

Applied Mathematics & Information Sciences An International Journal

On Bipermutable and *S*-Bipermutable Subgroups of Finite Groups

Awni F. Al-Dababseh*

Department of Mathematics, Al-Hussein Bin Talal University, Ma'an 11117, Jordan

Received: 28 Aug. 2015, Revised: 15 Nov. 2015, Accepted: 16 Nov. 2015 Published online: 1 Mar. 2016

Abstract: Let *H* be a subgroup of a finite group *G*. Then we say that *H* is: *bipermutable* in *G* provided *G* has subgroups *A* and *B* such that G = AB, $H \le A$ and *H* permutes with all subgroups of *A* and with all subgroups of *B*; *S*-*bipermutable* in *G* provided *G* has subgroups *A* and *B* such that G = AB, $H \le A$ and *H* permutes with all Sylow subgroups of *A* and with all Sylow *p*-subgroups of *B* such that (|H|, p) = 1. In this paper we analyze the influence of bipermutable and *S*-bipermutable subgroups on the structure of *G*.

Keywords: finite group, *S*-bipermutable subgroup, Hall subgroup, Sylow subgroup, *p*-soluble group, *p*-supersoluble group, saturated formation.

1 Introduction

Throughout this paper, all groups are finite and *G* always denotes a finite group. Moreover *p* is always supposed to be a prime dividing |G|. We use $\mathcal{M}_{\phi}(G)$ to denote a set of maximal subgroups of *G* such that $\Phi(G)$ coincides with the intersection of all subgroups in $\mathcal{M}_{\phi}(G)$. Let *A* and *B* be subgroups of *G*. If AB = BA, then *A* is said to *permute* with *B*; if G = AB, then *B* is called a *supplement* of *A* to *G*.

A subgroup *H* is said to be *quasinormal* [1] or *permutable* [2] in *G* if permutes with all subgroups of *G*, *H* is said to be *S-permutable*, *S-quasinormal*, or π -*quasinormal* [3] in *G* if *H* permutes with all Sylow subgroups of *G*. In this paper we study the following generalizations of these concepts.

Definition 1.1. Let *H* be a subgroup of *G*. Then we say that *H* is:

(1) *bipermutable* in *G* provided *G* has subgroups *A* and *B* such that G = AB, $H \le A$ and *H* permutes with all subgroups of *A* and with all subgroups of *B*.

(2) S-bipermutable in G provided G has subgroups A and B such that G = AB, $H \le A$ and H permutes with all Sylow subgroups of A and with all Sylow p-subgroups of B such that (|H|, p) = 1.

In last years, many researches (see, for example [4]–[15]) deal with some interesting subclasses of the class of all bipermutable subgroups and of the class of all *S*-bipermutable subgroups. Recall, for example, that a

subgroup *H* of *G* is called semi-normal [16] (*SS-quasinormal* [5]) in *G* if *H* permutes with all subgroups (with all Sylow subgroups, respectively) of some supplement of *H* to *G*. A subgroup *H* of *G* is called *S-semipermutable* [17] in *G* if *H* permutes with all Sylow *p*-subgroups of *G* for all primes *p* such that (|H|, p) = 1. It is clear that every *SS*-quasinormal subgroup and every *S*-semipermutable subgroup are *S*-bipermutable. Every semi-normal subgroup is bipermutable. The following elementary example shows that, in general, the set of all *S*-bipermutable subgroups of *G* is wider than the set of all its *SS*-quasinormal subgroups.

Example 1.2. Let p > q > r be primes such that qr divides p - 1. Let P be a group of order p and $QR \le Aut(P)$, where Q and R are groups with order q and r, respectively. Let $G = P \rtimes (QR)$. Then R is bipermutable in G. Suppose that R is S-semipermutable in G. Then $Q^{x}R = RQ^{x}$ for all $x \in G$. But $Q^{x}R \simeq G/P$ is cyclic, so $Q^{G} = PQ \le N_{G}(R)$. Hence R is normal in G, which implies that $R \le C_{G}(P) = P$. Therefore R is not S-semipermutable in G. Later, after veiwing of Lemma 2.5, one can easly show that, R is not SS-quasinormal in G too.

Our main goal here is to prove the following results.

Theorem A. Let *P* be a Sylow *p*-subgroup of *G*. (I) If *P* is *S*-bipermutable in *G*, then *G* is *p*-soluble.

* Corresponding author e-mail: awni69@yahoo.com

(II) If P is bipermutable in G, then the following statements hold:

(i) *G* is *p*-soluble and $P' \leq O_p(G)$. If, in addition, $N_G(P)$ is *p*-nilpotent, then the focal subgroup $G' \cap P$ of *G* is contained in $O_p(G)$.

(ii) If p is the largest prime dividing |G|, then P is normal in G.

(iii) $l_p(G) \le 2$.

(iv) If for some prime $q \neq p$ a Hall p'-subgroup of G is q-supersoluble, then G is q-supersoluble.

Corollary 1.3 (See Main result in [6]). Let *P* be a Sylow *p*-subgroup of *G*. If *P* is semi-normal in *G*, then the following statements hold:

(i) *G* is *p*-soluble and $P' \leq O_p(G)$.

(ii) $l_p(G) \le 2$.

(iii) If for some prime $q \neq p$ a Hall p'-subgroup of G is q-supersoluble, then G is q-supersoluble.

Corollary 1.4 (See Theorem 3 in [18]). Let *P* be a Sylow *p*-subgroup of *G*, where *p* is the largest prime dividing |G|. If *P* is semi-normal in *G*, then *P* is normal in *G*.

On the basis of Theorem A we prove also the following results.

Theorem B. Let *P* be a Sylow *p*-subgroup of *G*. Suppose that |P| > p. If every member *V* of some fixed $\mathcal{M}_{\phi}(P)$ is *S*-bipermutable in *G*, then *G* is *p*-supersoluble. If, in addition, (p-1, |G|) = 1, then *G* is *p*-nilpotent.

Theorem B has many corollaries. In particular, this theorem covers Theorems 1.1-1.4 in [5] (see Section 4).

The following our theorem covers main result in [18].

Theorem C. If every Sylow subgroup of *G* is bipermutable in *G*, then *G* is supersoluble.

All unexplained notation and terminology are standard. The reader is referred to [19], [20], [21] and [22] if necessary.

2 Preliminaries

Lemma 2.1 (see Theorem 4.6 in [30, Chapter VI]). Let *A* and *B* be subgroups of *G* such that G = AB.

(1) If G is p-soluble, then there are Hall p'-subgroups $A_{p'}$, $B_{p'}$ and $G_{p'}$ of A, B and G, respectively, such that $G_{p'} = A_{p'}B_{p'}$

(2) For any prime p dividing |G|, there are Sylow psubgroups A_p , B_p and G_p of A, B and G, respectively, such that $G_p = A_p B_p$.

Lemma 2.2 (see [20, Chapter A, Lemma 1.6]). Let H, K and N be subgroups of G. If HK = KH and HN = NH, then $H\langle K, N \rangle = \langle K, N \rangle H$.

Lemma 2.3. Let *H* be an *S*-bipermutable subgroup of *G* and *N* a normal subgroup of *G* such that for every prime *p* dividing |H| and for every Sylow *p*-subgroup H_p we have $H_p \leq N$. Then

(1) HN/N is S-bipermutable in G/N.

(2) If *H* is bipermutable in *G*, then HN/N is bipermutable in G/N.

(3) *H* permutes with some Sylow *p*-subgroup of *G* for all primes *p* such that (|H|, p) = 1.

(4) If G is p-soluble and H is a p-group, then H permutes with some Hall p'-subgroup of G.

Proof. (1) By hypothesis there are subgroups A_1 and A_2 of *G* such that $G = A_1A_2$, $H \le A_1$ and *H* permutes with all Sylow subgroups of A_1 and with all Sylow *p*-subgroups of A_2 for all primes *p* satisfying (|H|, p) = 1.

G/N = $(A_1N/N)(A_2N/N)$ Then and $HN/N \leq A_1N/N$. Let K/N be any Sylow *p*-subgroup of A_2N/N such that (|HN/N|, p) = 1. Since for every prime q dividing |H| and for any Sylow q-subgroup H_q of H we have $H_q \leq N$, (|H|, p) = 1. Moreover, $K = (K \cap A_2)N$, so by Lemma 2.1, there are Sylow *p*-subgroups K_p , *P* and N_p of K, $K \cap A_2$ and N, respectively, such that $K_p = PN_p$. Let $P \leq A_p$, where A_p is a Sylow *p*-subgroup of A_2 . Then $K/N \leq A_p N/N$, which implies that $K/N = A_p N/N$. But H permutes with A_p , so that HN/N permutes with K/N. Similarly, it may be proved that HN/N permutes with all Sylow subgroups of A_1N/N . Therefore HN/N is S-bipermutable in G/N.

(2) See the proof of (1).

(3) By Lemma 2.1 there are Sylow *p*-subgroups P_1 , P_2 and *P* of A_1 , A_2 and *G*, respectively, such that $P = P_1P_2$. Then

$$HP = H(P_1P_2) = (HP_1)P_2 = (P_1H)P_2) =$$
$$P_1(HP_2) = P_1(P_2H) = (P_1P_2)H = PH.$$

(4) See the proof of (3) and use Lemma 2.2.

A group G is said to be p-closed provided G has a normal Sylow p-subgroup.

Lemma 2.4. Let *P* be a Sylow *p*-subgroup of *G* and *A* a subgroup of *G*. If *P* permutes with all Sylow *p*-subgroups of *A*, then *A* is *p*-closed.

Proof. Let A_p be a Sylow *p*-subgroup of *A*. By hypothesis, $PA_p = A_pP$. Hence $A_p \le P$. Thus $(A_p)^A \le P$. But then $(A_p)^A$ is a *p*-group and so $A_p = (A_p)^A$ is normal in *A*.

Lemma 2.5. Let *H* and *B* be subgroups of *G*. If G = AB, where $A \le N_G(H)$, and $HV^b = V^bH$ for some subgroup *V* of *B* and for all $b \in B$, then $HV^x = V^xH$ for all $x \in G$.

Proof. Since $G = AB = N_G(H)B$ we have x = bn for some $b \in B$ and $n \in N_G(H)$. Hence $HV^x = HV^{bn} = Hn(V^b)n^{-1} = n(V^b)n^{-1}H = V^xH$.

Lemma 2.6. Let *A* and *B* be subgroups of *G*. If $A^{x}B = BA^{x}$ for all $x \in G$, then $AB^{x} = B^{x}A$ for all $x \in G$.

Proof. Indeed, from $A^{x^{-1}}B = BA^{x^{-1}}$ we get $AB^x = (A^{x^{-1}}B)^x = (BA^{x^{-1}})^x = B^xA$.

Lemma 2.7 (O. Kegel [24]). Let *A* and *B* be subgroups of *G* such that $G \neq AB$ and $AB^x = B^xA$, for all $x \in G$. Then *G* has a proper normal subgroup *N* such that either $A \leq N$ or $B \leq N$.

In our proofs we shall need the following well-known properties of supersoluble and *p*-supersoluble groups.

Lemma 2.8. Let *N* and *R* be normal subgroups of *G*.

(1) If $N \le \Phi(G) \cap R$ and R/N is *p*-supersoluble, then *R* is *p*-supersoluble.

(2) If *G* is *p*-supersoluble and $O_{p'}(G) = 1$, then *p* is the largest prime dividing |G|, *G* is supersoluble and $F(G) = O_p(G)$ is a normal Sylow *p*-subgroup of *G*.

(3) If G is supersoluble, then $G' \leq F(G)$ and G is a Sylow tower group of supersoluble type.

Lemma 2.9 (O. Kegel [25]). If *G* has three nilpotent subgroups A_1 , A_2 and A_3 whose indices $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ are pairwise coprime, then *G* is itself nilpotent.

Lemma 2.10 (V. N. Knyagina and V. S. Monakhov [12]). Let H, K and N be subgroups of G. If N is normal in G, H permutes with K and H is a Hall subgroup of G, then

$$N \cap HK = (N \cap H)(N \cap K).$$

Lemma 2.11 (See Lemma 1.2.16 in [27]). If *H* is *S*-permutable in *G* and *H* is a *p*-group for some prime *p*, then $O^p(G) \leq N_G(H)$.

Lemma 2.12 (See Lemma 2.15 in [28]). Let *E* be a normal non-identity quasinilpotent subgroup of *G*. If $\Phi(G) \cap E = 1$, then *E* is the direct product of some minimal normal subgroups of *G*.

Lemma 2.13. Suppose that *G* is *p*-soluble and $O_{p'}(G) = 1$. Then $F^*(G) = O_p(G)$.

Proof. It is clear that $F(G) = O_p(G) \leq F^*(G)$. Suppose that $O_p(G) \neq F^*(G)$ and let $H/O_p(G)$ be a chief factor of G below $F^*(G)$. Then, since G is p-soluble, $H/O_p(G)$ is a non-abelian p'-group and $O_p(G) \leq Z_{\infty}(H)$ by [26, Chapter X, Theorems 13.6 and 13.7]. Hence $H/C_H(O_p(G))$ is a p-group by [31, Chapter 5, Theorem 1.4]. On the other hand, by the Schur-Zassenhaus theorem, $O_p(G)$ has a complement E in H. Then $E \leq C_H(O_p(G))$, which implies that E is normal in H. Thus E is a characteristic subgroup of E, so $E \leq O_{p'}(G) = 1$, a contradiction. The lemma is proved.

Let \mathscr{F} be a class of groups. A chief factor H/K of G is called \mathscr{F} -central in G provided $(H/K) \rtimes (G/C_G(H/K)) \in \mathscr{F}$.

Lemma 2.14 (See [29, Theorem B]) Let \mathscr{F} be any formation and *E* a normal subgroup of *G*. If each chief factor of *G* below $F^*(E)$ is \mathscr{F} -central in *G*, then each chief factor of *G* below *E* is \mathscr{F} -central in *G* as well.

Lemma 2.15. Let *P* be a Sylow *p*-subgroup of *E* such that (p-1, |G|) = 1. If either *P* is cyclic or *G* is *p*-supersoluble, then *G* is *p*-nilpotent.

Proof. Suppose that this lemma is false let *G* be a counterexample of minimal order. Then *G* is a minimal non-*p*-nilpotent group. Hence, by [30, Chaper IV, Satz 5.4], *P* is normal in *G*, *G*/*P* is nilpotent and $P/\Phi(P)$ is a chief factor of *G*. Since either *P* is cyclic or *G* is *p*-supersoluble, $|P/\Phi(P)| = p$. But since (p-1, |G|) = 1, we have $C_G(P/\Phi(P)) = G$, which implies the nilpotency of *G*. This contradiction completes the proof of the lemma.

3 Proofs of Theorems A, B and C

Proof of Theorem A. Suppose that this theorem is false and let *G* be a counterexample of minimal order.

(I) By hypothesis there are subgroups A and B of G such that G = AB, $P \le A$ and P permutes with all Sylow subgroups of A and with all Sylow q-subgroups of B for all primes $q \ne p$.

(1) $P^G = P(P^G \cap B).$

Since *P* permutes with all Sylow *q*-subgroups of *B* for all primes $q \neq p$, *P* permutes with $O^p(B)$ by Lemma 2.11. By Lemma 2.1, there are Sylow *p*-subgroups A_p , B_p and G_p of *A*, *B* and *G*, respectively, such that $G_p = A_p B_p$. By Lemma 2.4, *P* is normal in *A*. Hence $B_p \leq N_G(P)$. Therefore $PB = P(B_p O^p(B)) = (B_p O^p(B))P = BP$ is a subgroup of *G*. Thus $P^G = P^{AB} = P^B \leq \langle P, B \rangle = PB$ since PB = BP is a subgroup of *G*. Hence $P^G = P^G \cap PB = P(P^G \cap B)$.

(2) If N is a non-identity normal subgroup of G, then N is not p-soluble.

Indeed, if $P \leq N$, then G/N is a p'-group and so the *p*-solubility of *N* implies the *p*-solubility of *G*. On the other hand, if $P \nleq N$, then the hypothesis holds for G/N by Lemma 2.3 (1). Hence G/N is *p*-soluble by the choice of *G* since |G/N| < |G|. Therefore in the case, when *N* is *p*-soluble, *G* is also *p*-soluble, which contradicts the choice of *G*.

(3) $P^G = G$.

From (1) we know that $P^G = P(P^G \cap B)$. Let Q be any Sylow q-subgroup of $P^G \cap B$, where $q \neq p$. Then for some Sylow q-subgroup B_q of B we have $Q = B_q \cap (P^G \cap B) =$ $B_q \cap P^G$. Hence $PB_q \cap P^G = P(B_q \cap P^G) = PQ = QP$ is a subgroup of P^G . Therefore P is S-bipermutable in P^G , so the hypothesis holds for P^G . If $P^G \neq G$, then P^G is psoluble by the choice of G. But this contradicts (2). Hence we have (3).

(4) If Q is a Sylow q-subgroup of $P^G \cap B$, where $q \neq p$ is a prime divisor of $|P^G \cap B|$, then the hypothesis is true for Q^G .

Let *R* be a Sylow *r*-subgroup of $Q^G \cap B$, where $r \neq p$. Then for some Sylow *r*-subgroup B_r of *B* we have $R = B_r \cap (Q^G \cap B) = B_r \cap Q^G$. By Lemma 2.10 we know also that $PB_r \cap Q^G = (P \cap Q^G)(B_r \cap Q^G) = (P \cap Q^G)R = R(P \cap Q^G)$, where $P \cap Q^G$ is a Sylow *p*-subgroup of Q^G . Therefore the hypothesis holds for Q^G .

Final contradiction for (I). From (2) and (4) it follows that $Q^G = G$. The choice of *G* implies by Burnside's $p^a q^{b}$ theorem that $PQ \neq G$. On the other hand, by Lemma 2.5, $PQ^x = Q^x P$ for all $x \in G$. Hence by Lemma 2.7, $P^G \neq G$. This contradiction completes the proof of Assertion (I).

(II) By (I), *G* is *p*-soluble. By hypothesis there are subgroups *A* and *B* of *G* such that G = AB, $P \le A$ and *P* permutes with all subgroups of *A* and with all subgroups of *B*. The subgroup *P* is normal in *A* by Lemma 2.4, and *P* permutes with *B*. Therefore $= P^G = P^{AB} = P^B \le PB$, which implies that $P^G = P(P^G \cap B)$.

(i) Suppose that this assertion is false. Then:

(1) $O_p(N) = 1$ for any normal subgroup *N* of *G*.

Indeed, suppose that $O_p(G) \neq 1$. By Lemma 2.3 (2), the hypothesis holds for $G/O_p(G)$. Hence Assertion (i) is true for $G/O_p(G)$ by the choice of G. Thus

$$P'O_p(G)/O_p(G) \leq (PO_p(G)/O_p(G))' \leq O_p(G/O_p(G)) = 1,$$

and if $N_G(P)$ is *p*-nilpotent, then

$$\begin{split} (G/O_p(G))' \cap (P/O_p(G)) &= (G'O_p(G)/O_p(G)) \cap (P/O_p(G)) = \\ &= O_p(G)(G' \cap P)/O_p(G) \le O_p(G/O_p(G)) = 1. \end{split}$$

Hence we have $P' \leq O_p(G)$ in the former case, and $G' \cap P \leq O_p(G)$ in the case, when $N_G(P)$ is *p*-nilpotent. Thus Assertion (i) is true for *G*, a contradiction. Therefore $O_p(G) = 1$. Finally, if *N* is a normal subgroup of *G*, then $O_p(N)$ is characteristic in *N* and so $O_p(N) \leq O_p(G) = 1$. Hence we have (1).

(2) P is not abelian.

Suppose that *P* is abelian. Then in the case, when $N_G(P)$ is *p*-nilpoten, $P \leq Z(N_G(P))$, so *G* is *p*-nilpotent by Burnside's theorem [30, IV, 2.6]. Hence a Hall *p'*-subgroup *E* of *G* is normal in *G*. Since *P* is abelian, it follows that $G' \leq E$. Therefore $G' \cap P = 1 \leq O_p(G)$, contrary to our assumption on *G*. Hence we have (2).

(3) $C_G(O_{p'}(G)) \le O_{p'}(G) \ne 1.$

By (1), $O_p(G) = 1$. Therefore, since *G* is *p*-soluble, $O_{p',p}(G) = O_{p'}(G) \neq 1$ and so $C_G(O_{p'}(G)) \leq O_{p'}(G) \neq 1$ by [30, VI, 6.9].

(4) $P^G = G$ and G = PB.

Since $P^G = P(P^G \cap B)$, *P* is bipermutable in P^G . Therefore in the case, when $P^G \neq G$, $P' \leq O_p(P^G)$ by the choice of *G*. But by (1), $O_p(P^G) = 1$. Therefore P' = 1, so *P* is abelian, which contradicts (2). Thus $P^G = G$ and G = PB.

(5) *G* is not supersoluble. Suppose that *G* is supersoluble. Then $G' \leq F(G)$, so $G' \cap P \leq O_p(G) = 1$. Hence P' = 1, contrary to (2). Hence we have (5).

(6) $PO_{p'}(G) = G$. Suppose that $E = PO_{p'}(G) \neq G$. By (4) we have $O_{p'}(G) \leq B$. Hence *P* is bipermutable in *E*. Thus $P' \leq O_p(E)$ by the choice of *G*. Therefore $P' \leq C_G(O_{p'}(G)) \leq O_{p'}(G)$ by (3). Hence *P* is abelian, which contradicts (2). Thus $PO_{p'}(G) = G$.

(7) Final contradiction for (i). Let *V* be any subgroup of $O_{p'}(G)$. Then by (4) for any $x \in G$ we have $PV^x = V^x P$. Hence $VP^x = P^x V$ for all $x \in G$ by Lemma 2.6. Now note that $V = P^x V \cap O_{p'}(G)$ is normal in $P^x V$, so $P^x \leq N_G(V)$. But then, by (4), $G = P^G \leq N_G(V)$. Therefore every subgroup of $O_{p'}(G)$ is normal in *G*. But by (6), $PO_{p'}(G) = G$. Hence *G* is supersoluble, contrary to (5). Therefore Assertion (i) is true for *G*.

(ii) Suppose that this assertion is false. Then:

(a) $O_p(G) = 1$.

Suppose that $O_p(G) \neq 1$. Then Assertion (ii) is true for $G/O_p(G)$ by the choice of G, so $P/O_p(G)$ is normal in $G/O_p(G)$, which implies that P is normal in G. Hence $O_p(G) = 1$.

(b) $P^G = G$ and G = PB. Suppose that $P^G \neq G$. Since $P^G = P(P^G \cap B)$, the hypothesis holds for P^G . Hence P is

normal in P^G by the choice of G. Hence P is characteristic in P^G , which implies that P is normal in G. This contradiction shows that $P^G = G$, so G = PB.

(c) G is not supersoluble (Since p is the largest prime dividing |G|, this assertion directly follows from (a) and Lemma 2.8 (2)).

(d) $C_G(O_{p'}(G)) \leq O_{p'}(G) \neq 1$ (See (3) in the proof of (i)).

Final contradiction for (ii). In view of (b), the hypothesis holds for $PO_{p'}(G)$. Therefore in the case, when $PO_{p'}(G) \neq G$, *P* is normal in $PO_{p'}(G)$, which implies that $P \leq C_G(O_{p'}(G)) \leq O_{p'}(G)$ by (4). This contradiction shows that $PO_{p'}(G) = G$. But then, in view of (b), *G* is supersoluble (see the final contradiction in the proof of (i)), which contradicts (c). Therefore Assertion (ii) is true for *G*.

(iii) Since by (i), $P' \leq O_p(G)$, every Sylow *p*-subgroup of $G/O_p(G)$ is abelian. Hence, by [30, Chapter VI, Satz 6.6], we have $l_p(G/O_p(G)) \leq 1$. But then $l_p(G) \leq 2$.

(iv) Suppose that this assertion is false. Let N be a minimal normal subgroup of G. Assume that $N \leq O_{q'}(G)$. Then the hypothesis holds for G/N, so G/N is q-supersoluble by the choice of G. But then G is q-supersoluble, contrary to our assumption on G. Therefore $O_{a'}(G) = 1$. In particular, $N \leq P$, which implies that N is p'-group since G is p-soluble by (i). Let *E* be a Hall p'-subgroup of *G*. Then $N \leq E$, so *N* is a q-group since $O_{q'}(G) = 1$ and E is q-supersoluble. Thus the hypothesis holds for G/N. Therefore G/N is q-supersoluble. Hence N is the only minimal normal subgroup of G and $N \leq \Phi(G)$ by Lemma 2.8 (1). Hence $N \leq P^G$, and $N = C_G(N)$ by [20, Chapter A , Theorem 15.2]. Since $P^G = P(P^G \cap B)$, it follows that $N \leq B$. Thus P permutes with all subgroups of N. Since E is q-supersoluble, N has a maximal subgroup V such that Vis normal in *E*. On the other hand, $PV \cap N = V$ is normal in PV. Hence $G = PE \leq N_G(V)$, which in view of the minimality of N implies that V = 1. Hence |N| = q, so $G/N = G/C_G(N)$ is a cyclic group of exponent dividing q-1. But then G is supersoluble. This contradiction completes the proof of Assertion (iv). The theorem is proved.

Proof of Theorem B. Suppose that this theorem is false and let *G* be a counterexample of minimal order.

First we shall show that *G* is *p*-supersoluble. Assume that this is false. Let $V \in \mathcal{M}_{\phi}(P)$. By hypothesis there are subgroups *A* and *B* of *G* such that G = AB, $V \leq A$ and *V* permutes with all Sylow subgroups of *A* and with all Sylow *q*-subgroups of *B* for all primes $q \neq p$.

(1) *V* is normal in *B*, $V^G = V(V^G \cap B)$ and *V* permutes with every Sylow *q*-subgroup of $V^G \cap B$ for all primes $q \neq p$.

By Lemma 2.11, $O^p(A) \leq N_A(V)$. Hence, since V is maximal in P, $A = A_p O^p(A) \leq N_A(V)$ for any Sylow *p*-subgroup A_p of A. Therefore V is normal in A. Now arguing similarly as in the proof of Theorem A (I) one

can show that V permutes with B. Hence

$$V^G = V^{AB} = V^{N_G(V)B} = V^B \le \langle V, B \rangle = VB$$

since VB = BV is a subgroup of G. Therefore $V^G = V^G \cap VB = V(V^G \cap B)$. Now let Q any Sylow q-subgroup of $V^G \cap B$, where $q \neq p$. Then for some Sylow q-subgroup B_q of B we have $Q = (V^G \cap B) \cap B_q$. On the other hand, $VB_q = B_qV$ is a subgroup of G, so

$$VB_q \cap V^G = V(B_q \cap V^G) = V(B_q \cap (Q \cap V^G)) = VQ = QV$$

is a subgroup of G. Hence we have (1).

(2) $O_{p'}(N) = 1$ for every normal subgroup N of G.

Indeed, suppose that for some normal subgroup N of G we have $O_{p'}(N) \neq 1$. Since $O_{p'}(N)$ is a characteristic subgroup of N, it is normal in G. On the other hand, by Lemma 2.3 (1), the hypothesis holds for $G/O_{p'}(N)$. Hence $G/O_{p'}(N)$ is p-supersoluble by the choice of G. Thus G is p-supersoluble, a contradiction.

(3) If *L* is a minimal normal subgroup of *G*, then $L \not\leq \Phi(P)$. Indeed, in the case, where $L \leq \Phi(P)$, we have $L \leq \Phi(G)$ and the hypothesis holds for G/L by Lemma 2.3 (1). Hence G/L is *p*-supersoluble by the choice of *L*. Therefore *G* is *p*-supersoluble by Lemma 2.8 (1), contrary to the choice of *G*.

(4) Every normal p-soluble subgroup D of G is supersoluble and p-closed. By (2), $O_{p'}(D) = 1$. Therefore $O_p = O_p(D) \neq 1$ since D is p-soluble. Let N be a minimal normal subgroup of G contained in O_p . In view of (3) we have $N \leq \Phi(P)$. Hence for some subgroup $W \in \mathcal{M}_{\phi}(P)$ we have P = NW. Let $S = N \cap W$. Then S is normal in P. On the other hand, by Lemma 2.3 (3), for any prime $q \neq p$, there is a Sylow q-subgroup Q of G such that WQ = QW. Hence $S = QW \cap N$ is a normal subgroup of QW and so $Q \leq N_G(S)$. Thus S is normal in G. Hence |S| = 1 and |N| = p. But then W is a complement of N in P, which implies by Gaschütz's theorem [30, Chapter I, Satz 17.4], that L has a complement M in G. Thus $N \nleq \Phi(G)$. It is clear that $\Phi(G) \cap O_p$ is normal in G. Therefore $\Phi(G) \cap O_p = 1$. Hence $O_p = L_1 \times \ldots \times L_t$, where L_1, \ldots, L_t are minimal normal subgroups of G by Lemma 2.12. By (3) we have $L_i \leq \Phi(P)$. Thus, as above, one can show that $|L_i| = p$. Therefore every chief factor of G below O_p is cyclic. On the other hand, by Lemma 2.13, $F^*(D) = O_p$. Hence D is supersoluble by Lemma 2.14. But $O_{p'}(D) = 1$, so O_p is a Sylow p-subgroup of D by Lemma 2.8 (2).

(5) *G* is *p*-soluble. Assume that *G* is not *p*-soluble. Then:

(a) If $O_p(G) \neq 1$, then *P* is not cyclic. Suppose that *P* is cyclic. Let *L* be a minimal normal subgroup of *G* contained in $O_p(G) \leq P$. Suppose that $C_G(L) = G$, so $L \leq Z(G)$. Let $N = N_G(P)$. If $P \leq Z(N)$, then *G* is *p*-nilpotent by Burnside's theorem [30, IV, 2.6], which contradicts the choice of *G*. Hence $N \neq C_G(P)$. Let $x \in N \setminus C_G(P)$ with (|x|, |P|) = 1 and $E = P \rtimes \langle x \rangle$. By [30, III, 13.4], $P = [E, P] \times (P \cap Z(E))$. Since $L \leq P \cap Z(E)$

and *P* is cyclic, it follows that $P = P \cap Z(E)$ and so $x \in C_G(P)$. This contradiction shows that $C_G(L) \neq G$.

Since *P* is cyclic, |L| = p. Hence $G/C_G(L)$ is a cyclic group of order dividing p - 1. If |P/L| > p, then the hypothesis holds for G/L by Lemma 2.3 (1). Hence G/Lis *p*-supersoluble by the choice of *G* and then *G* is *p*-soluble, a contradiction. Thus |P/L| = p, so V = L is normal in *G*. Therefore the hypothesis holds for $(C_G(L), P)$. Hence $C_G(L)$ is *p*-soluble by the choice of *G* since $C_G(L) \neq G$. But then *G* is *p*-soluble. This contradiction shows that we have (a).

(b) If $P \nleq V^G$, then V is normal in G. Since $P \nleq V^G$, V is a Sylow p-subgroup of V^G . On the other hand, by (1) we have $V^G = V(V^G \cap B)$ and V is S-bipermutable in V^G . Therefore V^G is p-soluble by Theorem A. Thus V is normal in V^G by (4). Since V is a Sylow p-subgroup of V^G , V is characteristic in V^G . Hence $V = V^G$ is normal in G.

(c) P is not cyclic. Suppose that P is cyclic. Then $\mathcal{M}_{\phi}(P) = \{V\}$, and by (a) and (b) we have $P \leq V^G = V(V^G \cap B)$ and V permutes with every Sylow q-subgroup of $V^G \cap B$ for all primes $q \neq p$. Hence the hypothesis holds for V^G . Assume that $\hat{V}^G \neq G$. Then V^G is *p*-supersoluble by the choice of G. Hence by (4), P is normal in G, which contradicts (a). Therefore $V^G = G$, which implies that G = VB by (1). Hence $P = P \cap VB = V(P \cap B)$, so $P \leq B$ since P is cyclic. Therefore B = G. Let q be any prime dividing |G| with $q \neq p$ and Q a Sylow q-subgroup of B. Then $VQ^x = Q^xV$ for all $x \in G$. Since $V^G = G$, it follows that $D = Q^G \neq G$ by Lemma 2.7. Let *R* be a Sylow *r*-subgroup of *D*, where $r \neq p$. Then for some sylow r-subgroup G_r of G we have $R = G_r \cap D$ and $VG_r = G_r V$. Assume that $P \leq D$. Then $VG_r \cap D = V(G_r \cap D) = VR = RV$. Therefore V is S-bipermutable in D. But then, since $D \neq G$, D is *p*-supersoluble by the choice of G. Thus P is normal in G, contrary to (a). Therefore $P \leq D$. Hence $D_p = D \cap V$ is a Sylow *p*-subgroup of *D*. By Lemma 2.10 we have

$$VG_r \cap D = (V \cap D)(G_r \cap D) = D_p R = RD_p.$$

Therefore the subgroup D_p is S-bipermutable in D. Hence D is p-soluble by Theorem A, which contradicts (a). Hence P is not cyclic.

(d) *P* is *S*-bipermutable in P^D . Let $D = P^G$. In view (c), there is a subgroup $W \in \mathcal{M}_{\phi}(P)$ such that $V \neq W$. Then P = VW. Hence in view of Lemma 2.2 we have only to show that *V* and *W* permute with all Sylow *q*-subgroups of P^G for all primes $q \neq p$. In view of (b) we may suppose that $P \leq V^G$ and $P \leq W^G$. Then $P^G \leq V^G$, so by (1), $P^G =$ $V(V^G \cap B)$ and *V* permutes with every Sylow *q*-subgroup of P^G . Hence *V* permutes with every Sylow *q*-subgroup of P^G . Lemma 2.5. Similarly, it may be proved that *W* permutes with every Sylow *q*-subgroup of P^G .

Final contradiction for (5). By (d) and Theorem A, P^D is *p*-soluble. Hence by (4), *P* is normal in *G*. Hence *G* is *p*-soluble. This contradiction completes the proof of (5).

Proof of Theorem C. Suppose that this theorem is false and let G be a counterexample of minimal order. By Theorem A, G is soluble.

Let *N* be a minimal normal subgroup of *G*. Then the hypothesis holds for G/N by Lemma 2.3 (1). Hence G/N is supersoluble by the choice of *G*. Since the class of all supersoluble groups is a saturated formation, *N* is the only minimal normal subgroup of *G*, |N| > p and $N \nleq \Phi(G)$. Hence $N = C_G(N) = F(G)$ is a *p*-group for some prime *p* by [20, Chapter A, Theorem 15.2]. On the other hand, by Theorem A, a Sylow *q*-subgroup of *G*, where *q* is the largest prime dividing |G|, is normal in *G*. Hence q = p and N = P.

Since $N \nleq \Phi(G)$, for some maximal subgroup E of Gwe have $G = N \rtimes E$. Hence $E \simeq G/N$ is supersoluble Let $p_1 > \ldots > p_t$ be the set of all primes divisors of |E|. Let P_i be a Sylow p_i -subgroup of E. First assume that t = 2. Then P_1 is normal in E, so $N_G(P_1) \cap P = 1$. Therefore P_1 permutes with all subgroups of P. If $P \le N_G(P_2)$, then $PP_2 = P \times P_2$. Hence in this case $P_2 \le C_G(P) = P$. This contradiction shows that $N_G(P_2) \cap P \ne P$, so there is a non-identity subgroup B < P such that $P_2B = BP_2$. Hence $BE = B(P_1P_2) = (P_1P_2)B = BE$ is a subgroup of G, which contradicts the maximality of $E = P_1P_2$.

Therefore t > 2. Let E_i be a Hall p'_i -subgroup of E. Then the hypothesis holds for PE_i , so PE_i is p-supersoluble by the choice of G. Moreover, since $P = C_G(P)$ we have $O_{p'}(PE_i) = 1$. Therefore PE_i is supersoluble by Lemma 2.8 (2), and $F(PE_i) = P$. Thus $PE_i/P \simeq E_i$ is an abelian group of exponent dividing p-1. Therefore E has at least three abelian subgroups E_i , E_j and E_k of exponent dividing p-1 whose indices $|E : E_i|, |E : E_j|, |E : E_k|$ are pairwise coprime. But then by Lemma 2.9, E is nilpotent, and every Sylow subgroup of E is an abelian group of exponent dividing p-1. Hence E is an abelian group of exponent dividing p-1, which implies that |P| = p. But then $G/P = G/C_G(P)$ is a cyclic group of exponent dividing p-1, so G is supersoluble.

The theorem is proved.

4 Some applications of Theorem B

In view of Lemma 2.15 and Theorem B we have

Corollary 4.1. Let *P* be a Sylow subgroup of *G*, where *p* is the smallest prime dividing |G|. If every member *V* of some fixed $\mathcal{M}_{\phi}(P)$ is *S*-bipermutable in *G*, then *G* is *p*-nilpotent.

Corollary 4.2 (See Theorem 1.1 in [5]). Let P be a Sylow subgroup of G, where p is the smallest prime dividing

|G|. If every member V of some fixed $\mathcal{M}_{\phi}(P)$ is SS-quasinormal in G, then G is p-nilpotent.

Corollary 4.3. Let *P* be a Sylow subgroup of *G*, where *p* is the smallest prime dividing |G|. If every member *V* of some fixed $\mathcal{M}_{\phi}(P)$ is *S*-semipermutable in *G*, then *G* is *p*-nilpotent.

Corollary 4.4. Let *P* be a Sylow subgroup of *G*. If $N_G(P)$ is *p*-nilpotent and every member *V* of some fixed $\mathcal{M}_{\phi}(P)$ is *S*-bipermutable in *G*, then *G* is *p*-nilpotent.

Proof of Corollary 4.4. If |P| = p, then *G* is *p*-nilpotent by Burnside's theorem [30, IV, 2.6]. Otherwise, *G* is *p*-supersoluble by Theorem B. The hypothesis holds for $G/O_{p'}(G)$ by Lemma 2.3(1), so in the case, where $O_{p'}(G) \neq 1, G/O_{p'}(G)$ is *p*-nilpotent by induction. Hence *G* is *p*-nilpotent. Therefore we may assume that $O_{p'}(G) = 1$. But then, by Lemma 2.8 (2), *P* is normal in *G*. Hence *G* is *p*-nilpotent by hypothesis.

From Corollary 4.4 we get

Corollary 4.5. Let *P* be a Sylow subgroup of *G*. If $N_G(P)$ is *p*-nilpotent and every member *V* of some fixed $\mathcal{M}_{\phi}(P)$ is *S*-semipermutable in *G*, then *G* is *p*-nilpotent.

Corollary 4.6 (See Theorem 1.2 in [5]). Let *P* be a Sylow subgroup of *G*. If $N_G(P)$ is *p*-nilpotent and every member *V* of some fixed $\mathcal{M}_{\phi}(P)$ is *SS*-quasinormal in *G*, then *G* is *p*-nilpotent.

Corollary 4.7. Let *P* be a Sylow subgroup of *G*. If *G* is *p*-soluble and every number *V* of some fixed $\mathcal{M}_d(P)$ is *S*-bipermutable in *G*, then *G* is *p*-supersoluble.

Proof. In the case, when |P| = p, this directly follows from the *p*-solubility of *G*. If |P| > p, this corollary follows from Theorem B.

Corollary 4.8. Let *P* be a Sylow subgroup of *G*. If *G* is *p*-soluble and every number *V* of some fixed $\mathcal{M}_d(P)$ is *S*-semipermutable in *G*, then *G* is *p*-supersoluble.

Corollary 4.9 (See Theorem 1.3 in [5]). Let *P* be a Sylow subgroup of *G*. If *G* is *p*-soluble and every member *V* of some fixed $\mathcal{M}_{\phi}(P)$ is *SS*-quasinormal in *G*, then *G* is *p*-supersoluble.

Corollary 4.10. If, for every prime *p* dividing |G| and $P \in Syl_p(G)$, every member *V* of some fixed $\mathcal{M}_{\phi}(P)$ is *S*-bipermutable in *G*, then *G* is supersoluble.

Proof. Let p be the smallest prime dividing |G|. Then G is p-nilpotent by Corollary 4.1, so G is soluble by Fait-Thompson's theorem. Hence G is supersoluble by Corollary 4.7.

Corollary 4.12. If, for every prime *p* dividing |G| and $P \in Syl_p(G)$, every member *V* of some fixed $\mathcal{M}_{\phi}(P)$ is *S*-semipermutable in *G*, then *G* is supersoluble.

Corollary 4.12 (See Theorem 1.4 in [5]). If, for every prime *p* dividing |G| and $P \in Syl_p(G)$, every member *V* of some fixed $\mathcal{M}_{\phi}(P)$ is *SS*-quasinormal in *G*, then *G* is supersoluble.

References

- O. Ore, Contributions in the theory of groups of finite order, Duke Math. J., 5, 431–460 (1939).
- [2] S.E.Stonehewer, Permutable subgroups in Infinite Groups, Math. Z., 125, 1–16 (1972).
- [3] O. Kegel, Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 78, 205–221 (1962).
- [4] V.S. Monakhov, Finite groups with seminormal Hall subgroup, Matem. Zametki, 80 (4), 573-581 (2006).
- [5] Shirong Li, Zhencai Shen, Jianjun Liu, Xiaochun Liu, The influence of SS-quasinormality of some subgroups on the structure of finite group, J. Algebra, **319**, 4275-4287 (2008).
- [6] W. Guo, Finite groups with semi-normal Sylow subgroups, Acta Math. Sinica, English Series, 24(10),1751-1758 (2008).
- [7] Li BaoJun, A.N. Skiba, New characterizations of finite supersoluble groups, Science in China Series A: Mathematics, 51, 827-841 (2008).
- [8] Y. Li, L. Wang, Y. Wang, Finite groups in which (S)semipermutability permutability is a transitive relation, Internat. J. Algebra, 2(3), 143–152 (2008).
- [9] Y. Li, On S-semipermutable and c-normal subgroups of finite groups, Arabian J. Sci. Engineering, 34(2A), 167–175 (2009).
- [10] K. Al-Sharo, J. C. Beidleman, H. Heineken, M. F. Ragland, Some Characterizations of Finite Groups in which Semipermutability is a Transitive Relation. Forum Math., 22, 855–862 (2010).
- [11] W. Guo, A. N. Skiba, Criterions of Existence of Hall Subgroups in Non-soluble Finite Groups, Acta Math Sinica, 26(2), 295–304 (2010).
- [12] B.N. Knyagina, V.S. Monakhov, On π' -properties of finite group having a Hall π -subgroup, Siberian. Math. J., **52** (2), 298-309 (2011).
- [13] W. Guo, A.N. Skiba, New criterions of existence and conjugacy of Hall subgroups of finite groups, Proc. Amer. Math. Soc., 139, 2327-2336 (2011).
- [14] Ballester-Bolinches A, Beidleman J C, Feldman A D, Heineken H, et al. Finite solvable groups in which seminormalty is a transitive relation. Beitr.Algebra Geom, DOI 10.1007/s13366-012-0099-1
- [15] Ballester-Bolinches A, Beidleman J C, Feldman A D. Some new characterizations of solvable *PST*-groups. Ricerche mat. DOI 10.1007/s11587-012-0130-8
- [16] H. Su, Semi-normal subgroups of finite groups, Math. Mag., 8, 7-9 (1988).
- [17] Chongmu Chen, Generalization of theorem Srinivasan, J. Sothwest China Normal Univ., I, 1-4 (1987).
- [18] V.V. Podgornaya, Seminormal subgroups and supersolubility of finite groupds, Vesti NAN Belarus, Ser. Phys.-Math. Sciences, 4, 22-26 (2000).
- [19] L. A. Shemetkov, A. N. Skiba, Formations of Algebraic Systems, Nauka, Moscow, 1989.
- [20] K. Doerk, T. Hawkes, Finite Soluble Groups. Walter de Gruyter, Berlin-New York, 1992.
- [21] Wenbin Guo, The Theory of Classes of Groups, Beijing-New York-Dordrecht-Boston-London: Science Press-Kluwer Academic Publishers, 2000.
- [22] A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite groups, Springer, Dordrecht, 2006.
- [23] B. Huppert, Endliche Gruppen I. Springer-Verlag, Berlin-Heidelberg-New York, 1967.

- [24] O.H. Kegel, Produkte nilpotenter Gruppen, Arch. Math., 12, 90-93 (1961).
- [25] O. H. Kegel, Zur Struktur mehrfach faktorisierbarer endlicher Gruppen, Math. Z., 87, 409-434 (1965).
- [26] B. Huppert, N. Blackburn, Finite Groups III, Berlin, New-York, Springer-Verlag, 1982.
- [27] Ballester-Bolinches A., Esteban-Romero R, Asaad M., Products of Finite Groups, Walter de Gruyter, Berlin, New York, 2010.
- [28] W. Guo, A. N. Skiba, On *FΦ**-hypercentral subgroups of finite groups, J. Algebra, **372**, 285-292 (2012).
- [29] A. N. Skiba, On two questions of L.A. Shemetkov concerning hypercyclically embedded subgroups of finite groups J. Group Theory, 13, 841-850 (2010).
- [30] B. Huppert, Endliche Gruppen, I. Berlin-Heidelberg-New York: Springer-Verlag, 1967
- [31] D. Gorenstein, Finite Groups, Harper & Row Publishers, New York, Evanston, London, 1968.
- [32] L.A. Shemetkov, Formations of Finite Groups, Nauka, Moscow, 1978.

Awni F. Al-Dababseh received the PhD degree Mathematics (Algebra) in at Gomel State University. His research interests are in the areas of pure mathematics including the abstract finite groups and n-ary groups, solvable finite groups and n-ary groups, algebraic

systems and formations of finite groups and n-ary groups. He has published research articles in reputed international journals of mathematics.