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Abstract: In this paper, we have developed a Chebyshev wavelet bagedxapation method to solve some nonlinear differential
equations (NLDES) arrising in science and engineeringh&best of our knowledge, until now there is no rigorous sbiiecond kind
Chebyshev wavelet (S2KCWM) solution has been addressetid¢anonlinear differential equations. With the help of &dfsecond
kind Chebyshev wavelets operational matrices, the linedmmnlinear differential equations are converted intosiesy of algebraic
equations. The convergence of the proposed method is isstadbl Finally, we have given some numerical examples tmdsirate the
validity and applicability of the proposed wavelet method.
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1 Introduction and Hsiao 12] had implemented the Haar wavelets
method for solving lumped and distributed-parameter
In recent years, wavelet based methods have been appligystems. Lepik13] introduced the Haar wavelets method
for solving nonlinear differential equations (NLDEs),[ (HWM) for solving the integral and differential equations.
2,3,4]. In the last few decades the wavelet transform  Hariharan et al. 14] introduced the Haar wavelet
methods of solution for such problems have attractedmethod for solving Fisher’s equation arising in population
excellent attention and numerous papers about this topidynamics. The same authofs] introduced an overview
have been published. Wavelets analysis possesses many Haar wavelet method for solving integral and
useful properties, such as compact support, orthogonalitydifferential equations. Siraj-ul-Islam et al§] introduced
dyadic, orthonormality and multi-resolution analysis the Haar wavelet method for second order boundary value
(MRA). An excellent discussion on wavelet transforms problems in which the performance of the Haar wavelets
and the Fourier transforms presented by Gilbert Strang ihas been compared with other methods like Walsh
the year 1993. In the numerical analysis, wavelet basedvavelets, semi-orthogonal B-Spline wavelets, spline
methods and hybrid methods become important toolfunctions, Adomain decomposition method (ADM),
because of the properties of localization. In wavelet basedRunge-Kutta (RK) method and nonlinear shooting
techniques, there are two important ways of improvingmethod. Recently, Doha et allq introduced the
the approximation of the solutions: increasing the order ofintegrals of Bernstein polynomials: an application for the
the wavelet family and the increasing the resolution levelsolution of high even-order differential equations.
of the wavelet. There is a growing interest in using  Moreover, wavelet method establishes a connection
wavelets to study problems, of greater computationalwith fast approximation algorithms. In the last two
complexity. Wavelet methods have proved to be verydecades the wavelet solutions have been attracted great
effective and efficient tool for solving problems of attention and numerous papers about this area have been
mathematical calculus. Among the wavelet transformpublished. Hariharan and his coworkedsihtroduced the
families the Haar, Legendre wavelets and ChebysheHaar wavelet method for solving linear and non linear
wavelets deserve much attentidng,7,8,9,10,11]. Chen  differential equations arising in science and engineering
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In recent years, there are numerous papers have beeéh Properties of second kind Chebyshev

published about the Chebyshev wavelets for SO|Vingp0|yn0mia|S and their shifted forms
ordinary differential equations. Tavassoli Kajani et al.

[18] had established the Comparison between th ; ;

homotopy perturbation method (HPM) and theez':L Second kind Chebyshev polynomials
sine-cosine wavelet method (SCWM) for solving linear (S2KCP)LY]

integro differential equations. Doha et all920] had It is well known the second kind Chebyshev
addressed the Chebyshev spectral method for solving thSonnomiaIs are defined on [-1,1] by

initial and boundary value problems and fractional order '

differential equations. Zhu et al2] had established the sin(n+1)6

second kind Chebyshev wavelets for solving integral Un(X) = —5 g »X = Cosd @)
equations. Zhu and Fan2J used the second kind

Chebyshev wavelets for solving the fractional nonlinear These polynomials are orthogonal on [-1,1]
Fredholm integro-differential equations. Sohral#3|[ N

established the Chebyshev wavelet methods (CWM) with

BPFs method for solving Abels integral equations.24][ / V1= XUm(X)Un(X)dx = { 2 mi 2 (2)
introduced the Chebyshev wavelet method for solving -1 2

nonlinear fractional differential equation (NLFDES).

Hojatollah Adibi and Pouria Assar2f] had implemented 1 n€ following properties of second kind Chebyshev
the CWM for the numerical solutions of Fredholm Polynomialsn are of fundamental importance in the

integral equations of the first kind .Yanxin Wang and sequel. They are eige;n functions of the follwing singular
Qibin Fan p6] had solved the fractional differential StUrm-Liouville equation.

equations by using the second kind Chebyshev wavelet

method. Recently, Doha et all][introduced the second (1-X)D?@(X) — 3XDE(X) +k(k+2)@(x) =0 (3)
kind Chebyshev operational matrix algorithm for solving . d .
differential equations of LaneEmden type. Heydari et al'\r/(\a/(r:frrr"aer?c:re%tigﬂd may be generated by using the
[27] established the CWM for partial differential

equations with boundary conditions of the telegraph type. Uiy 1(X) = 2xUk(X) —Ug-1(x), k=1,2,3,---.  (4)
Babolian and Fattahzadeh [6] had used the Chebyshev ’ U

wavelet operational matrix of integration for solving the Starting from Uo(X) = 1 and Uy(x) = 2x, or from
differential equations. Ghasemi and. Tavassoli KajaniRodrigues formula

[28] had introduced the CWM for solving the

time-varying delay systems. Recently, Pirabaharan et.al (=2 (n+1)! D" 20+ 5
[29] applied the shifted second kind chebyshev wavelet n(X) = 2n+ 1)1/ (1-x) (A=) 6)
method for Estimating the Concentration of Species and

Effectiveness Factors in Porous Catalysts. WaveletsSTheorem 2.1.119] The first derivative of second kind

permit the accurate representation of a variety ofcpepyshev polynomials is of the form
functions and operators.

n—-1

DU =2 K+ 1)Uk (X). 6
The aim of the present work is to develop the shifted () k=0,(gn)0dd( +HUX) ©

second kind Chebyshev wavelet method (S2KCWM) with
the operational matrices of integration and differeriati  Definition 2.1.1[19) The shifted second kind Chebyshev
mutually for solving nonlinear differential equations. By nolynomials are defined on [0,1] tgrt (X) = Un(2x— 1).

several nonlinear boundary value problems, it is showna|| vesylts of second kind Chebyshev polynomials can be
that the shifted second kind Chebyshev wavelet methoghasily transformed to give the corresponding results for

(Sf?KCWNP is very efficient and suitable tool for solving  hejr shifted forms. The orthogonally relation with respec
differential equations. to the weight function/x — x2 is given by

1

The paper is organized as follows. In section 2, we om<n
describe properties of shifted second kind Chebyshev /VX—XZUS(X)Ur’E(X)dX: { n min )
wavelets also we presented the convergence analysis of 0 8

the proposed algorithm. In section 3 the proposed shifted , o ,

second kind Chebyshev wavelet method (S2KCWM) isCorollay 2.1.1: The first derivative of the shifted second
used to solve linear and nonlinear differential equationskind Chebyshev polynomial is given by

In section 4 some numerical examples are solved by

applying the method of this paper. Finally a conclusion is DU;(x) =4 5 (k+1Uc(x) (8)
drawn in section 5. k=0, (k+n)odd
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2.2 Shifted Second kind Chebyshev operational
matrix of derivatives

(19

2.3 Convergence Analysis

Second kind Chebyshev wavelets are denoted byye state and prove a theorem ascertaining that the second

Unm(t) = P(k,n,mit), wherek,n are positive integers
and m is the order of second kind Chebyshev
polynomials. Heret is the normalized time. They are
defined on the interval [0,1] by

(9)

k+3
(Ifn,m(t) = %U%(Zkt - n)a te [Enﬁv n_;rk_l]
0 otherwise

m=0,1---,M,n=0,1,---,2K— 1. A function f(t) is
defined over [0,1] may be expanded in terms of secon
kind Chebyshev wavelets as

kind Chebyshev wavelet expansion of a functibfx),
with bounded second derivative, converges uniformly to

(X)-

Theorem 2.3.1 A function f(x) € L2[0,1], with

|f”(x)] < L can be expanded as an infinite sum of
Chebyshev wavelets and the series converges uniformly
to f(x).
Osatisfying the following in equality:

Explicitly the expansion coefficients in (11)

22 8v2mnL
f(t) = CrmWnm(t)- (10) lcam| < ——s———,¥m>1n>0 (17)
n=0m=0 (n"‘l)?(m"‘ 1)2
Where
1 Proof: From (11) it follows that
0 n+1
If the infinite series is truncated, then it can be written as 2(‘%3) £
’ Corm — / FOUZ (2% — (2% —n)dx  (18)
X_-1 M VT 4
(12) F3

ft)=3 3 combn(t) =CTU(1)

WhereC andy(t) are X(M + 1) x 1 defined by

— T
C=1[C00:Co1s " +CoMs s Cok gy »Cok g 10" »Cok_1 ]

YO = Yoo, Yo, Woms Wk gy Wk ygo Wyl

Theorem 2.2.1 [19 Let W(t) be the second kind

Chebyshev wavelets vector. Then the first derivative of
the vectoit!(t) can be expressed as

(13)

If we set Xx— n = cos@ in (17), then we get

(—k+3

)
Com= 2 /f €089+ 1) 4 (m-+1)6sin6d6
VT /

2k

dy(t
WO oy 14
(=k+1) 1T
: : o : 22 cosf+n
WhereD is 2¢(M + 1) square matrix of derivatives and is = /f < x > [cosmB — cos(m+-2)6]d6
defined by VT 0
FO.. 0 (19)
OF .- 0 Which gives after integration by parts two times
D =
P , N oo
= [{f A 2
in which F is an (M + 1) square matrix and itgr,s)" Com z%k\/ﬁ/ ( 2 ) m(6)d6  (20)
element is defined by 0
_ [ 2¢25 1 >2r>sand (r +s)odd
Frs= { 0 otherwise (15)  Where
. . th
Cor.ollalry 2.2.1 The .operatlonal matrix for then sin@ [sin(m—1)8  sin(m+1)0
derivative can be obtained from Am(6) = T~ |
dg(t) mL m- m 21)
G = D"Y(t), n=1,2,---whereD"isthen" power of D. sin@ [Sn(m+ 1)6 sn(m+ 3)9]
(16) m+-2 m+1 m+-3
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k-1 m
Therefore we have 92(X) ~ ZO > Gnmtm(X) = GZY(X)
- =0 m=0 (27)
ol = | st [ 1725 ") Anle)a® = ;
2% ) 2 gx) = > > Im@Pm(x) =G ¢Y(x)
n=0 m=0
m
cosf +n
sy /f”< x )Am(e)de Theny (x) ~ CTDY(x), y'(x) =CTD2y(x)  (28)
0
m Now substitution of relations Eq.(26), Eq.(27) and Eq.(28)
< %/ IAm(8)|d6 into Eq.(22), enable us to define the residi@l), of this
277 ym equation as
Ly
< 5T R =CTD2(0 + LU W) DTCH
1/ 1 1 1 1 1 G () (p(x)'C—GTY(x).
{r_n(m—1+m+l)+m+2(m+1+m+3)} - . .
and application of the tau method, yields the following
— Ly (2(M + 1) — 2) linear equations in the unknown
2% 7 (M2 +2m-3) expansion coefficients,m, namely
2Ly/m
- Mif
277 (m+1)2 /\/x Y (ORNAX =0, j=1,2,- XM +1)—2
Sincen < 2K— 1, we have
(30)
8271 Moreover, the initial conditions Eq.(23), the boundary
Com| < —————— conditions Eq.(24), and the mixed boundary conditions

5
(n+1)2(m+1)? Eq.(25) lead respectively, to the following equations

This completes the proof of theorem.
P P CT@(0) = a, CTDY(0) = B,

2.4 Linear second-order two-point boundary CTw(0)=a, CTy(1) =B (31)

value problems

[19] 21C" (0) +a2DY(0) = a, biCT (1) +b,CTDY(1) = B
Consider the linear second-order differential equation (32)

Thus Eq.(29) with the two equations of Eq.(31) or Eq.(32)
Y (X)+g1(X)Y (X) + g2(X)y(x) = G(x), xe[0,1] (22) generate dM + 1) a set of linear equations which can be
solved for the unknown components of the vec@omrnd

Subject to the initial conditions hence an approximate spectral wavelets solutiog(x)
can be obtained.
0)=a,y(0)=8 (23)
or the boundary conditions .
3 Numerical Examples
y(0)=ay(l)=p (24)

Example 3.1 Consider the following nonlinear second

or the most general mixed boundary conditions order differential equatiorsy]

aly _|_a2y =a, bly + bz)/ . (25) y/_|_ |nxy _|_y2 =2+ 2X|nX+X4 (33)

If we approximate the functiong(x),g1(X),g2(x) and
G(x) in terms of the second kind Chebyshev waveletWith the initial conditiony(0) = 0,y'(0) = 0,x € (0,1)

basis, one can write ] . )
which hasthe exact solution y(x) = x°. (34)

-1 ™M
ZO z CrmWnm(X) = CTY(x) We solve EQ.(33) using the algorithm described in
(26) section.3
X1 M We solve this problem by using the shifted second kind
ZO z InmPnm(X) = G] Y(x) Chebyshev wavelets (S2KCWM) with valueskof 0 and
M=2

(@© 2016 NSP
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Put

y(x) = CTy(x).y (x) = CTDY(x),y'(x) = CTD?Y(x)
then the Eq.(33) becomes

[CTD?Y(X)] + INX[CTDY(x)] + [C¥(X)]? = 2+ 2xInx+x*

(35)
Use the initial condition€" ¢(0) = 1 andCTDy(0) =0
leads to the two equations

2C)—4C;+6C =1 (36)

8C, —32C, =0 (37)

Using equation (37), we get the following relations

between the unknown coefficients
Cp = 4G, (38)
Substitute (38) in the equation (36) we obtain
Co=5C (39)

Applying (38) and (39) irC"D?y(x),CTDy(x),CT Y(x),
equation (35) becomes

64C, + INX(9.372C;) + (0.47059€)2 = 2+ 2xInx+x*
(40)

We only need to satisfy this equation at the first root of

U3 (). Thatisx = 252
Equation (40) reduced to
(0.470596C2 + 45.992639Z, - 1.4379=0  (41)

Solving the equation (41) we obtain the r@pt= 0.03125
Substitute these into (38) and (39) we Ggt= 0.15625
andC; = 0.125
Thus the solution can be written as

2
y(x) =CTY(x) = (Co,C1,C2) 8x—4 )
322 32+ 6

Thusy(x) = x2, which is the exact soution.

Table 1: Errors of the proposed methd compared with results in
[35] for the example 3.2

X Spline Spline our
h=0.05B5] h=0.0125B5] solution

0.1 2e-06 2e-06 0
0.2 2e-06 2e-06 0
0.3 2e-06 le-06 0
0.4 2e-06 1le-06 0
0.5 le-06 le-06 0
0.6 le-06 le-06 0
0.7 le-06 le-06 0
0.8 le-06 le-06 0
0.9 0 0 0

1 0 0 0

Similarly using another condition(1) = 0, we obtain
Co=-11C, (45)

Applying the proposed algorithm to the equation (42) and
using (44) and (45) we have the following result
C, = —0.03125

Also we getCy = 0.34375 andC; = —0.125

Therefore the wquation (42) gives the solution by

8x—4
322 —32%+6
2
= (0.34375-0.125-0.03125 8x—4 )
322 —32+6

That isy(x) = 1 — x? which is the exact solution.

Result of the proposed method compared with results
in the Cubic spline metho®Bp|

Comparision of Errors between the proposed method
and spline method3p] for the problem 3.2 documented
in Table.1. From the table, obiviously we understand our
method produces best result, since our method gives the
exact solution.

y(x) = CTg(x) = (Co,C1,Cp)

Itis clear that in Example 3.1, our proposed method isEx@mple 3.3Next we consider the nonlinear proble&g]
speedily convergent to the exact solution, for a small value
of M = 2, we attain the exact solution. This proves the
efficiency of our shifted second kind Chebyshev wavelets
(S2KCWM) method. Subject to the boundary conditiop) = 0 andy(1) =0
Example 3.2Let us consider the another proble&b] whose exact solution igx) = Z—EX —x—1

we solve the equation (46) using the algorithm

1
)/’:E[y+x+1]3,o<x<1 (46)

Ly~ Ey FA-Xy=x 2247 (42)  described in Section 3 for the case correspondd te 2
X andk = 0, we obtainCy = —0.0315C; = 0,C; = 0.0105
Consequently we have
With the conditionsy (0) = 0 and y(1) = 0 (43)

2
The exact solution of Egs.(42)-(43) is-1x?. y=CTy(x) = (—0.03150,0.0105 8x— 4
By applying the shifted second kind Chebyshev ’ 322 —3X+6
wavelet method (S2KCWM) to the given boundary
conditiony (0) = 0 we get &, — 32C, = 0, it gives the
tion y(©) get &1 2 g We get y(x) = (0.3360x2 — (0.3360x  (47)

CL=4C (44) The numerical results are presented in the following Table

(@© 2016 NSP
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Table 2: Comparison between exact and S2KCWM solutions for Table 4: Comparison beteen exact and S2KCWM solutions for

example 3.3
X Exact S2KCWM
k =0, M=2
0 0 0
0.1 -0.0474 -0.0302
0.2  -0.0889 -0.0538
0.3 -0.1235 -0.0706
0.4  -0.1500 -0.0806
0.5 -0.1667 -0.0840
0.6 -0.1714 -0.0806
0.7 -0.1615 -0.0706
0.8 -0.1333 -0.0538
0.9 -0.0818 -0.0302
1 0 0

Table 3: Absolute errors for Example 3.3
X S2KCWM

k =0, M=2
0 0
0.1 0.0172
0.2 0.0351
0.3 0.0529
0.4 0.0694
0.5 0.0827
0.6 0.0908
0.7 0.0909
0.8 0.0795
0.9 0.0516
1 0

Example 3.4 Consider the singular boundary value
problem B]

2
Y09+ Y090 (5252 ) Y0 =0andy(1)=0 ()

The exact solution in a closed form is

y(X) = 2log, <ﬁ)

Using the aforesaid method wikh= 0 andM = 2, we
gain

(49)

Thus we can writg = (0.2528x% — (0.0376x—0.25

Example 3.5Consider the Bessel differential equation of
order zero 80,31]

xy" (%) +Y () +xy(x) =0

y(0) =1,y (0) = 0,x€ (0,1)
ForM = 2 andk = 0 we get
Co=0.4611C; = —0.0311C, = —0.0078
Thus we can write

(50)

y(x) = CT(x) = (—0.2496)x% + 0.0008+ 0.9998 (51)

Example 3.4
X Exact S2KCWM
M=2
0.1  -0.2646 -0.2512
0.2  -0.2570 -0.2474
0.3 -02444 -0.2385
0.4  -0.2267 -0.2246
0.5 -0.2036 -0.2056
0.6  -0.1750 -0.1816
0.7  -0.1407 -0.1524
0.8  -0.1003 -0.1183
0.9 -0.0536 -0.0791

Table 5: Absolute errors for Example 3.4
X S2KCWM

k =0, M=2
0.1 0.0134
0.2 0.0096
0.3 0.0059
0.4 0.0021
0.5 0.0020
0.6 0.0066
0.7 0.0117
0.8 0.0180
0.9 0.0255

Table 6: Comparison between exact and S2KCWM solutions for
Example 3.5

X Exact S2KCWM
k=0, M=2
0.1 0.997502 0.997384
0.2 0.990025 0.989976
0.3 0.977626 0.977576
0.4 0.960398 0.960184
0.5 0.938470 0.937800
0.6 0.912005 0.910424
0.7 0.881201 0.878056
0.8 0.846287 0.840696
0.9 0.807524 0.798344

Table 7: Absolute errors for Example 3.5
X S2KCWM

k =0, M=2
0.1 0.000118
0.2 0.000049
0.3 0.000005
0.4 0.000124
0.5 0.000670
0.6 0.001581
0.7 0.003145
0.8 0.005591
0.9 0.009180
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Table 9: Absolute errors for Example 3.6

‘ ‘ ‘ ‘ ‘ ‘ ‘ X S2KCWM
_o_1=—/ k =0, M=2
-0.2f ] 0 0
-03f 1 0.1 0.0666
s 02  0.1063

s . 03 0.1276
5 0.4 0.1374
oer ] 0.5 0.1401
—o.rr 7 0.6 0.1374
-0.8 Exact solution | | 0.7 0.1276

——— S2KCW M=2
-0.9f ] 0.8 0.1063
1 . . . . . . . 0.9 0.0666
01 02 03 04 Of 06 07 08 09 1 0

Fig. 1: Comparison between exact and S2KCWM solutions with
k =0, M= 2 for Example 3.4

1 T T T T

Exact solution
0.9 S2KCW M=2 |4

Table 8: Comparison between exact and S2KCWM solutions for 08k
Example 3.6 oal
X Exact S2KCWM '
k=0, M=2 2
0 0 0 il

0.1 0.0984 0.1650
0.2 0.1871 0.2934
0.3 0.2575 0.3851
0.4  0.3027 0.4401
0.5 0.3183 0.4584
0.6 0.3027 0.4401
0.7 0.2575 0.3851
0.8 0.1871 0.2934
0.9 0.0984 0.1650
1 0 0

Fig. 2: Comparison between exact and S2KCWM solutions with
k =0, M= 2 for Example 3.6

Example 3.6 Consider the singular boundary value Example 3.7Finally we consider the equation
problem B2
Y =Y +xy=x (55)
’ y()]?
Y (X)+ M= =0, 0<x<1 (52)
sin(mx) Y(0) =LY (0) = ~1, x€[0.1]
y(0) = 0,y(1) = 0, x € [0,1] The exact solution in a closed form is

which has the exact solution 2 3 5

X2 3 X x
1 YX)=1-X— 5 — o+ 5+ (56)
y(x) = 3 n(7x) (53)

i . For M = 2 andk = 0, we have the linear system of
We solve Eq.(52) using S2KCWM with values of equations and solving this system we gain

k=0andM =2 _ - _ - _
Solving the system of equations, we obtain Co = 0.1668C, B 0.1916(; = ~0.0166
Thus we can write

Co = 0.013993¢C; = 0;C, = —0.00466
y(x) = CTg(x) = (—0.5312x% — (1.0016)x + 0.9992
Thus we can write (57)
The numerical results for the absolute errors are given
y(x) = CT(x) = (—0.14912x*+ (0.14912x  (54)  in Table.11. Obviously we identified the errors are close to
zero. This proves the efficiency of our proposed algorithm
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Table 10: Comparison between exact and S2KCWM solutions with the results obtained in. When solving the

for Example 3.7 non-periodic problems, the second kind Chebyshev
X Exact ~ S2KCWM wavelet has the superiorities (the calculation is easy

M=2 implementation, and the approximation effect is better).

0.1 0.894675 0.893728 Figures (1-3) show the comparison between the exact

02 0.777467 0.777632 solutions and the S2KCWM solutions for various values

03 0646676 0.650912 of x. In this paper, the second kind Chebyshev wavelet

04 0500802 0.513568 method (S2KCWM) has been compared with the exact

05 0338546 0.365600 solution. Results in the Tables 2, 4,6,8 and 10 show the

06 0.158807 0.207008 comparison between the exact solutions and the

0.7 -0.039314  0.037792 : ;
h hev wavelet solutions for vari val
08 09565180 142048 E/I ebyshev wavelet solutions for various valuexaid

0.9 -0.493303 -0.332512

In Example 3.1 and 3.2, for a small value of
k=0,M = 2, the shifted second kind Chebyshev wavelets
method (S2KCWM) solutions have attained the exact
solutions. Errors of the remaining examples are also very
close to zero. This proves the efficiency of our algorithm.

All the numerical experiments presented in this
section were computed in double precision with some
MATLAB codes on a personal computer System Vostro
1400 Processor x86 Family 6 Model 15 Stepping 13
Genuine Intel 1596 Mhz.

Table 11: Absolute errors for Example 3.7
X S2KCWM
k =0, M=2
0.1 0.000947
0.2 0.000165
0.3 0.004236
0.4 0.012766
0.5 0.027054
0.6 0.048201
8:; 8:23}138 5 Concluding remarks

0.9 0.160791

This paper provides shifted second kind Chebyshev
wavelet methods (S2KCWM) for solving a few nonlinear
differential equations arising in engineering. It offers a

1 ‘ ‘ ‘ : state-of-the-art in several active areas of research where
osp — numerical methods for solving nonlinear differential
o8[ ] equations have proved particularly effective. The
o7} ] proposed schemes are the capability to overcome the
osf ] difficulty arising in calculating the integral values while
Lost ] dealing with nonlinear problems. This method shows
" oal ] higher efficiency than the traditional methods for solving
0sl ] nonlinear ODEs. Also the proposed method has a simple
0zl ] implementation process. It may be concluded that
il ] S2KCWM is very powerful and efficient in finding
0 ‘ ‘ ‘ ‘ analytical as well as numerical solutions for a wide class
’ o R o ' of linear and nonlinear differential equations. It pro\dde

more realistic series solutions that converge very rapidly
Fig. 3: Comparison between exact and S2KCWM solutions with in real physical problems.
k =0, M= 2 for Example 3.7
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