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Abstract: In this paper, we have developed a Chebyshev wavelet based approximation method to solve some nonlinear differential
equations (NLDEs) arrising in science and engineering. To the best of our knowledge, until now there is no rigorous shifted second kind
Chebyshev wavelet (S2KCWM) solution has been addressed forthe nonlinear differential equations. With the help of shifted second
kind Chebyshev wavelets operational matrices, the linear and nonlinear differential equations are converted into a system of algebraic
equations. The convergence of the proposed method is established. Finally, we have given some numerical examples to demonstrate the
validity and applicability of the proposed wavelet method.
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1 Introduction

In recent years, wavelet based methods have been applied
for solving nonlinear differential equations (NLDEs) [1,
2,3,4]. In the last few decades the wavelet transform
methods of solution for such problems have attracted
excellent attention and numerous papers about this topic
have been published. Wavelets analysis possesses many
useful properties, such as compact support, orthogonality,
dyadic, orthonormality and multi-resolution analysis
(MRA). An excellent discussion on wavelet transforms
and the Fourier transforms presented by Gilbert Strang in
the year 1993. In the numerical analysis, wavelet based
methods and hybrid methods become important tools
because of the properties of localization. In wavelet based
techniques, there are two important ways of improving
the approximation of the solutions: increasing the order of
the wavelet family and the increasing the resolution level
of the wavelet. There is a growing interest in using
wavelets to study problems, of greater computational
complexity. Wavelet methods have proved to be very
effective and efficient tool for solving problems of
mathematical calculus. Among the wavelet transform
families the Haar, Legendre wavelets and Chebyshev
wavelets deserve much attention [5,6,7,8,9,10,11]. Chen

and Hsiao [12] had implemented the Haar wavelets
method for solving lumped and distributed-parameter
systems. Lepik [13] introduced the Haar wavelets method
(HWM) for solving the integral and differential equations.

Hariharan et al. [14] introduced the Haar wavelet
method for solving Fisher’s equation arising in population
dynamics. The same authors [15] introduced an overview
of Haar wavelet method for solving integral and
differential equations. Siraj-ul-Islam et al. [16] introduced
the Haar wavelet method for second order boundary value
problems in which the performance of the Haar wavelets
has been compared with other methods like Walsh
wavelets, semi-orthogonal B-Spline wavelets, spline
functions, Adomain decomposition method (ADM),
Runge-Kutta (RK) method and nonlinear shooting
method. Recently, Doha et al. [17] introduced the
integrals of Bernstein polynomials: an application for the
solution of high even-order differential equations.

Moreover, wavelet method establishes a connection
with fast approximation algorithms. In the last two
decades the wavelet solutions have been attracted great
attention and numerous papers about this area have been
published. Hariharan and his coworkers [4] introduced the
Haar wavelet method for solving linear and non linear
differential equations arising in science and engineering.
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In recent years, there are numerous papers have been
published about the Chebyshev wavelets for solving
ordinary differential equations. Tavassoli Kajani et al.
[18] had established the Comparison between the
homotopy perturbation method (HPM) and the
sine-cosine wavelet method (SCWM) for solving linear
integro differential equations. Doha et al. [19,20] had
addressed the Chebyshev spectral method for solving the
initial and boundary value problems and fractional order
differential equations. Zhu et al. [21] had established the
second kind Chebyshev wavelets for solving integral
equations. Zhu and Fan [22] used the second kind
Chebyshev wavelets for solving the fractional nonlinear
Fredholm integro-differential equations. Sohrabi [23]
established the Chebyshev wavelet methods (CWM) with
BPFs method for solving Abels integral equations. Li [24]
introduced the Chebyshev wavelet method for solving
nonlinear fractional differential equation (NLFDEs).
Hojatollah Adibi and Pouria Assari [25] had implemented
the CWM for the numerical solutions of Fredholm
integral equations of the first kind .Yanxin Wang and
Qibin Fan [26] had solved the fractional differential
equations by using the second kind Chebyshev wavelet
method. Recently, Doha et al. [1] introduced the second
kind Chebyshev operational matrix algorithm for solving
differential equations of LaneEmden type. Heydari et al.
[27] established the CWM for partial differential
equations with boundary conditions of the telegraph type.
Babolian and Fattahzadeh [6] had used the Chebyshev
wavelet operational matrix of integration for solving the
differential equations. Ghasemi and. Tavassoli Kajani
[28] had introduced the CWM for solving the
time-varying delay systems. Recently, Pirabaharan et.al
[29] applied the shifted second kind chebyshev wavelet
method for Estimating the Concentration of Species and
Effectiveness Factors in Porous Catalysts. Wavelets
permit the accurate representation of a variety of
functions and operators.

The aim of the present work is to develop the shifted
second kind Chebyshev wavelet method (S2KCWM) with
the operational matrices of integration and differentiation
mutually for solving nonlinear differential equations. By
several nonlinear boundary value problems, it is shown
that the shifted second kind Chebyshev wavelet method
(S2KCWM) is very efficient and suitable tool for solving
differential equations.

The paper is organized as follows. In section 2, we
describe properties of shifted second kind Chebyshev
wavelets also we presented the convergence analysis of
the proposed algorithm. In section 3 the proposed shifted
second kind Chebyshev wavelet method (S2KCWM) is
used to solve linear and nonlinear differential equations.
In section 4 some numerical examples are solved by
applying the method of this paper. Finally a conclusion is
drawn in section 5.

2 Properties of second kind Chebyshev
polynomials and their shifted forms

2.1 Second kind Chebyshev polynomials

(S2KCP)[19]
It is well known the second kind Chebyshev

polynomials are defined on [-1,1] by

Un(x) =
sin(n+1)θ

sinθ
,x = cosθ (1)

These polynomials are orthogonal on [-1,1]

1
∫

−1

√

1− x2Um(x)Un(x)dx =

{

0 m 6= n
π
2 m = n (2)

The following properties of second kind Chebyshev
polynomialsn are of fundamental importance in the
sequel. They are eigen functions of the follwing singular
Sturm-Liouville equation.

(1− x2)D2φk(x)−3xDφk(x)+ k(k+2)φk(x) = 0 (3)

Where D ≡ d
dx and may be generated by using the

recurrence relation

Uk+1(x) = 2xUk(x)−Uk−1(x), k = 1,2,3, · · · . (4)

Starting from U0(x) = 1 and U1(x) = 2x, or from
Rodrigues formula

Un(x) =
(−2n)(n+1)!

(2n+1)!
√

(1− x2)
Dn[(1− x2)n+ 1

2 ] (5)

Theorem 2.1.1[19] The first derivative of second kind

Chebyshev polynomials is of the form

DUn(x) = 2
n−1

∑
k=0,(k+n)odd

(k+1)Uk(x). (6)

Definition 2.1.1 [19] The shifted second kind Chebyshev

polynomials are defined on [0,1] byU∗
n (x) = Un(2x−1).

All results of second kind Chebyshev polynomials can be
easily transformed to give the corresponding results for
their shifted forms. The orthogonally relation with respect
to the weight function

√
x− x2 is given by

1
∫

0

√

x− x2U∗
n (x)U

∗
m(x)dx =

{

0 m 6= n
π
8 m = n (7)

Corollay 2.1.1: The first derivative of the shifted second

kind Chebyshev polynomial is given by

DU∗
n (x) = 4 ∑

k=0,(k+n)odd

(k+1)U∗
k (x) (8)
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2.2 Shifted Second kind Chebyshev operational
matrix of derivatives

[19]
Second kind Chebyshev wavelets are denoted by

ψn,m(t) = ψ(k,n,m, t), where k,n are positive integers
and m is the order of second kind Chebyshev
polynomials. Heret is the normalized time. They are
defined on the interval [0,1] by

ψn,m(t) =

{

2
k+3

2√
π U∗

m(2
kt − n), t ∈ [ n

2k ,
n+1
2k ]

0 otherwise
(9)

m = 0,1, · · · ,M,n = 0,1, · · · ,2k − 1. A function f (t) is
defined over [0,1] may be expanded in terms of second
kind Chebyshev wavelets as

f (t) =
∞

∑
n=0

∞

∑
m=0

cnmψnm(t). (10)

Where

cnm = ( f (t),ψnm(t))w =

1
∫

0

√

t − t2 f (t)ψnm(t)dt. (11)

If the infinite series is truncated, then it can be written as

f (t) =
2k−1

∑
n=0

M

∑
m=0

cnmψnm(t) =CT ψ(t) (12)

WhereC andψ(t) are 2k(M+1)×1 defined by

C = [c0,0,c0,1, · · · ,c0,M , · · · ,c2k−1,M , · · · ,c2k−1,1, · · · ,c2k−1,M ]T

ψ(t) = [ψ0,0,ψ0,1, · · · ,ψ0,M , · · · ,ψ2k−1,M , · · · ,ψ2k−1,1, · · · ,ψ2k−1,M]T
(13)

Theorem 2.2.1 [19] Let Ψ(t) be the second kind
Chebyshev wavelets vector. Then the first derivative of
the vectorΨ(t) can be expressed as

dψ(t)
dt

= Dψ(t) (14)

WhereD is 2k(M +1) square matrix of derivatives and is
defined by

D =











F O · · · O
O F · · · O
. . . . . . . . . . . .

. . . . . . . . . . . .

O O · · · F











in which F is an (M + 1) square matrix and its(r,s)th

element is defined by

Fr,s =

{

2k+2s r ≥ 2,r > s and (r+ s)odd
0 otherwise

(15)

Corollary 2.2.1 The operational matrix for thenth

derivative can be obtained from

dnψ(t)
dtn =Dnψ(t), n= 1,2, · · ·where Dn is the nth power o f D.

(16)

2.3 Convergence Analysis

We state and prove a theorem ascertaining that the second
kind Chebyshev wavelet expansion of a functionf (x),
with bounded second derivative, converges uniformly to
f (x).

Theorem 2.3.1 A function f (x) ∈ L2
ω [0,1], with

| f ′′(x)| ≤ L can be expanded as an infinite sum of
Chebyshev wavelets and the series converges uniformly
to f (x). Explicitly the expansion coefficients in (11)
satisfying the following in equality:

|cnm|<
8
√

2πL

(n+1)
5
2 (m+1)2

, ∀ m > 1,n ≥ 0 (17)

Proof: From (11) it follows that

cnm =
2

(k+3)
2√
π

n+1
2k
∫

n
2k

f (x)U∗
m(2

kx− n)ω(2kx− n)dx (18)

If we set 2kx− n = cosθ in (17), then we get

cnm =
2

(−k+3)
2

√
π

π
∫

0

f

(

cosθ + n
2k

)

sin(m+1)θ sinθdθ

=
2

(−k+1)
2√
π

π
∫

0

f

(

cosθ + n
2k

)

[cosmθ −cos(m+2)θ ]dθ

(19)
Which gives after integration by parts two times

Cnm =
2

2
5k
2
√

2π

π
∫

0

f ′′
(

cosθ + n
2k

)

λm(θ )dθ (20)

Where

λm(θ ) =
sinθ

m

[

sin(m−1)θ
m−1

− sin(m+1)θ
m+1

]

−

sinθ
m+2

[

sin(m+1)θ
m+1

− sin(m+3)θ
m+3

] (21)
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Therefore we have

|cnm| =

∣

∣

∣

∣

∣

∣

1

2
5k−1

2
√

π

π
∫

0

f ′′
(

cosθ +n

2k

)

λm(θ )dθ

∣

∣

∣

∣

∣

∣

=
1

2
5k−1

2
√

π

∣

∣

∣

∣

∣

∣

π
∫

0

f ′′
(

cosθ +n

2k

)

λm(θ )dθ

∣

∣

∣

∣

∣

∣

≤ L

2
5k−1

2
√

π

π
∫

0

|λm(θ )|dθ

≤ L
√

π

2
(5k−1)

2
[

1
m

(

1
m−1

+
1

m+1

)

+
1

m+2

(

1
m+1

+
1

m+3

)]

=
L
√

π

2
(5k−1)

2 (m2+2m−3)

<
2L

√
π

2
(5k−5)

2 (m+1)2

Sincen ≤ 2k −1, we have

|cnm|<
8
√

2πL

(n+1)
5
2 (m+1)2

This completes the proof of theorem.

2.4 Linear second-order two-point boundary
value problems

[19]
Consider the linear second-order differential equation

y′′(x)+ g1(x)y
′(x)+ g2(x)y(x) = G(x), x ∈ [0,1] (22)

Subject to the initial conditions

y(0) = α, y′(0) = β (23)

or the boundary conditions

y(0) = α y(1) = β (24)

or the most general mixed boundary conditions

a1y(0)+ a2y′(0) = α, b1y(1)+ b2y′(1) = β . (25)

If we approximate the functionsy(x),g1(x),g2(x) and
G(x) in terms of the second kind Chebyshev wavelet
basis, one can write

y(x)≈
2k−1

∑
n=0

M

∑
m=0

cnmψnm(x) =CT ψ(x)

g1(x)≈
2k−1

∑
n=0

M

∑
m=0

gnmψnm(x) = GT
1 ψ(x)

(26)

g2(x)≈
2k−1

∑
n=0

M

∑
m=0

gnmψnm(x) = GT
2 ψ(x)

g(x) =
2k−1

∑
n=0

M

∑
m=0

gnmψnm(x) = GT ψ(x)

(27)

T hen y′(x)≈CT Dψ(x), y′′(x) =CT D2ψ(x) (28)

Now substitution of relations Eq.(26), Eq.(27) and Eq.(28)
into Eq.(22), enable us to define the residualR(x), of this
equation as

R(x) =CT D2ψ(x)+GT
1 ψ(x)(ψ(x))T DTC+

GT
2 ψ(x)(ψ(x))TC−GT ψ(x).

(29)

and application of the tau method, yields the following
(2k(M + 1) − 2) linear equations in the unknown
expansion coefficients,cnm, namely

t
∫

0

√

x− x2ψ j(x)R(x)dx = 0, j = 1,2, · · · ,2k(M +1)−2

(30)
Moreover, the initial conditions Eq.(23), the boundary
conditions Eq.(24), and the mixed boundary conditions
Eq.(25) lead respectively, to the following equations

CT ψ(0) = α, CT Dψ(0) = β ,

CT ψ(0) = α, CT ψ(1) = β (31)

a1C
T ψ(0)+a2Dψ(0) =α, b1CT ψ(1)+b2C

T Dψ(1) = β
(32)

Thus Eq.(29) with the two equations of Eq.(31) or Eq.(32)
generate 2k(M+1) a set of linear equations which can be
solved for the unknown components of the vectorC, and
hence an approximate spectral wavelets solution toy(x)
can be obtained.

3 Numerical Examples

Example 3.1 Consider the following nonlinear second
order differential equation [34]

y′′+ lnx y′+ y2 = 2+2x lnx+ x4 (33)

with the initial conditiony(0) = 0,y′(0) = 0,x ∈ (0,1)

which has the exact solution y(x) = x2
. (34)

We solve Eq.(33) using the algorithm described in
section.3

We solve this problem by using the shifted second kind
Chebyshev wavelets (S2KCWM) with values ofk = 0 and
M = 2.

c© 2016 NSP
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Put
y(x) = CT ψ(x),y′(x) = CT Dψ(x),y′′(x) = CT D2ψ(x)
then the Eq.(33) becomes

[CT D2ψ(x)]+ lnx[CT Dψ(x)]+ [Cψ(x)]2 = 2+2x lnx+ x4

(35)
Use the initial conditionsCT ψ(0) = 1 andCT Dψ(0) = 0
leads to the two equations

2C0−4C1+6C2 = 1 (36)

8C1−32C2 = 0 (37)

Using equation (37), we get the following relations
between the unknown coefficients

C1 = 4C2 (38)

Substitute (38) in the equation (36) we obtain

C0 = 5C2 (39)

Applying (38) and (39) inCT D2ψ(x),CT Dψ(x),CT ψ(x),
equation (35) becomes

64C2+ lnx(9.372C2)+ (0.470596C2)
2 = 2+2x lnx+ x4

(40)
We only need to satisfy this equation at the first root of

U∗
3 (x). That isx = 2−

√
2

4
Equation (40) reduced to

(0.470596)C2
2+45.9926392C2−1.4379= 0 (41)

Solving the equation (41) we obtain the rootC2 = 0.03125
Substitute these into (38) and (39) we getC0 = 0.15625

andC1 = 0.125
Thus the solution can be written as

y(x) =CT ψ(x) = (C0,C1,C2)





2
8x−4

32x2−32x+6





Thusy(x) = x2, which is the exact soution.
It is clear that in Example 3.1, our proposed method is

speedily convergent to the exact solution, for a small value
of M = 2, we attain the exact solution. This proves the
efficiency of our shifted second kind Chebyshev wavelets
(S2KCWM) method.

Example 3.2Let us consider the another problem [35]

−y′′− 2
x

y′+(1− x)2y = x4−2x2+7 (42)

With the conditions y′(0) = 0 and y(1) = 0 (43)

The exact solution of Eqs.(42)-(43) is 1− x2.

By applying the shifted second kind Chebyshev
wavelet method (S2KCWM) to the given boundary
conditiony′(0) = 0 we get 8C1 − 32C2 = 0, it gives the
relation

C1 = 4C2 (44)

Table 1: Errors of the proposed methd compared with results in
[35] for the example 3.2

x Spline Spline our
h = 0.05[35] h = 0.0125[35] solution

0.1 2e-06 2e-06 0
0.2 2e-06 2e-06 0
0.3 2e-06 1e-06 0
0.4 2e-06 1e-06 0
0.5 1e-06 1e-06 0
0.6 1e-06 1e-06 0
0.7 1e-06 1e-06 0
0.8 1e-06 1e-06 0
0.9 0 0 0
1 0 0 0

Similarly using another conditiony(1) = 0, we obtain

C0 =−11C2 (45)

Applying the proposed algorithm to the equation (42) and
using (44) and (45) we have the following result
C2 =−0.03125.

Also we getC0 = 0.34375 andC1 =−0.125
Therefore the wquation (42) gives the solution by

y(x) =CT ψ(x) = (C0,C1,C2)





2
8x−4

32x2−32x+6





= (0.34375,−0.125,−0.03125)





2
8x−4

32x2−32x+6





That isy(x) = 1− x2 which is the exact solution.
Result of the proposed method compared with results

in the Cubic spline method [35]
Comparision of Errors between the proposed method

and spline method [35] for the problem 3.2 documented
in Table.1. From the table, obiviously we understand our
method produces best result, since our method gives the
exact solution.

Example 3.3Next we consider the nonlinear problem [33]

y′′ =
1
2
[y+ x+1]3,0< x < 1 (46)

Subject to the boundary conditionsy(0) = 0 andy(1) = 0
whose exact solution isy(x) = 2

2−x − x−1.
we solve the equation (46) using the algorithm

described in Section 3 for the case corresponds toM = 2
andk = 0, we obtainC0 = −0.0315,C1 = 0,C2 = 0.0105
Consequently we have

y =CT ψ(x) = (−0.0315,0,0.0105)





2
8x−4

32x2−32x+6





We get y(x) = (0.3360)x2− (0.3360)x (47)

The numerical results are presented in the following Table
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Table 2: Comparison between exact and S2KCWM solutions for
example 3.3

x Exact S2KCWM
k =0, M=2

0 0 0
0.1 -0.0474 -0.0302
0.2 -0.0889 -0.0538
0.3 -0.1235 -0.0706
0.4 -0.1500 -0.0806
0.5 -0.1667 -0.0840
0.6 -0.1714 -0.0806
0.7 -0.1615 -0.0706
0.8 -0.1333 -0.0538
0.9 -0.0818 -0.0302
1 0 0

Table 3: Absolute errors for Example 3.3
x S2KCWM

k =0, M=2
0 0
0.1 0.0172
0.2 0.0351
0.3 0.0529
0.4 0.0694
0.5 0.0827
0.6 0.0908
0.7 0.0909
0.8 0.0795
0.9 0.0516
1 0

Example 3.4 Consider the singular boundary value
problem [6]

y′′(x)+
1
x

y′(x) =

(

8
8− x2

)2

y′(0) = 0 and y(1) = 0 (48)

The exact solution in a closed form is

y(x) = 2loge

(

7
8− x2

)

(49)

Using the aforesaid method withk = 0 andM = 2, we
gain

Thus we can writey = (0.2528)x2− (0.0376)x−0.25

Example 3.5Consider the Bessel differential equation of
order zero [30,31]

xy′′(x)+ y′(x)+ xy(x) = 0 (50)

y(0) = 1,y′(0) = 0,x ∈ (0,1)
For M = 2 andk = 0 we get
C0 = 0.4611;C1 =−0.0311;C2 =−0.0078
Thus we can write

y(x) =CT ψ(x) = (−0.2496)x2+0.0008x+0.9998 (51)

Table 4: Comparison beteen exact and S2KCWM solutions for
Example 3.4

x Exact S2KCWM
M=2

0.1 -0.2646 -0.2512
0.2 -0.2570 -0.2474
0.3 -02444 -0.2385
0.4 -0.2267 -0.2246
0.5 -0.2036 -0.2056
0.6 -0.1750 -0.1816
0.7 -0.1407 -0.1524
0.8 -0.1003 -0.1183
0.9 -0.0536 -0.0791

Table 5: Absolute errors for Example 3.4
x S2KCWM

k =0, M=2
0.1 0.0134
0.2 0.0096
0.3 0.0059
0.4 0.0021
0.5 0.0020
0.6 0.0066
0.7 0.0117
0.8 0.0180
0.9 0.0255

Table 6: Comparison between exact and S2KCWM solutions for
Example 3.5

x Exact S2KCWM
k = 0, M=2

0.1 0.997502 0.997384
0.2 0.990025 0.989976
0.3 0.977626 0.977576
0.4 0.960398 0.960184
0.5 0.938470 0.937800
0.6 0.912005 0.910424
0.7 0.881201 0.878056
0.8 0.846287 0.840696
0.9 0.807524 0.798344

Table 7: Absolute errors for Example 3.5
x S2KCWM

k =0, M=2
0.1 0.000118
0.2 0.000049
0.3 0.000005
0.4 0.000124
0.5 0.000670
0.6 0.001581
0.7 0.003145
0.8 0.005591
0.9 0.009180
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Fig. 1: Comparison between exact and S2KCWM solutions with
k =0, M= 2 for Example 3.4

Table 8: Comparison between exact and S2KCWM solutions for
Example 3.6

x Exact S2KCWM
k = 0, M=2

0 0 0
0.1 0.0984 0.1650
0.2 0.1871 0.2934
0.3 0.2575 0.3851
0.4 0.3027 0.4401
0.5 0.3183 0.4584
0.6 0.3027 0.4401
0.7 0.2575 0.3851
0.8 0.1871 0.2934
0.9 0.0984 0.1650
1 0 0

Example 3.6 Consider the singular boundary value
problem [32]

y′′(x)+π3 [y(x)]2

sin(πx)
= 0, 0< x < 1 (52)

y(0) = 0,y(1) = 0, x ∈ [0,1]
which has the exact solution

y(x) =
1
π

sin(πx) (53)

We solve Eq.(52) using S2KCWM with values of
k = 0 andM = 2
Solving the system of equations, we obtain

C0 = 0.013993;C1 = 0;C2 =−0.00466

Thus we can write

y(x) =CT ψ(x) = (−0.14912)x2+(0.14912)x (54)

Table 9: Absolute errors for Example 3.6
x S2KCWM

k =0, M=2
0 0
0.1 0.0666
0.2 0.1063
0.3 0.1276
0.4 0.1374
0.5 0.1401
0.6 0.1374
0.7 0.1276
0.8 0.1063
0.9 0.0666
1 0
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Fig. 2: Comparison between exact and S2KCWM solutions with
k =0, M= 2 for Example 3.6

Example 3.7Finally we consider the equation

y′′− y′+ xy = x2 (55)

y(0) = 1,y′(0) =−1, x ∈ [0,1]
The exact solution in a closed form is

y(x) = 1− x− x2

2
− x3

3
+

x4

12
− x5

24
+ · · · (56)

For M = 2 and k = 0, we have the linear system of
equations and solving this system we gain

C0 = 0.1668;C1 =−0.1916;C2 =−0.0166
Thus we can write

y(x) =CT ψ(x) = (−0.5312)x2− (1.0016)x+0.9992
(57)

The numerical results for the absolute errors are given
in Table.11. Obviously we identified the errors are close to
zero. This proves the efficiency of our proposed algorithm
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Table 10: Comparison between exact and S2KCWM solutions
for Example 3.7

x Exact S2KCWM
M=2

0.1 0.894675 0.893728
0.2 0.777467 0.777632
0.3 0.646676 0.650912
0.4 0.500802 0.513568
0.5 0.338546 0.365600
0.6 0.158807 0.207008
0.7 -0.039314 0.037792
0.8 -0.256518 -0.142048
0.9 -0.493303 -0.332512

Table 11: Absolute errors for Example 3.7
x S2KCWM

k =0, M=2
0.1 0.000947
0.2 0.000165
0.3 0.004236
0.4 0.012766
0.5 0.027054
0.6 0.048201
0.7 0.077106
0.8 0.114470
0.9 0.160791
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Fig. 3: Comparison between exact and S2KCWM solutions with
k =0, M= 2 for Example 3.7

4 Results and Discussion

The accuracy of the results is estimated by error function
E = |Cexact −CCW M|. The results are shown in Tables (See
Tables 1,3,5,7,9 and 11). In order to assess the
advantages, efficiency and the accuracy of the shifted
second kind Chebyshev wavelets method (S2KCWM) for
solving the nonlinear differential equations, we use our
method to solve nonlinear differential equation, whose
exact solutions are known. Results in the Tables 1,3,5,7,9
and 11 show that the Chebyshev wavelet method agrees

with the results obtained in. When solving the
non-periodic problems, the second kind Chebyshev
wavelet has the superiorities (the calculation is easy
implementation, and the approximation effect is better).
Figures (1-3) show the comparison between the exact
solutions and the S2KCWM solutions for various values
of x. In this paper, the second kind Chebyshev wavelet
method (S2KCWM) has been compared with the exact
solution. Results in the Tables 2, 4,6,8 and 10 show the
comparison between the exact solutions and the
Chebyshev wavelet solutions for various values ofx and
M.

In Example 3.1 and 3.2, for a small value of
k = 0,M = 2, the shifted second kind Chebyshev wavelets
method (S2KCWM) solutions have attained the exact
solutions. Errors of the remaining examples are also very
close to zero. This proves the efficiency of our algorithm.

All the numerical experiments presented in this
section were computed in double precision with some
MATLAB codes on a personal computer System Vostro
1400 Processor x86 Family 6 Model 15 Stepping 13
Genuine Intel 1596 Mhz.

5 Concluding remarks

This paper provides shifted second kind Chebyshev
wavelet methods (S2KCWM) for solving a few nonlinear
differential equations arising in engineering. It offers a
state-of-the-art in several active areas of research where
numerical methods for solving nonlinear differential
equations have proved particularly effective. The
proposed schemes are the capability to overcome the
difficulty arising in calculating the integral values while
dealing with nonlinear problems. This method shows
higher efficiency than the traditional methods for solving
nonlinear ODEs. Also the proposed method has a simple
implementation process. It may be concluded that
S2KCWM is very powerful and efficient in finding
analytical as well as numerical solutions for a wide class
of linear and nonlinear differential equations. It provides
more realistic series solutions that converge very rapidly
in real physical problems.
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