′ ∼=C2×C2×C2,

and so
∣∣∣G : G

′
∣∣∣ = 8. Now let{1,a,b,c,ab,bc,ac,abc} be

a Schreier transversal for G
′
. Applying the

Reidemeister-Schreier process, we get all possible
products as in the following:

S1a = a.a= 1, S1b = b.b= 1,
Saa = a2.1= 1, Sab= ab.ba= 1,
Sba = ba.ba= (ba)2, Sbb= b2.1= 1,
Sca = ca.ca= (ca)2, Scb = cb.cb= (cb)2,
Saba= aba.b= (ab)2, Sabb= abb.a= 1,
Saca= aca.c= (ac)2, Sacb= acb.cba= acbcba,
Sbca= bca.cba= bcacba, Sbcb= bcb.c= (bc)2,
Sabca= abca.cb= abcacb, Sabcb= abcb.ca= abcbca,

S1c = c.c= 1, Sabc= abc.cba= 1,
Sac = ac.ca= 1, Sacc= acc.a= 1,
Sbc = bc.cb= 1, Sbcc= bcc.b= 1,
Scc = c2.1= 1, Sabcc= abcc.ba= 1.

Since (ba)2 = (ab)−2, (ac)2 = (ca)−2, (cb)2 = (bc)−2,
abcacb= (bcacba)−1 and abcbca= (acbcba)−1, the
generators ofG

′
are (ab)2, (ca)2, (bc)2, bcacba and

a(cb)2a. ThereforeG
′

is defined as the free product of

c© 2016 NSP
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groups< (ab)2 >, < (ca)2 >, < (bc)2 >, < bcacba>
and< a(cb)2a>.

We note that if we takep= q= r = 2, then it is easily
seen thatG/G

′
= G∼=C2×C2×C2 and thusG

′
= {1}.

Case(ii) p,q, r odd : Since (ab)p = (ab)2 = 1 this
gives us(ab)p−2 = 1. Further, since(ab)p−2 = (ab)2 = 1
we have(ab)p−4 = 1. By continuing on this process,
sincep is odd we getab= 1 and soa = b. Similarly we
obtainb = c andc = a sinceq andr are odd numbers as
well. Therefore we havea= b= c and hence

G/G
′
=< a;a2 = 1>∼=C2.

So
∣∣∣G : G

′
∣∣∣ = 2. Now let{1,a} be a Schreier transversal

for G
′
. Applying the Reidemeister-Schreier process we get

all possible products as follows:

S1a = a.a= 1, Saa= a2.a2 = 1,

S1b = b.1= b, Sab = aba,

S1c = c.1= c, Sac = aca.

Here we takeb = x, c = y, aba= z and aca = t as
generators forG

′
. Using Reidemeister rewriting process

we get the following relations.

τ(bb) = S1bS1b = b.b= x2,

τ(cc) = S1cS1c = c.c= y2,

τ(bcbc· · ·bc) = S1bS1cS1bS1c · · ·S1bS1c = bc.bc. · · ·bc

= (xy)q,

τ(abba) = SabSabSaa = aba.aba.1= z2,

τ(acca) = SacSacSaa = aca.aca.1= t2,

τ(abcbc· · ·bca) = SabSacSabSac· · ·SabSacSaa

= aba.aca.aba.aca. · · ·aba.aca.1= (zt)q.

Thus we obtain

G
′
=< x,y,z, t;x2 = y2 = z2 = t2 = (xy)q = (zt)q = 1>

which is clearly isomorphic to free prodcut of two(2,2,q)-
generated groups.

Case(iii ) p,q even, r odd: Sincep andq are even we
have(ab)2 = (bc)2 = 1 for the smallest power ofab and
bc. But since r is odd and(ca)r = (ca)2 = 1, we get
(ca)r−2 = 1 and soca = 1. Hence we obtaina = c.
Therefore we have

G/G
′
=< a,b;a2 = b2 = (ab)2 = 1>∼=C2×C2.

Thus
∣∣∣G : G

′
∣∣∣ = 4. Now let {1,a,b,ab} be a Schreier

transversal forG
′
and we apply the Reidemeister-Schreier

process to get all possible products as follows:

S1a = a.a= 1, Saa = a2.a2 = 1,

S1b = b.b= 1, Sab = ab.ba= 1,

S1c = c.1= c, Sac = aca,

Sba = ba.ab= 1, Saba= aba.aba= 1,

Sbb = b2.b2 = 1, Sabb= ab2.b2a= 1,

Sbc = bcb, Sabc= abcba.

We takec = x, aca= y, bcb= z and abcba= t as
generators forG

′
. Then by using Reidemeister rewriting

process we get the relations as follows:

τ(cc) = S1cS1c = c.c= x2,

τ(acca) = SacSacSaa= aca.aca.1= y2,

τ(bccb) = SbcSbcSbb= bcb.bcb.1= z2,

τ(abccba) = SabcSabcSabbSaa = abcba.abcba.1.1= t2.

Thus we obtain

G
′
=< x,y,z, t;x2 = y2 = z2 = t2 = 1>∼=C2 ∗C2∗C2∗C2.

Case(iv) p even, q, r odd : Since(bc)q = (bc)2 = 1
and (ca)r = (ca)2 = 1 we have (bc)q−2 = 1 and
(ca)r−2 = 1. Sinceq andr are odd by the finite number of
steps we deduce thata = b = c. This gives us
G/G

′
=< a;a2 = 1 >∼= C2. So similarly to case(b) we

conclude thatG
′
is free product of two(2,2,q)-generated

groups.
Hence the result.

The result given below follows from Theorem3 and4.

Corollary 1.Let us consider the group G given in(3). If
p,q are even and r is odd, then the commutator subgroup
of the triangle group G is isomorphic to the commutator
subgroup of the affine Weyl group̃Cn−1 (n≥ 3).

5 Conclusion

The main subject in here is the Coxeter groups which
have so many applications in both pure and applied
mathematics ([13]). However the other part Affine Weyl
Groups Ãn taken so much interest in the meaning of
solvability of word problems and so in the meaning of
special algorithmic problems ([7]). For a future project,
one can study to make a connection between Grobner
bases and power (or commutator) subgroups. Because if a
positive solution can be obtained for that project, then this
will be directly implied the signal process in computer
science.
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