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Abstract: Let H be a subgroup of a finite group. Then we say that is: bipermutable in G providedG has subgroup# and B
such thaiG = AB, H < A andH permutes with all subgroups &f and with all subgroups d8; S-hipermutable in G providedG has
subgroupsA andB such thatG = AB, H < A andH permutes with all Sylow subgroups Afand with all Sylowp-subgroups oB such
that(|H|, p) = 1. In this paper we analyze the influence of bipermutableSbigpermutable subgroups on the structuré&of

Keywords: finite group,S-bipermutable subgroup, Hall subgroup, Sylow subgrgupoluble groupp-supersoluble group, saturated
formation.

1 Introduction subgroup H of G is called semi-normal 16|
(SSquasinormal  [5]) in G if H permutes with all

Throughout this paper, all groups are finite @d@lways  subgroups (with all Sylow subgroups, respectively) of

denotes a finite group. Moreoveris always supposed to
be a prime dividingG|. We use.#,(G) to denote a set of
maximal subgroups o6 such that®(G) coincides with

some supplement ¢f to G. A subgroupH of Gis called
Ssemipermutable[17] in G if H permutes with all Sylow
p-subgroups of5 for all primesp such that(|H|, p) = 1.

It is clear that everysS-quasinormal subgroup and every
S-semipermutable subgroup af&bipermutable. Every
semi-normal subgroup is bipermutable. The following
elementary example shows that, in general, the set of all

the intersection of all subgroups iw,(G). Let A andB
be subgroups oB. If AB = BA, thenA is said topermute
with B; if G = AB, thenB is called asupplement of Ato G.

A subgroupH is said to bequasinormal [1] or
permutable [2] in G if permutes with all subgroups @3,
H is said to be Spermutable, S-quasinormal, or
m-quasinormal [3] in G if H permutes with all Sylow
subgroups ofG. In this paper we study the following
generalizations of these concepts.

Definition 1.1. Let H be a subgroup o6. Then we say
thatH is:

(1) bipermutable in G providedG has subgroups
andB such thaiG = AB, H < A andH permutes with all
subgroups oA and with all subgroups d.

(2) S-hipermutable in G providedG has subgroupé
andB such thaiG = AB, H < A andH permutes with all
Sylow subgroups oA and with all Sylowp-subgroups of
B such that|H|,p) = 1.

S-hipermutable subgroups & is wider than the set of all
its SS-quasinormal subgroups and the set of all its
S-semipermutable subgroups.

Example 1.2.Let p > g > r be primes such thatr
divides p— 1. Let P be a group of orderp and
QR < Aut(P), whereQ andR are groups with ordeg and
r, respectively. LeG = P x (QR). ThenRis bipermutable
in G. Suppose thaR is S-semipermutable irG. Then
Q'R = RQ* for all x € G. But Q*R~ G/P is cyclic, so
Q% = PQ < Ng(R). HenceR is normal in G, which
implies that R < Cg(P) = P. Therefore R is not
S-semipermutable irG. Later, after veiwing of Lemma
2.5, one can easly show th&js notSS-quasinormal irG
too.

In last years, many researches (see, for example ourmain goal here is to prove the following results.

[4]-[19]) deal with some interesting subclasses of the

class of all bipermutable subgroups and of the class of allTheorem A. Let P be a Sylowp-subgroup ofG.

Sbipermutable subgroups. Recall, for example, that a

() If Pis S-bipermutable irG, thenG is p-soluble.
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(I If P is bipermutable inG, then the following
statements hold:

() G is p-soluble andP’ < Oy(G). If, in addition,
Ng(P) is p-nilpotent, then the focal subgro@ NP of G
is contained ir0p(G).

(i) If pis the largest prime dividingG|, thenP is
normal inG.

(iii) 1p(G) < 2.

(iv) If for some primeq # p a Hall p’-subgroup ofG is
g-supersoluble, the@ is g-supersoluble.

Corollary 1.3 (See Main resulting]). Let P be a Sylowp-
subgroup ofz. If Pis semi-normal irG, then the following
statements hold:

(i) Gis p-soluble and® < Op(G).

(ii) Ip(G) < 2.

(iii) If for some primeq # p a Hall p’-subgroup ofG
is g-supersoluble, the® is g-supersoluble.
Corollary 1.4 (See Theorem 3 inlf]). Let P be a Sylow
p-subgroup of5, wherepis the largest prime dividin{g3|.
If Pis semi-normal ir5, thenP is normal inG.

(3) H permutes with some Sylow-subgroup ofG for
all primesp such tha{|H|, p) = 1.

(4) If G is p-soluble andH is a p-group, thenH
permutes with some Haf'-subgroup ofG.

Proof. (1) By hypothesis there are subgrougsandA, of
G such thatG = AjAz, H < A; andH permutes with all
Sylow subgroups of; and with all Sylowp-subgroups of
A, for all primesp satisfying(|H|, p) = 1.

Then G/N (A1N/N)(A2N/N) and
HN/N < A;N/N. Let K/N be any Sylowp-subgroup of
A2N/N such that [HN/N|, p) = 1. Since for every prime
q dividing [H| and for any Sylowg-subgrougHg of H we
haveHy £ N, (JH|, p) = 1. MoreoverK = (K NA2)N, so
by Lemma 2.1, there are Sylop-subgroup,, P and
Np of K, KNAz andN, respectively, such that, = PNp.
Let P < Ap, whereA; is a Sylowp-subgroup ofd,. Then
K/N < ApN/N, which implies that< /N = ApN/N. But
H permutes withAp, so thatHN/N permutes withK/N.
Similarly, it may be proved thaiN/N permutes with all
Sylow subgroups of AJN/N. Therefore HN/N is

On the basis of Theorem A we prove also the following S bipermutable irG/N.

results.

Theorem B. Let P be a Sylowp-subgroup ofG. Suppose
that|P| > p. If every membeN of some fixed 7, (P) is
S-bipermutable inG, then G is p-supersoluble. If, in
addition,(p—1,|G|) = 1, thenG is p-nilpotent.

Theorem B has many corollaries. In particular, this

theorem covers Theorems 1.1-1.4%h(see Section 4).
The following our theorem covers main result 8.

Theorem C.If every Sylow subgroup dB is bipermutable
in G, thenG is supersoluble.

All unexplained notation and terminology are
standard. The reader is referred 9]} [20], [21] and
[22] if necessary.

2 Preliminaries

Lemma 2.1(see Theorem 4.6 ir8D, Chapter VI]). LetA
andB be subgroups o6 such thatG = AB.

(1) If Gis p-soluble, then there are Hall-subgroups
Ay, By and Gy of A, B and G, respectively, such that
Gy = AyBy

(2) For any primep dividing |G|, there are Sylowp-
subgroup#\,, By andGp of A, B andG, respectively, such
thatGp, = ApBp.

Lemma 2.2 (see RO, Chapter A, Lemma 1.6]). Léd, K

andN be subgroups o6. If HK = KH andHN = NH,

thenH (K,N) = (K,N)H.

Lemma 2.3.Let H be anS-bipermutable subgroup @

andN a normal subgroup d& such that for every primp

dividing |H| and for every Sylowp-subgroupH, we have
Hp £ N. Then

(1) HN/N is S-bipermutable irG/N.

(2) If H is bipermutable inG, then HN/N is
bipermutable irG/N.

(2) See the proof of (1).

(3) By Lemma 2.1 there are Syloptsubgroup$, P
andP of A1, A> andG, respectively, such th® = PP,.
Then

HP = H(PP,) = (HP)P, = (PH)P,) =

PL(HP2) = Pi(PH) = (PiP2)H = PH.

(4) See the proof of (3) and use Lemma 2.2.
A group G is said to bep-closed provideds has a
normal Sylowp-subgroup.

Lemma 2.4.Let P be a Sylowp-subgroup ofG andA a
subgroup ofG. If P permutes with all Sylowp-subgroups
of A, thenAis p-closed.
Proof. Let Ap be a Sylow p-subgroup of A. By
hypothesisPA, = ApP. HenceAp < P. Thus(Ap)A < P.
But then(Ap)” is a p-group and sa\p = (Ap)" is normal
in A.
Lemma 2.5.Let H andB be subgroups o&. If G = AB,
whereA < Ng(H), andHV® = VPH for some subgrouy
of B and for allb € B, thenHV* =V*H for all x € G.
Proof. SinceG = AB = Ng(H)B we havex = bn for some
€ B and n € Ng(H). Hence

HVX = HVP" = Hn(VP)n~1 = n(VP)n~1H = V*H.
Lemma 2.6.Let A andB be subgroups d&. If A*B = BAX
for all x € G, thenAB* = B*Afor all x € G.
Proof. Indeed, from A<'B = BAX'
AB* = (A<'B)* = (BAX )X = B*A,
Lemma 2.7(0. Kegel R4]). Let A andB be subgroups of
G such thaG # AB andAB* = B*A, for all x € G. ThenG
has a proper normal subgrobpsuch that eitheA < N or
B <N.

In our proofs we shall need the following well-known
properties of supersoluble apeasupersoluble groups.

we get
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Lemma 2.8.Let N andR be normal subgroups @.

(1) If N < ©(G)nRandR/N is p-supersoluble, then
Ris p-supersoluble.

(2) If Gis p-supersoluble an@y (G) = 1, thenpis the
largest prime dividindG|, G is supersoluble anB(G) =
Op(G) is a normal Sylowp-subgroup ofG.

(3) If G is supersoluble, the®’ < F(G) andG is a
Sylow tower group of supersoluble type.

Lemma 2.9 (O. Kegel R5)). If G has three nilpotent
subgroup#\;, A, andAz whose indicesG: Ay|, |G : Ay|,
|G : Ag| are pairwise coprime, theB is itself nilpotent.
Lemma 2.10(V. N. Knyagina and V. S. Monakhow.p)).
LetH, K andN be subgroups d&. If N is normal inG, H
permutes wittK andH is a Hall subgroup o6, then

NNHK = (NNH)(NNK).

Lemma 2.11 (See Lemma 1.2.16 in2[]). If H is
S-permutable inG andH is a p-group for some prime,
thenOP(G) < Ng(H).

Lemma 2.12(See Lemma 2.15ir2f)). Let E be a normal
non-identity quasinilpotent subgroup@f If ®(G)NE =

1, thenE is the direct product of some minimal normal
subgroups of.

Lemma 2.13.Suppose that is p-soluble andy (G) =

ThenF*(G) = Op(G).

Proof. It is clear thatF (G) = Op(G) < F*(G). Suppose

thatOp(G) # F*(G) and letH /Op(G) be a chief factor of

G belowF*(G). Then, sinces is p-soluble,H/Op(G) is

a non-abelianp’-group and Op(G) < Z,(H) by [26,

Chapter X, Theorems 13.6 and 13.7].

H/CH(Op(G)) is a p-group by B1, Chapter 5, Theorem

1.4]. On the other hand, by the Schur-Zassenhau

theorem, O,(G) has a complemen€& in H. Then

E < CH(Op(G)), which implies thatE is normal inH.

Thus E is a characteristic subgroup oE, so

E < Oy(G) =1, a contradiction. The lemma is proved.
Let.# be aclass of groups. A chief factd/K of G is

called.%-central in G provided(H /K) x (G/Cs(H/K)) €

Z.

Lemma 2.14 (See P9, Theorem B]) Let.# be any

formation andg a normal subgroup o&. If each chief

factor of G below F*(E) is .#-central inG, then each

chief factor ofG belowE is .%-central inG as well.

Lemma 2.15.Let P be a Sylowp-subgroup of such that
(p—1,|G|) =1. IfeitherPis cyclic orG s p-supersoluble,
thenG is p-nilpotent.

Proof. Suppose that this lemma is false I& be a
counterexample of minimal order. Thé&his a minimal
non-p-nilpotent group. Hence, by3p, Chaper IV, Satz
5.4], P is normal inG, G/P is nilpotent and?/ ®(P) is a
chief factor of G. Since eitherP is cyclic or G is
p-supersolublelP/®(P)| = p. But since(p—1,|G|) =1,
we haveCg(P/®(P)) = G, which implies the nilpotency
of G. This contradiction completes the proof of the
lemma.

1.

Hence

3 Proofs of Theorems A, B and C

Proof of Theorem A. Suppose that this theorem is false
and letG be a counterexample of minimal order.

(I) By hypothesis there are subgroupsandB of G
such thatG = AB, P < A andP permutes with all Sylow
subgroups ofA and with all Sylowg-subgroups oB for
all primesq # p.

(1) P¢ = P(P°NB).

SinceP permutes with all Sylovg-subgroups oB for
all primesq # p, P permutes wittOP(B) by Lemma 2.11.
By Lemma 2.1, there are Sylopsubgroupshp, Bp and
Gy of A, B andG, respectively, such tha&p, = ApBp. By
Lemma 2.4,P is normal in A. Hence By < Ng(P).
ThereforePB = P(Bp,OP(B)) = (BpOP(B))P = BP is a

subgroup ofG. ThusP® = PAB = PB < (P B) = PB since
PB = BP is a subgroup of G. Hence
PG = PSNPB=P(P®NB).

(2) If N is a non-identity normal subgroup &, then
N is notp-soluble.

Indeed, ifP < N, thenG/N is a p’-group and so the
p-solubility of N implies the p-solubility of G. On the
other hand, if° £ N, then the hypothesis holds f&/N
by Lemma 2.3 (1). Henc&/N is p-soluble by the choice
of G since|G/N| < |G|. Therefore in the case, whéhis
p-soluble, G is also p-soluble, which contradicts the
choice ofG.

(8)PC =

From (1) we know thaP® = P(P® NB). LetQ be any
Sylow g-subgroup oP® N B, whereq # p. Then for some
Sylow g-subgroupBy of B we haveQ = BN (P°NB) =
Bq N PC. HencePBq N PC® = P(BqNP®) = PQ = QP is

& subgroup oPC. ThereforeP is S-bipermutable inP®,

so the hypothesis holds f&°. If P¢ # G, thenPC is p-
soluble by the choice d&. But this contradicts (2). Hence
we have (3).

(4) If Qis a Sylowg-subgroup oP® N B, whereq # p
is a prime divisor of P® N B|, then the hypothesis is true
for QC.

Let R be a Sylowr-subgroup ofQ® N B, wherer # p.
Then for some Sylow-subgrouB; of Bwe haveR=B; N

(Q®NB) =B, NQC. By Lemma 2.10 we know also that
PBNQ é NQ%)(B;NQ°%) = (PNQ®)R=R(PNQ®),
wherePNQ%is a Sylowp-subgroup ofQ®. Therefore the
hypothesis holds fo®C.

Final contradiction for (I). From (2) and (4) it follows
thatQ® = G. The choice of5 implies by Burnside's2qP-
theorem thaPQ # G. On the other hand, by Lemma 2.5,
PQ* = Q*P for all x € G. Hence by Lemma 2.R° +# G.
This contradiction completes the proof of Assertion (1).

(I By (I), G is p-soluble. By hypothesis there are
subgroupsA andB of G such thatG = AB, P < A andP
permutes with all subgroups &f and with all subgroups
of B. The subgrou® is normal inA by Lemma 2.4, an@
permutes withB. Therefore= P¢ = PAB = PB < PB,
which implies thaP® = P(P¢ N B).

(i) Suppose that this assertion is false. Then:
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(1) Op(N) = 1 for any normal subgroul of G.

Indeed, suppose th&,(G) # 1. By Lemma 2.3 (2),
the hypothesis holds fa@B/Op(G). Hence Assertion (i) is
true forG/Op(G) by the choice ofs. Thus

P'Op(G)/0p(G) < (POp(G)/0p(G))" < Op(G/0p(G)) =1,
and ifNg(P) is p-nilpotent, then
(G/Op(G))'N(P/Op(G)) = (G'Op(G)/0p(G)) N (P/Op(G)) =

=0p(G)(G'NP)/Op(G) < Op(G/0p(G)) = 1.

Hence we haveP’ < Oy(G) in the former case, and
G NP < Op(G) in the case, wheilNg(P) is p-nilpotent.
Thus Assertion (i) is true foB, a contradiction. Therefore
Op(G) = 1. Finally, if N is a normal subgroup d, then
Op(N) is characteristic ifN and soOp(N) < Op(G) = 1.
Hence we have (1).

(2) P is not abelian.

Suppose thaP is abelian. Then in the case, when
Ng(P) is p-nilpoten,P < Z(Ng(P)), so G is p-nilpotent
by Burnside’s theorem 30, IV, 2.6]. Hence a Hall
p’-subgroupE of G is normal inG. SinceP is abelian, it
follows that G < E. ThereforeG'NP = 1 < Op(G),
contrary to our assumption @& Hence we have (2).

(3)Co(Oy (G)) < Oy(G) # 1.

By (1), Op(G) = 1. Therefore, sinc& is p-soluble,
Oy p(G) = Oy (G) # 1 and sacCs(Oy (G)) < Oy (G) #1
by [30, VI, 6.9].

(4) P¢ = G andG = PB.

Since P¢ = P(P® N B), P is bipermutable inPC®.
Therefore in the case, wh@¥ # G, P’ < Op(P®) by the
choice ofG. But by (1),0p(P®) = 1. Therefore” =1, so
P is abelian, which contradicts (2). Thi®® = G and
G=PB.

(5) G is not supersoluble. Suppose th& is
supersoluble. The®' < F(G), soG'NP < Op(G) = 1.
HenceP’ = 1, contrary to (2). Hence we have (5).

(6) POy (G) = G. Suppose thdE = POy (G) # G. By
(4) we haveOy(G) < B. HenceP is bipermutable irE.
Thus P < Op(E) by the choice of G. Therefore
P' < Cs(Oy(G)) < Oy(G) by (3). HenceP is abelian,
which contradicts (2). ThuBOy (G) = G.

(7) Final contradiction for (i). Le¥ be any subgroup
of Oy(G). Then by (4) for anyx € G we have
PV* = V*P. HenceVP* = P*V for all x € G by Lemma
2.6. Now note thaV = P*V N Oy (G) is normal inP*V,
so P* < Ng(V). But then, by (4),G = P® < Ng(V).
Therefore every subgroup @y (G) is normal inG. But
by (6), POy (G) = G. HenceG is supersoluble, contrary
to (5). Therefore Assertion (i) is true f@.

(ii) Suppose that this assertion is false. Then:

(@)0p(G) =1.

Suppose thaDp(G) # 1. Then Assertion (i) is true
for G/Op(G) by the choice ofG, so P/Op(G) is normal
in G/Op(G), which implies thaP is normal inG. Hence
Op(G) =1.

(b) P® = G andG = PB. Suppose tha®® # G. Since
PG = P(P® N B), the hypothesis holds f&°®. HenceP is

normal in P® by the choice of G. Hence P is
characteristic irP®, which implies thaP is normal inG.
This contradiction shows th&° = G, soG = PB.

(c) G is not supersoluble (Singeis the largest prime
dividing |G|, this assertion directly follows from (a) and
Lemma 2.8 (2)).

(d)Cs(Op(G)) < Oy(G) # 1 (See (3) in the proof of
().

Final contradiction for (ii). In view of (b), the
hypothesis holds foPOy(G). Therefore in the case,
when POy (G) # G, P is normal in POy(G), which
implies that P < Cg(Oy(G)) < Op(G) by (4). This
contradiction shows th&O (G) = G. But then, in view

of (b), G is supersoluble (see the final contradiction in the
proof of (i)), which contradicts (c). Therefore Assertion
(i) is true for G.

(iii) Since by (i),P’ < Op(G), every Sylowp-subgroup
of G/Op(G) is abelian. Hence, by3D, Chapter VI, Satz
6.6], we havep(G/Op(G)) < 1. But thenl,(G) < 2.

(iv) Suppose that this assertion is false. Ietbe a
minimal normal subgroup db. Assume thalN < Oy (G).
Then the hypothesis holds fo6G/N, so G/N is
g-supersoluble by the choice of. But then G is
g-supersoluble, contrary to our assumption dh
Therefore Oy (G) = 1. In particular, N £ P, which
implies thatN is p’-group sinceG is p-soluble by (i). Let
E be a Hall p’-subgroup ofG. ThenN < E, soN is a
g-group sinceOy (G) = 1 andE is g-supersoluble. Thus
the hypothesis holds forG/N. Therefore G/N is
g-supersoluble. Henc&\ is the only minimal normal
subgroup ofG andN £ ®(G) by Lemma 2.8 (1). Hence
N < PC, andN = Cg(N) by [20, Chapter A , Theorem
15.2]. SinceP® = P(P® N B), it follows thatN < B. Thus
P permutes with all subgroups oN. Since E is
g-supersolubleN has a maximal subgroup such thalv/
is normal inE. On the other hand?V NN =V is normal
in PV. HenceG = PE < Ng(V), which in view of the
minimality of N implies thatV = 1. Hence|N| = g, so
G/N = G/Cg(N) is a cyclic group of exponent dividing
g — 1. But thenG is supersoluble. This contradiction
completes the proof of Assertion (iv). The theorem is
proved.

Proof of Theorem B. Suppose that this theorem is false
and letG be a counterexample of minimal order.

First we shall show thab is p-supersoluble. Assume
that this is false. LeV € .#,(P). By hypothesis there are
subgroupsA andB of G such thatG = AB, V < A andV
permutes with all Sylow subgroupsAfind with all Sylow
g-subgroups oB for all primesq # p.

(1)V is normal inB, V¢ =V (V¢ NB) andV permutes
with every Sylowg-subgroup oW/ © N B for all primesq #

p.

By Lemma 2.110P(A) < Na(V). Hence, sincd/ is
maximal in P, A = A,OP(A) < Na(V) for any Sylow
p-subgroupAp of A. ThereforeV is normal inA. Now
arguing similarly as in the proof of Theorem A (I) one
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can show thaV permutes wittB. Hence
Ve =VvAB = yNelVIB — VB < (v B) =VB

since VB = BV is a subgroup ofG. Therefore
VE =VvEéNnVB =V(VéNnB). Now let Q any Sylow

g-subgroup o/ € NB, whereq # p. Then for some Sylow
g-subgroupBy of B we haveQ = (VENB)N Bgy. On the

other handy Bq = BqV is a subgroup o6, so

VByNV® =V (B4NV®) =V (BN (QNV®)) =VQ=QV

is a subgroup o6. Hence we have (1).

(2) Oy (N) = 1 for every normal subgroug of G.

Indeed, suppose that for some normal subgndugf
G we haveOy (N) # 1. SinceOy (N) is a characteristic
subgroup ofN, it is normal inG. On the other hand, by
Lemma 2.3 (1), the hypothesis holds /O, (N). Hence
G/Op(N) is p-supersoluble by the choice Gt ThusG is
p-supersoluble, a contradiction.

(3) If L is a minimal normal subgroup o0&, then
L £ ®(P). Indeed, in the case, wheke< @(P), we have
L < @(G) and the hypothesis holds f@&/L by Lemma
2.3 (1). Hencea/L is p-supersoluble by the choice bf
Therefore G is p-supersoluble by Lemma 2.8 (1),
contrary to the choice ds.

(4) Every normal p-soluble subgroupD of G is
supersoluble ang-closed. By (2)Oy (D) = 1. Therefore
Op = Op(D) # 1 since D is p-soluble. LetN be a
minimal normal subgroup o& contained inOp. In view
of (3) we haveN ¢« @(P). Hence for some subgroup
W € .#,(P) we haveP = NW. LetS= NNW. ThenSis
normal inP. On the other hand, by Lemma 2.3 (3), for
any primeq # p, there is a Sylowg-subgroupQ of G
such thatWQ = QW. HenceS= QW NN is a normal
subgroup ofQW and soQ < Ng(S). ThusSis normal in
G. Hence |§ =1 and |[N| = p. But thenW is a
complement ofN in P, which implies by Gaschiitz's
theorem BO, Chapter |, Satz 17.4], that has a
complementM in G. ThusN £ @(G). It is clear that
®(G)NOp is normal inG. Therefore@(G) NOp = 1.
HenceOp = L1 x ... x Lt, whereL,,...,L; are minimal
normal subgroups d& by Lemma 2.12. By (3) we have
Li £ @(P). Thus, as above, one can show tHat = p.
Therefore every chief factor @ below Oy is cyclic. On
the other hand, by Lemma 2.18; (D) = Op. HenceD is
supersoluble by Lemma 2.14. (D) =1,s00p is a
Sylow p-subgroup oD by Lemma 2.8 (2).

(5) G is p-soluble. Assume tha® is not p-soluble.
Then:

(@) If Op(G) # 1, thenP is not cyclic. Suppose th&k
is cyclic. LetL be a minimal normal subgroup db
contained inOp(G) < P. Suppose thaCg(L) = G, so
L < Z(G). Let N = Ng(P). If P < Z(N), thenG is
p-nilpotent by Burnside’s theorenB(, IV, 2.6], which
contradicts the choice oz. Hence N # Cg(P). Let
x € N\Cg(P) with (|x|,|P|) = 1 andE = P x (x). By [30,
I, 13.4], P = [E,P] x (PN Z(E)). SinceL < PNZ(E)

and P is cyclic, it follows thatP = PN Z(E) and so
x € Cg(P). This contradiction shows th&gs (L) # G.

SinceP is cyclic, |L| = p. HenceG/Cg(L) is a cyclic
group of order dividingp — 1. If |P/L| > p, then the
hypothesis holds fo&/L by Lemma 2.3 (1). Henc&/L
is p-supersoluble by the choice d& and thenG is
p-soluble, a contradiction. Thu®/L| = p, soV =L is
normal in G. Therefore the hypothesis holds for
(Cs(L),P). HenceCg(L) is p-soluble by the choice db
since Cg(L) # G. But then G is p-soluble. This
contradiction shows that we have (a).

(b) If P £ VG, thenV is normal inG. SinceP % V©,
V is a Sylow p-subgroup ofV®. On the other hand, by
(1) we havev® = V(VENB) andV is S-bhipermutable in
V. ThereforeV® is p-soluble by Theorem A. Thug is
normal inV® by (4). SinceV is a Sylow p-subgroup of
VC,V is characteristic iv®. HenceV = V© is normal in
G.

(c) P is not cyclic. Suppose tha® is cyclic. Then
My(P) = {V}, and by (a) and (b) we have
P <VC =V (VéNB) andV permutes with every Sylow
g-subgroup ofV¢ N B for all primesq # p. Hence the
hypothesis holds fov®. Assume thav® # G. ThenV©
is p-supersoluble by the choice &. Hence by (4)P is
normal in G, which contradicts (a). Therefo® = G,
which implies that G = VB by (1). Hence
P=PNVB=V(PNB), soP < B sinceP is cyclic.
ThereforeB = G. Let g be any prime dividingG| with
g # p andQ a Sylowg-subgroup oB. ThenvVQ* = Q*V
for all x € G. SinceV® = G, it follows thatD = Q® # G
by Lemma 2.7. LeR be a Sylowr-subgroup oD, where
r # p. Then for some sylow-subgroupG; of G we have
R= G, ND andVG; = G;V. Assume thaP < D. Then
VG, ND = V(G NnD) = VR = RV. ThereforeV is
Shipermutable inD. But then, sinceD # G, D is
p-supersoluble by the choice & ThusP is normal inG,
contrary to (a). Therefore £ D. HenceDp, =DnNV is a
Sylow p-subgroup oD. By Lemma 2.10 we have

VG, ND = (VND)(G ND) = DyR= RD,.

Therefore the subgroupy, is S-bipermutable irD. Hence
D is p-soluble by Theorem A, which contradicts (a).
HenceP is not cyclic.

(d) Pis Shipermutable ifPP. LetD = PC. In view (c),
there is a subgroup/ € .Z,(P) such thatv # W. Then
P = VW. Hence in view of Lemma 2.2 we have only to
show thalv andwW permute with all Sylowg-subgroups of
PC for all primesq # p. In view of (b) we may suppose
thatP <V® andP < W®. ThenP® <V, so by (1),P® =
V (V€ NB) andV permutes with every Sylow-subgroup
QofVenB. Itis clear thaRis a Sylowg-subgroup oP®.
HenceV permutes with every Sylow-subgroup o€ by
Lemma 2.5. Similarly, it may be proved that permutes
with every Sylowg-subgroup oP®.

Final contradiction for (5). By (d) and Theorem R?
is p-soluble. Hence by (4R is normal inG. HenceG is
p-soluble. This contradiction completes the proof of (5).
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By (5), G is p-soluble. Henc& is supersoluble by (4).

Finally, suppose thatp — 1,|G|) = 1. Then for every
chief factor H/K of H with |H/K| = p we have
Cs(H/K) = G. Hence G is p-nilpotent. This
contradiction completes the proof.

|G|. If every memberV of some fixed .#,(P) is
SS-quasinormal irG, thenG is p-nilpotent.

Corollary 4.3. Let P be a Sylow subgroup d&, wherep
is the smallest prime dividingG|. If every membeWN of
some fixed 7, (P) is S-semipermutable irG, thenG is

Proof of Theorem C. Suppose that this theorem is false p-nilpotent.

and letG be a counterexample of minimal order. By

Theorem AG is soluble.

Let N be a minimal normal subgroup &. Then the
hypothesis holds fo&/N by Lemma 2.3 (1). Henc&/N
is supersoluble by the choice & Since the class of all
supersoluble groups is a saturated formatibis the only
minimal normal subgroup o8, |[N| > p andN £ ®(G).
HenceN = Cg(N) = F(G) is a p-group for some prime

Corollary 4.4. LetP be a Sylow subgroup o&. If
Ng(P) is p-nilpotent and every membé&#t of some fixed
M y(P) is Sbipermutable irG, thenG is p-nilpotent.

Proof of Corollary 4.4. If |P| = p, thenG is p-nilpotent
by Burnside’s theorem3p, IV, 2.6]. Otherwise,G is
p-supersoluble by Theorem B. The hypothesis holds for
G/Oy(G) by Lemma 2.3(1), so in the case, where

p by [20, Chapter A, Theorem 15.2]. On the other hand, O»(G) # 1, G/Op(G) is p-nilpotent by induction. Hence

by Theorem A, a Sylovg-subgroup ofG, whereq is the
largest prime dividingG|, is normal inG. Henceq = p
andN = P.

SinceN £ @(G), for some maximal subgroup of G
we haveG = N x E. HenceE ~ G/N is supersoluble Let
p1 > ... > pt be the set of all primes divisors ¢|. Let
P be a Sylowp;-subgroup ofE. First assume thdt= 2.
ThenP; is normal inE, soNg(P1) NP = 1. ThereforeP;
permutes with all subgroups &. If P < Ng(P,), then
PP, = P x P,. Hence in this cas® < Cg(P) = P. This
contradiction shows thaig(P,) NP # P, so there is a
non-identity subgroup < P such that?,B = BP,. Hence
BE = B(P.P2) = (PiP»)B = BE is a subgroup o6, which
contradicts the maximality d& = P,P>.

Thereforet > 2. Let E; be a Hallpj-subgroup ofE.
Then the hypothesis holds folPE;, so PE is
p-supersoluble by the choice dB. Moreover, since
P = Cg(P) we have Oy(PE;) = 1. ThereforePE; is
supersoluble by Lemma 2.8 (2), afdPE;) = P. Thus
PE;/P ~ E; is an abelian group of exponent dividing
p— 1. ThereforeE has at least three abelian subgrolps
Ej and Ex of exponent dividingp — 1 whose indices
|E : Ei|, |[E:Ej|, |E: Ex| are pairwise coprime. But then
by Lemma 2.9 E is nilpotent, and every Sylow subgroup
of E is an abelian group of exponent dividing— 1.
HenceE is an abelian group of exponent dividimg- 1,
which implies thatP| = p. But thenG/P = G/Cg(P) is a
cyclic group of exponent dividingp — 1, so G is
supersoluble.

The theorem is proved.

4 Some applications of Theorem B

In view of Lemma 2.15 and Theorem B we have

Corollary 4.1. Let P be a Sylow subgroup do&, where
p is the smallest prime dividings|. If every membeV
of some fixed #,(P) is Shipermutable inG, thenG is
p-nilpotent.

Corollary 4.2 (See Theorem 1.1 irb]). Let P be a Sylow
subgroup ofG, where p is the smallest prime dividing

is p-nilpotent. Therefore we may assume that
Op(G) = 1. But then, by Lemma 2.8 (2] is normal in
G. HenceG is p-nilpotent by hypothesis.

From Corollary 4.4 we get

Corollary 4.5. Let P be a Sylow subgroup @. If Ng(P)
is p-nilpotent and every memb¥f of some fixed 7, (P)
is S-semipermutable i, thenG is p-nilpotent.

Corollary 4.6 (See Theorem 1.2 irb]). Let P be a Sylow
subgroup ofG. If Ng(P) is p-nilpotent and every member
V of some fixed #Z,(P) is SS-quasinormal irG, thenG is
p-nilpotent.

Corollary 4.7. Let P be a Sylow subgroup db. If G is
p-soluble and every numbgfr of some fixed#4(P) is S
bipermutable irG, thenG is p-supersoluble.

Proof. In the case, whe[P| = p, this directly follows from
the p-solubility of G. If |P| > p, this corollary follows from
Theorem B.

Corollary 4.8. Let P be a Sylow subgroup d&. If G is
p-soluble and every numbgfr of some fixed#4(P) is S
semipermutable i, thenG is p-supersoluble.

Corollary 4.9 (See Theorem 1.3 irb]). Let P be a Sylow
subgroup ofG. If G is p-soluble and every memb#gft of

some fixed.#,(P) is SS-quasinormal inG, thenG is p-

supersoluble.

Corollary 4.10. If, for every prime p dividing |G| and
P € Sylp(G), every membeW of some fixed.#y(P) is
S-bhipermutable irG, thenG is supersoluble.

Proof. Let p be the smallest prime dividing|. ThenG is

p-nilpotent by Corollary 4.1, soG is soluble by
Fait-Thompson’s theorem. Hend@ is supersoluble by
Corollary 4.7.

Corollary 4.12. If, for every prime p dividing |G| and
P € Sylp(G), every membeW of some fixed.#y(P) is
S-semipermutable i, thenG is supersoluble.

Corollary 4.12 (See Theorem 1.4 in5]). If, for every
prime p dividing |G| andP € Sylp(G), every membeW
of some fixed#Z,(P) is SS-quasinormal inG, thenG is
supersoluble.
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