
Appl. Math. Inf. Sci.10, No. 2, 711-717 (2016) 711

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100231

On Bipermutable and S-Bipermutable Subgroups of
Finite Groups
Awni F. Al-Dababseh∗

Department of Mathematics, Al-Hussein Bin Talal University, Ma’an 11117, Jordan

Received: 28 Aug. 2015, Revised: 15 Nov. 2015, Accepted: 16 Nov. 2015
Published online: 1 Mar. 2016

Abstract: Let H be a subgroup of a finite groupG. Then we say thatH is: bipermutable in G providedG has subgroupsA andB
such thatG = AB, H ≤ A andH permutes with all subgroups ofA and with all subgroups ofB; S-bipermutable in G providedG has
subgroupsA andB such thatG = AB, H ≤ A andH permutes with all Sylow subgroups ofA and with all Sylowp-subgroups ofB such
that(|H|, p) = 1. In this paper we analyze the influence of bipermutable andS-bipermutable subgroups on the structure ofG.
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1 Introduction

Throughout this paper, all groups are finite andG always
denotes a finite group. Moreoverp is always supposed to
be a prime dividing|G|. We useMφ (G) to denote a set of
maximal subgroups ofG such thatΦ(G) coincides with
the intersection of all subgroups inMφ (G). Let A andB
be subgroups ofG. If AB = BA, thenA is said topermute
with B; if G = AB, thenB is called asupplement of A to G.

A subgroup H is said to bequasinormal [1] or
permutable [2] in G if permutes with all subgroups ofG,
H is said to be S-permutable, S-quasinormal, or
π-quasinormal [3] in G if H permutes with all Sylow
subgroups ofG. In this paper we study the following
generalizations of these concepts.

Definition 1.1. Let H be a subgroup ofG. Then we say
thatH is:

(1) bipermutable in G providedG has subgroupsA
andB such thatG = AB, H ≤ A andH permutes with all
subgroups ofA and with all subgroups ofB.

(2) S-bipermutable in G providedG has subgroupsA
andB such thatG = AB, H ≤ A andH permutes with all
Sylow subgroups ofA and with all Sylowp-subgroups of
B such that(|H|, p) = 1.

In last years, many researches (see, for example
[4]–[15]) deal with some interesting subclasses of the
class of all bipermutable subgroups and of the class of all
S-bipermutable subgroups. Recall, for example, that a

subgroup H of G is called semi-normal [16]
(SS-quasinormal [5]) in G if H permutes with all
subgroups (with all Sylow subgroups, respectively) of
some supplement ofH to G. A subgroupH of G is called
S-semipermutable [17] in G if H permutes with all Sylow
p-subgroups ofG for all primesp such that(|H|, p) = 1.
It is clear that everySS-quasinormal subgroup and every
S-semipermutable subgroup areS-bipermutable. Every
semi-normal subgroup is bipermutable. The following
elementary example shows that, in general, the set of all
S-bipermutable subgroups ofG is wider than the set of all
its SS-quasinormal subgroups and the set of all its
S-semipermutable subgroups.

Example 1.2. Let p > q > r be primes such thatqr
divides p − 1. Let P be a group of orderp and
QR ≤ Aut(P), whereQ andR are groups with orderq and
r, respectively. LetG = P⋊ (QR). ThenR is bipermutable
in G. Suppose thatR is S-semipermutable inG. Then
QxR = RQx for all x ∈ G. But QxR ≃ G/P is cyclic, so
QG = PQ ≤ NG(R). Hence R is normal in G, which
implies that R ≤ CG(P) = P. Therefore R is not
S-semipermutable inG. Later, after veiwing of Lemma
2.5, one can easly show that,R is notSS-quasinormal inG
too.

Our main goal here is to prove the following results.

Theorem A. Let P be a Sylowp-subgroup ofG.
(I) If P is S-bipermutable inG, thenG is p-soluble.
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(II) If P is bipermutable inG, then the following
statements hold:

(i) G is p-soluble andP′ ≤ Op(G). If, in addition,
NG(P) is p-nilpotent, then the focal subgroupG′∩P of G
is contained inOp(G).

(ii) If p is the largest prime dividing|G|, then P is
normal inG.

(iii) lp(G)≤ 2.
(iv) If for some primeq 6= p a Hall p′-subgroup ofG is

q-supersoluble, thenG is q-supersoluble.

Corollary 1.3 (See Main result in [6]). Let P be a Sylowp-
subgroup ofG. If P is semi-normal inG, then the following
statements hold:

(i) G is p-soluble andP′ ≤ Op(G).
(ii) lp(G)≤ 2.
(iii) If for some primeq 6= p a Hall p′-subgroup ofG

is q-supersoluble, thenG is q-supersoluble.

Corollary 1.4 (See Theorem 3 in [18]). Let P be a Sylow
p-subgroup ofG, wherep is the largest prime dividing|G|.
If P is semi-normal inG, thenP is normal inG.

On the basis of Theorem A we prove also the following
results.

Theorem B.Let P be a Sylowp-subgroup ofG. Suppose
that |P| > p. If every memberV of some fixedMφ (P) is
S-bipermutable inG, then G is p-supersoluble. If, in
addition,(p−1, |G|) = 1, thenG is p-nilpotent.

Theorem B has many corollaries. In particular, this
theorem covers Theorems 1.1–1.4 in [5] (see Section 4).

The following our theorem covers main result in [18].

Theorem C.If every Sylow subgroup ofG is bipermutable
in G, thenG is supersoluble.

All unexplained notation and terminology are
standard. The reader is referred to [19], [20], [21] and
[22] if necessary.

2 Preliminaries

Lemma 2.1(see Theorem 4.6 in [30, Chapter VI]). LetA
andB be subgroups ofG such thatG = AB.

(1) If G is p-soluble, then there are Hallp′-subgroups
Ap′ , Bp′ and Gp′ of A, B and G, respectively, such that
Gp′ = Ap′Bp′

(2) For any primep dividing |G|, there are Sylowp-
subgroupsAp, Bp andGp of A, B andG, respectively, such
thatGp = ApBp.

Lemma 2.2 (see [20, Chapter A, Lemma 1.6]). LetH, K
andN be subgroups ofG. If HK = KH andHN = NH,
thenH〈K,N〉= 〈K,N〉H.

Lemma 2.3.Let H be anS-bipermutable subgroup ofG
andN a normal subgroup ofG such that for every primep
dividing |H| and for every Sylowp-subgroupHp we have
Hp � N. Then

(1) HN/N is S-bipermutable inG/N.
(2) If H is bipermutable in G, then HN/N is

bipermutable inG/N.

(3) H permutes with some Sylowp-subgroup ofG for
all primesp such that(|H|, p) = 1.

(4) If G is p-soluble andH is a p-group, thenH
permutes with some Hallp′-subgroup ofG.

Proof. (1) By hypothesis there are subgroupsA1 andA2 of
G such thatG = A1A2, H ≤ A1 andH permutes with all
Sylow subgroups ofA1 and with all Sylowp-subgroups of
A2 for all primesp satisfying(|H|, p) = 1.

Then G/N = (A1N/N)(A2N/N) and
HN/N ≤ A1N/N. Let K/N be any Sylowp-subgroup of
A2N/N such that(|HN/N|, p) = 1. Since for every prime
q dividing |H| and for any Sylowq-subgroupHq of H we
haveHq � N, (|H|, p) = 1. Moreover,K = (K ∩A2)N, so
by Lemma 2.1, there are Sylowp-subgroupsKp, P and
Np of K, K ∩A2 andN, respectively, such thatKp = PNp.
Let P ≤ Ap, whereAp is a Sylowp-subgroup ofA2. Then
K/N ≤ ApN/N, which implies thatK/N = ApN/N. But
H permutes withAp, so thatHN/N permutes withK/N.
Similarly, it may be proved thatHN/N permutes with all
Sylow subgroups of A1N/N. Therefore HN/N is
S-bipermutable inG/N.

(2) See the proof of (1).
(3) By Lemma 2.1 there are Sylowp-subgroupsP1, P2

andP of A1, A2 andG, respectively, such thatP = P1P2.
Then

HP = H(P1P2) = (HP1)P2 = (P1H)P2) =

P1(HP2) = P1(P2H) = (P1P2)H = PH.

(4) See the proof of (3) and use Lemma 2.2.
A group G is said to bep-closed providedG has a

normal Sylowp-subgroup.

Lemma 2.4.Let P be a Sylowp-subgroup ofG andA a
subgroup ofG. If P permutes with all Sylowp-subgroups
of A, thenA is p-closed.

Proof. Let Ap be a Sylow p-subgroup of A. By
hypothesis,PAp = ApP. HenceAp ≤ P. Thus(Ap)

A ≤ P.
But then(Ap)

A is a p-group and soAp = (Ap)
A is normal

in A.

Lemma 2.5.Let H andB be subgroups ofG. If G = AB,
whereA ≤ NG(H), andHV b =V bH for some subgroupV
of B and for allb ∈ B, thenHV x =V xH for all x ∈ G.

Proof. SinceG = AB = NG(H)B we havex = bn for some
b ∈ B and n ∈ NG(H). Hence
HV x = HV bn = Hn(V b)n−1 = n(V b)n−1H =V xH.

Lemma 2.6.Let A andB be subgroups ofG. If AxB = BAx

for all x ∈ G, thenABx = BxA for all x ∈ G.

Proof. Indeed, from Ax−1
B = BAx−1

we get
ABx = (Ax−1

B)x = (BAx−1
)x = BxA.

Lemma 2.7(O. Kegel [24]). Let A andB be subgroups of
G such thatG 6= AB andABx = BxA, for all x ∈ G. ThenG
has a proper normal subgroupN such that eitherA ≤ N or
B ≤ N.

In our proofs we shall need the following well-known
properties of supersoluble andp-supersoluble groups.
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Lemma 2.8.Let N andR be normal subgroups ofG.
(1) If N ≤ Φ(G)∩R andR/N is p-supersoluble, then

R is p-supersoluble.
(2) If G is p-supersoluble andOp′(G) = 1, thenp is the

largest prime dividing|G|, G is supersoluble andF(G) =
Op(G) is a normal Sylowp-subgroup ofG.

(3) If G is supersoluble, thenG′ ≤ F(G) and G is a
Sylow tower group of supersoluble type.

Lemma 2.9 (O. Kegel [25]). If G has three nilpotent
subgroupsA1, A2 andA3 whose indices|G : A1|, |G : A2|,
|G : A3| are pairwise coprime, thenG is itself nilpotent.

Lemma 2.10(V. N. Knyagina and V. S. Monakhov [12]).
Let H, K andN be subgroups ofG. If N is normal inG, H
permutes withK andH is a Hall subgroup ofG, then

N ∩HK = (N ∩H)(N ∩K).

Lemma 2.11 (See Lemma 1.2.16 in [27]). If H is
S-permutable inG andH is a p-group for some primep,
thenOp(G)≤ NG(H).

Lemma 2.12(See Lemma 2.15 in [28]). Let E be a normal
non-identity quasinilpotent subgroup ofG. If Φ(G)∩E =
1, thenE is the direct product of some minimal normal
subgroups ofG.

Lemma 2.13.Suppose thatG is p-soluble andOp′(G) = 1.
ThenF∗(G) = Op(G).

Proof. It is clear thatF(G) = Op(G) ≤ F∗(G). Suppose
thatOp(G) 6= F∗(G) and letH/Op(G) be a chief factor of
G below F∗(G). Then, sinceG is p-soluble,H/Op(G) is
a non-abelianp′-group and Op(G) ≤ Z∞(H) by [26,
Chapter X, Theorems 13.6 and 13.7]. Hence
H/CH(Op(G)) is a p-group by [31, Chapter 5, Theorem
1.4]. On the other hand, by the Schur-Zassenhaus
theorem, Op(G) has a complementE in H. Then
E ≤ CH(Op(G)), which implies thatE is normal inH.
Thus E is a characteristic subgroup ofE, so
E ≤ Op′(G) = 1, a contradiction. The lemma is proved.

Let F be a class of groups. A chief factorH/K of G is
calledF -central in G provided(H/K)⋊(G/CG(H/K))∈
F .

Lemma 2.14 (See [29, Theorem B]) LetF be any
formation andE a normal subgroup ofG. If each chief
factor of G below F∗(E) is F -central in G, then each
chief factor ofG belowE is F -central inG as well.

Lemma 2.15.Let P be a Sylowp-subgroup ofE such that
(p−1, |G|)= 1. If eitherP is cyclic orG is p-supersoluble,
thenG is p-nilpotent.

Proof. Suppose that this lemma is false letG be a
counterexample of minimal order. ThenG is a minimal
non-p-nilpotent group. Hence, by [30, Chaper IV, Satz
5.4], P is normal inG, G/P is nilpotent andP/Φ(P) is a
chief factor of G. Since eitherP is cyclic or G is
p-supersoluble,|P/Φ(P)|= p. But since(p−1, |G|) = 1,
we haveCG(P/Φ(P)) = G, which implies the nilpotency
of G. This contradiction completes the proof of the
lemma.

3 Proofs of Theorems A, B and C

Proof of Theorem A. Suppose that this theorem is false
and letG be a counterexample of minimal order.

(I) By hypothesis there are subgroupsA and B of G
such thatG = AB, P ≤ A andP permutes with all Sylow
subgroups ofA and with all Sylowq-subgroups ofB for
all primesq 6= p.

(1) PG = P(PG ∩B).
SinceP permutes with all Sylowq-subgroups ofB for

all primesq 6= p, P permutes withOp(B) by Lemma 2.11.
By Lemma 2.1, there are Sylowp-subgroupsAp, Bp and
Gp of A, B andG, respectively, such thatGp = ApBp. By
Lemma 2.4, P is normal in A. Hence Bp ≤ NG(P).
ThereforePB = P(BpOp(B)) = (BpOp(B))P = BP is a
subgroup ofG. ThusPG = PAB = PB ≤ 〈P,B〉= PB since
PB = BP is a subgroup of G. Hence
PG = PG ∩PB = P(PG ∩B).

(2) If N is a non-identity normal subgroup ofG, then
N is not p-soluble.

Indeed, ifP ≤ N, thenG/N is a p′-group and so the
p-solubility of N implies the p-solubility of G. On the
other hand, ifP � N, then the hypothesis holds forG/N
by Lemma 2.3 (1). HenceG/N is p-soluble by the choice
of G since|G/N| < |G|. Therefore in the case, whenN is
p-soluble, G is also p-soluble, which contradicts the
choice ofG.

(3) PG = G.
From (1) we know thatPG = P(PG ∩B). Let Q be any

Sylowq-subgroup ofPG ∩B, whereq 6= p. Then for some
Sylow q-subgroupBq of B we haveQ = Bq ∩ (PG ∩B) =
Bq ∩ PG. HencePBq ∩ PG = P(Bq ∩ PG) = PQ = QP is
a subgroup ofPG. ThereforeP is S-bipermutable inPG,
so the hypothesis holds forPG. If PG 6= G, thenPG is p-
soluble by the choice ofG. But this contradicts (2). Hence
we have (3).

(4) If Q is a Sylowq-subgroup ofPG ∩B, whereq 6= p
is a prime divisor of|PG ∩B|, then the hypothesis is true
for QG.

Let R be a Sylowr-subgroup ofQG ∩B, wherer 6= p.
Then for some Sylowr-subgroupBr of B we haveR= Br∩
(QG ∩B) = Br ∩QG. By Lemma 2.10 we know also that
PBr∩QG = (P∩QG)(Br∩QG) = (P∩QG)R= R(P∩QG),
whereP∩QG is a Sylowp-subgroup ofQG. Therefore the
hypothesis holds forQG.

Final contradiction for (I). From (2) and (4) it follows
thatQG = G. The choice ofG implies by Burnside’spaqb-
theorem thatPQ 6= G. On the other hand, by Lemma 2.5,
PQx = QxP for all x ∈ G. Hence by Lemma 2.7,PG 6= G.
This contradiction completes the proof of Assertion (I).

(II) By (I), G is p-soluble. By hypothesis there are
subgroupsA andB of G such thatG = AB, P ≤ A andP
permutes with all subgroups ofA and with all subgroups
of B. The subgroupP is normal inA by Lemma 2.4, andP
permutes withB. Therefore= PG = PAB = PB ≤ PB,
which implies thatPG = P(PG ∩B).

(i) Suppose that this assertion is false. Then:
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(1) Op(N) = 1 for any normal subgroupN of G.
Indeed, suppose thatOp(G) 6= 1. By Lemma 2.3 (2),

the hypothesis holds forG/Op(G). Hence Assertion (i) is
true forG/Op(G) by the choice ofG. Thus

P′Op(G)/Op(G)≤ (POp(G)/Op(G))′ ≤ Op(G/Op(G)) = 1,

and ifNG(P) is p-nilpotent, then

(G/Op(G))′∩(P/Op(G)) = (G′Op(G)/Op(G))∩(P/Op(G)) =

= Op(G)(G′∩P)/Op(G)≤ Op(G/Op(G)) = 1.

Hence we haveP′ ≤ Op(G) in the former case, and
G′ ∩P ≤ Op(G) in the case, whenNG(P) is p-nilpotent.
Thus Assertion (i) is true forG, a contradiction. Therefore
Op(G) = 1. Finally, if N is a normal subgroup ofG, then
Op(N) is characteristic inN and soOp(N) ≤ Op(G) = 1.
Hence we have (1).

(2) P is not abelian.
Suppose thatP is abelian. Then in the case, when

NG(P) is p-nilpoten,P ≤ Z(NG(P)), so G is p-nilpotent
by Burnside’s theorem [30, IV, 2.6]. Hence a Hall
p′-subgroupE of G is normal inG. SinceP is abelian, it
follows that G′ ≤ E. ThereforeG′ ∩ P = 1 ≤ Op(G),
contrary to our assumption onG. Hence we have (2).

(3) CG(Op′(G))≤ Op′(G) 6= 1.
By (1), Op(G) = 1. Therefore, sinceG is p-soluble,

Op′,p(G) = Op′(G) 6= 1 and soCG(Op′(G))≤ Op′(G) 6= 1
by [30, VI, 6.9].

(4) PG = G andG = PB.
Since PG = P(PG ∩ B), P is bipermutable inPG.

Therefore in the case, whenPG 6= G, P′ ≤ Op(PG) by the
choice ofG. But by (1),Op(PG) = 1. ThereforeP′ = 1, so
P is abelian, which contradicts (2). ThusPG = G and
G = PB.

(5) G is not supersoluble. Suppose thatG is
supersoluble. ThenG′ ≤ F(G), so G′ ∩P ≤ Op(G) = 1.
HenceP′ = 1, contrary to (2). Hence we have (5).

(6) POp′(G) = G. Suppose thatE = POp′(G) 6= G. By
(4) we haveOp′(G) ≤ B. HenceP is bipermutable inE.
Thus P′ ≤ Op(E) by the choice of G. Therefore
P′ ≤ CG(Op′(G)) ≤ Op′(G) by (3). HenceP is abelian,
which contradicts (2). ThusPOp′(G) = G.

(7) Final contradiction for (i). LetV be any subgroup
of Op′(G). Then by (4) for any x ∈ G we have
PV x = V xP. HenceVPx = PxV for all x ∈ G by Lemma
2.6. Now note thatV = PxV ∩Op′(G) is normal inPxV ,
so Px ≤ NG(V ). But then, by (4),G = PG ≤ NG(V ).
Therefore every subgroup ofOp′(G) is normal inG. But
by (6), POp′(G) = G. HenceG is supersoluble, contrary
to (5). Therefore Assertion (i) is true forG.

(ii) Suppose that this assertion is false. Then:
(a) Op(G) = 1.
Suppose thatOp(G) 6= 1. Then Assertion (ii) is true

for G/Op(G) by the choice ofG, so P/Op(G) is normal
in G/Op(G), which implies thatP is normal inG. Hence
Op(G) = 1.

(b) PG = G andG = PB. Suppose thatPG 6= G. Since
PG = P(PG ∩B), the hypothesis holds forPG. HenceP is

normal in PG by the choice of G. Hence P is
characteristic inPG, which implies thatP is normal inG.
This contradiction shows thatPG = G, soG = PB.

(c) G is not supersoluble (Sincep is the largest prime
dividing |G|, this assertion directly follows from (a) and
Lemma 2.8 (2)).

(d) CG(Op′(G)) ≤ Op′(G) 6= 1 (See (3) in the proof of
(i)).

Final contradiction for (ii). In view of (b), the
hypothesis holds forPOp′(G). Therefore in the case,
when POp′(G) 6= G, P is normal in POp′(G), which
implies that P ≤ CG(Op′(G)) ≤ Op′(G) by (4). This
contradiction shows thatPOp′(G) = G. But then, in view
of (b), G is supersoluble (see the final contradiction in the
proof of (i)), which contradicts (c). Therefore Assertion
(ii) is true forG.

(iii) Since by (i),P′ ≤Op(G), every Sylowp-subgroup
of G/Op(G) is abelian. Hence, by [30, Chapter VI, Satz
6.6], we havelp(G/Op(G))≤ 1. But thenlp(G)≤ 2.

(iv) Suppose that this assertion is false. LetN be a
minimal normal subgroup ofG. Assume thatN ≤ Oq′(G).
Then the hypothesis holds forG/N, so G/N is
q-supersoluble by the choice ofG. But then G is
q-supersoluble, contrary to our assumption onG.
Therefore Oq′(G) = 1. In particular, N � P, which
implies thatN is p′-group sinceG is p-soluble by (i). Let
E be a Hall p′-subgroup ofG. Then N ≤ E, so N is a
q-group sinceOq′(G) = 1 andE is q-supersoluble. Thus
the hypothesis holds forG/N. Therefore G/N is
q-supersoluble. HenceN is the only minimal normal
subgroup ofG andN � Φ(G) by Lemma 2.8 (1). Hence
N ≤ PG, andN = CG(N) by [20, Chapter A , Theorem
15.2]. SincePG = P(PG ∩B), it follows thatN ≤ B. Thus
P permutes with all subgroups ofN. Since E is
q-supersoluble,N has a maximal subgroupV such thatV
is normal inE. On the other hand,PV ∩N = V is normal
in PV . HenceG = PE ≤ NG(V ), which in view of the
minimality of N implies thatV = 1. Hence|N| = q, so
G/N = G/CG(N) is a cyclic group of exponent dividing
q − 1. But then G is supersoluble. This contradiction
completes the proof of Assertion (iv). The theorem is
proved.

Proof of Theorem B. Suppose that this theorem is false
and letG be a counterexample of minimal order.

First we shall show thatG is p-supersoluble. Assume
that this is false. LetV ∈ Mφ (P). By hypothesis there are
subgroupsA andB of G such thatG = AB, V ≤ A andV
permutes with all Sylow subgroups ofA and with all Sylow
q-subgroups ofB for all primesq 6= p.

(1)V is normal inB, V G =V (V G ∩B) andV permutes
with every Sylowq-subgroup ofV G ∩B for all primesq 6=
p.

By Lemma 2.11,Op(A) ≤ NA(V ). Hence, sinceV is
maximal in P, A = ApOp(A) ≤ NA(V ) for any Sylow
p-subgroupAp of A. ThereforeV is normal in A. Now
arguing similarly as in the proof of Theorem A (I) one
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can show thatV permutes withB. Hence

V G =V AB =V NG(V )B =V B ≤ 〈V,B〉=VB

since VB = BV is a subgroup of G. Therefore
V G = V G ∩ VB = V (V G ∩ B). Now let Q any Sylow
q-subgroup ofV G ∩B, whereq 6= p. Then for some Sylow
q-subgroupBq of B we haveQ = (V G ∩B)∩Bq. On the
other hand,VBq = BqV is a subgroup ofG, so

VBq ∩V G =V (Bq ∩V G) =V (Bq ∩ (Q∩V G)) =VQ = QV

is a subgroup ofG. Hence we have (1).
(2) Op′(N) = 1 for every normal subgroupN of G.
Indeed, suppose that for some normal subgroupN of

G we haveOp′(N) 6= 1. SinceOp′(N) is a characteristic
subgroup ofN, it is normal inG. On the other hand, by
Lemma 2.3 (1), the hypothesis holds forG/Op′(N). Hence
G/Op′(N) is p-supersoluble by the choice ofG. ThusG is
p-supersoluble, a contradiction.

(3) If L is a minimal normal subgroup ofG, then
L � Φ(P). Indeed, in the case, whereL ≤ Φ(P), we have
L ≤ Φ(G) and the hypothesis holds forG/L by Lemma
2.3 (1). HenceG/L is p-supersoluble by the choice ofL.
Therefore G is p-supersoluble by Lemma 2.8 (1),
contrary to the choice ofG.

(4) Every normal p-soluble subgroupD of G is
supersoluble andp-closed. By (2),Op′(D) = 1. Therefore
Op = Op(D) 6= 1 since D is p-soluble. Let N be a
minimal normal subgroup ofG contained inOp. In view
of (3) we haveN � Φ(P). Hence for some subgroup
W ∈ Mφ (P) we haveP = NW . Let S = N ∩W . ThenS is
normal in P. On the other hand, by Lemma 2.3 (3), for
any primeq 6= p, there is a Sylowq-subgroupQ of G
such thatWQ = QW . HenceS = QW ∩ N is a normal
subgroup ofQW and soQ ≤ NG(S). ThusS is normal in
G. Hence |S| = 1 and |N| = p. But then W is a
complement ofN in P, which implies by Gaschütz’s
theorem [30, Chapter I, Satz 17.4], thatL has a
complementM in G. Thus N � Φ(G). It is clear that
Φ(G) ∩ Op is normal in G. ThereforeΦ(G) ∩ Op = 1.
HenceOp = L1 × . . .× Lt , whereL1, . . . ,Lt are minimal
normal subgroups ofG by Lemma 2.12. By (3) we have
Li � Φ(P). Thus, as above, one can show that|Li| = p.
Therefore every chief factor ofG below Op is cyclic. On
the other hand, by Lemma 2.13,F∗(D) = Op. HenceD is
supersoluble by Lemma 2.14. ButOp′(D) = 1, soOp is a
Sylow p-subgroup ofD by Lemma 2.8 (2).

(5) G is p-soluble. Assume thatG is not p-soluble.
Then:

(a) If Op(G) 6= 1, thenP is not cyclic. Suppose thatP
is cyclic. Let L be a minimal normal subgroup ofG
contained inOp(G) ≤ P. Suppose thatCG(L) = G, so
L ≤ Z(G). Let N = NG(P). If P ≤ Z(N), then G is
p-nilpotent by Burnside’s theorem [30, IV, 2.6], which
contradicts the choice ofG. Hence N 6= CG(P). Let
x ∈ N\CG(P) with (|x|, |P|) = 1 andE = P⋊ 〈x〉. By [30,
III, 13.4], P = [E,P]× (P ∩ Z(E)). SinceL ≤ P ∩ Z(E)

and P is cyclic, it follows that P = P ∩ Z(E) and so
x ∈CG(P). This contradiction shows thatCG(L) 6= G.

SinceP is cyclic, |L| = p. HenceG/CG(L) is a cyclic
group of order dividingp − 1. If |P/L| > p, then the
hypothesis holds forG/L by Lemma 2.3 (1). HenceG/L
is p-supersoluble by the choice ofG and thenG is
p-soluble, a contradiction. Thus|P/L| = p, so V = L is
normal in G. Therefore the hypothesis holds for
(CG(L),P). HenceCG(L) is p-soluble by the choice ofG
since CG(L) 6= G. But then G is p-soluble. This
contradiction shows that we have (a).

(b) If P � V G, thenV is normal inG. SinceP � V G,
V is a Sylow p-subgroup ofV G. On the other hand, by
(1) we haveV G = V (V G ∩B) andV is S-bipermutable in
V G. ThereforeV G is p-soluble by Theorem A. ThusV is
normal inV G by (4). SinceV is a Sylow p-subgroup of
V G, V is characteristic inV G. HenceV = V G is normal in
G.

(c) P is not cyclic. Suppose thatP is cyclic. Then
Mφ (P) = {V}, and by (a) and (b) we have
P ≤ V G = V (V G ∩B) andV permutes with every Sylow
q-subgroup ofV G ∩ B for all primes q 6= p. Hence the
hypothesis holds forV G. Assume thatV G 6= G. ThenV G

is p-supersoluble by the choice ofG. Hence by (4),P is
normal in G, which contradicts (a). ThereforeV G = G,
which implies that G = VB by (1). Hence
P = P ∩ VB = V (P ∩ B), so P ≤ B since P is cyclic.
ThereforeB = G. Let q be any prime dividing|G| with
q 6= p andQ a Sylowq-subgroup ofB. ThenV Qx = QxV
for all x ∈ G. SinceV G = G, it follows thatD = QG 6= G
by Lemma 2.7. LetR be a Sylowr-subgroup ofD, where
r 6= p. Then for some sylowr-subgroupGr of G we have
R = Gr ∩D andVGr = GrV . Assume thatP ≤ D. Then
VGr ∩ D = V (Gr ∩ D) = V R = RV . Therefore V is
S-bipermutable in D. But then, sinceD 6= G, D is
p-supersoluble by the choice ofG. ThusP is normal inG,
contrary to (a). ThereforeP � D. HenceDp = D∩V is a
Sylow p-subgroup ofD. By Lemma 2.10 we have

VGr ∩D = (V ∩D)(Gr ∩D) = DpR = RDp.

Therefore the subgroupDp is S-bipermutable inD. Hence
D is p-soluble by Theorem A, which contradicts (a).
HenceP is not cyclic.

(d) P is S-bipermutable inPD. LetD = PG. In view (c),
there is a subgroupW ∈ Mφ (P) such thatV 6= W . Then
P = VW . Hence in view of Lemma 2.2 we have only to
show thatV andW permute with all Sylowq-subgroups of
PG for all primesq 6= p. In view of (b) we may suppose
thatP ≤V G andP ≤W G. ThenPG ≤V G, so by (1),PG =
V (V G ∩B) andV permutes with every Sylowq-subgroup
Q of V G∩B. It is clear thatQ is a Sylowq-subgroup ofPG.
HenceV permutes with every Sylowq-subgroup ofPG by
Lemma 2.5. Similarly, it may be proved thatW permutes
with every Sylowq-subgroup ofPG.

Final contradiction for (5). By (d) and Theorem A,PD

is p-soluble. Hence by (4),P is normal inG. HenceG is
p-soluble. This contradiction completes the proof of (5).
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By (5), G is p-soluble. HenceG is supersoluble by (4).
Finally, suppose that(p− 1, |G|) = 1. Then for every

chief factor H/K of H with |H/K| = p we have
CG(H/K) = G. Hence G is p-nilpotent. This
contradiction completes the proof.

Proof of Theorem C. Suppose that this theorem is false
and let G be a counterexample of minimal order. By
Theorem A,G is soluble.

Let N be a minimal normal subgroup ofG. Then the
hypothesis holds forG/N by Lemma 2.3 (1). HenceG/N
is supersoluble by the choice ofG. Since the class of all
supersoluble groups is a saturated formation,N is the only
minimal normal subgroup ofG, |N| > p andN � Φ(G).
HenceN = CG(N) = F(G) is a p-group for some prime
p by [20, Chapter A, Theorem 15.2]. On the other hand,
by Theorem A, a Sylowq-subgroup ofG, whereq is the
largest prime dividing|G|, is normal inG. Henceq = p
andN = P.

SinceN � Φ(G), for some maximal subgroupE of G
we haveG = N ⋊E. HenceE ≃ G/N is supersoluble Let
p1 > .. . > pt be the set of all primes divisors of|E|. Let
Pi be a Sylowpi-subgroup ofE. First assume thatt = 2.
ThenP1 is normal inE, soNG(P1)∩P = 1. ThereforeP1
permutes with all subgroups ofP. If P ≤ NG(P2), then
PP2 = P× P2. Hence in this caseP2 ≤ CG(P) = P. This
contradiction shows thatNG(P2) ∩ P 6= P, so there is a
non-identity subgroupB < P such thatP2B = BP2. Hence
BE = B(P1P2) = (P1P2)B = BE is a subgroup ofG, which
contradicts the maximality ofE = P1P2.

Thereforet > 2. Let Ei be a Hall p′i-subgroup ofE.
Then the hypothesis holds forPEi, so PEi is
p-supersoluble by the choice ofG. Moreover, since
P = CG(P) we have Op′(PEi) = 1. ThereforePEi is
supersoluble by Lemma 2.8 (2), andF(PEi) = P. Thus
PEi/P ≃ Ei is an abelian group of exponent dividing
p−1. ThereforeE has at least three abelian subgroupsEi,
E j and Ek of exponent dividingp − 1 whose indices
|E : Ei|, |E : E j|, |E : Ek| are pairwise coprime. But then
by Lemma 2.9 ,E is nilpotent, and every Sylow subgroup
of E is an abelian group of exponent dividingp − 1.
HenceE is an abelian group of exponent dividingp− 1,
which implies that|P|= p. But thenG/P = G/CG(P) is a
cyclic group of exponent dividingp − 1, so G is
supersoluble.

The theorem is proved.

4 Some applications of Theorem B

In view of Lemma 2.15 and Theorem B we have

Corollary 4.1. Let P be a Sylow subgroup ofG, where
p is the smallest prime dividing|G|. If every memberV
of some fixedMφ (P) is S-bipermutable inG, thenG is
p-nilpotent.

Corollary 4.2 (See Theorem 1.1 in [5]). Let P be a Sylow
subgroup ofG, where p is the smallest prime dividing

|G|. If every memberV of some fixed Mφ (P) is
SS-quasinormal inG, thenG is p-nilpotent.

Corollary 4.3. Let P be a Sylow subgroup ofG, wherep
is the smallest prime dividing|G|. If every memberV of
some fixedMφ (P) is S-semipermutable inG, thenG is
p-nilpotent.

Corollary 4.4. LetP be a Sylow subgroup ofG. If
NG(P) is p-nilpotent and every memberV of some fixed
Mφ (P) is S-bipermutable inG, thenG is p-nilpotent.

Proof of Corollary 4.4. If |P| = p, thenG is p-nilpotent
by Burnside’s theorem [30, IV, 2.6]. Otherwise,G is
p-supersoluble by Theorem B. The hypothesis holds for
G/Op′(G) by Lemma 2.3(1), so in the case, where
Op′(G) 6= 1, G/Op′(G) is p-nilpotent by induction. Hence
G is p-nilpotent. Therefore we may assume that
Op′(G) = 1. But then, by Lemma 2.8 (2),P is normal in
G. HenceG is p-nilpotent by hypothesis.

From Corollary 4.4 we get

Corollary 4.5. Let P be a Sylow subgroup ofG. If NG(P)
is p-nilpotent and every memberV of some fixedMφ (P)
is S-semipermutable inG, thenG is p-nilpotent.

Corollary 4.6 (See Theorem 1.2 in [5]). Let P be a Sylow
subgroup ofG. If NG(P) is p-nilpotent and every member
V of some fixedMφ (P) is SS-quasinormal inG, thenG is
p-nilpotent.

Corollary 4.7. Let P be a Sylow subgroup ofG. If G is
p-soluble and every numberV of some fixedMd(P) is S-
bipermutable inG, thenG is p-supersoluble.

Proof. In the case, when|P|= p, this directly follows from
thep-solubility ofG. If |P|> p, this corollary follows from
Theorem B.

Corollary 4.8. Let P be a Sylow subgroup ofG. If G is
p-soluble and every numberV of some fixedMd(P) is S-
semipermutable inG, thenG is p-supersoluble.

Corollary 4.9 (See Theorem 1.3 in [5]). Let P be a Sylow
subgroup ofG. If G is p-soluble and every memberV of
some fixedMφ (P) is SS-quasinormal inG, thenG is p-
supersoluble.

Corollary 4.10. If, for every prime p dividing |G| and
P ∈ Sylp(G), every memberV of some fixedMφ (P) is
S-bipermutable inG, thenG is supersoluble.

Proof. Let p be the smallest prime dividing|G|. ThenG is
p-nilpotent by Corollary 4.1, soG is soluble by
Fait-Thompson’s theorem. HenceG is supersoluble by
Corollary 4.7.

Corollary 4.12. If, for every prime p dividing |G| and
P ∈ Sylp(G), every memberV of some fixedMφ (P) is
S-semipermutable inG, thenG is supersoluble.

Corollary 4.12 (See Theorem 1.4 in [5]). If, for every
prime p dividing |G| andP ∈ Sylp(G), every memberV
of some fixedMφ (P) is SS-quasinormal inG, thenG is
supersoluble.
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