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Abstract: This study aims to present an interactive method in ordeoli@snultiple objective linear fractional programming plkem

(MOLFPP) according to the linear optimization models. Bbse the nonlinear nature of the MOLFPP, presenting inteaatethods
to solve this problem usually involves long, massive, andmex calculation processes. In this paper, the MOLFPFstinto a linear
programming problem (LPP) by disregarding some facts (Imsictering some negligence) through a linearization pmacesen, the
answer obtained from the new LPP is tested by an LPP in orddetermine whether it is efficient or not. Finally, an effidien

dominant solution to the obtained solution is presentetié¢alecision maker (DM). When the obtained solution does oiocae with

the comments of the DM, another LPP is solved based on therjedts of the DM to reach a satisfying solution. Due to thedliitg

of the models applied, this method is easy to understand ssd®unumerical example is given to illustrate the proposethod.

Keywords: linear programming, multiple objective linear fractiomaiogramming, efficient solution, interactive method, dimi
maker

1 Introduction whose objective functions were as follows (1)
minimization of the current ratio, (2) minimization of the
. L . . debt ratio, (3) maximization of the turnover ratio, and (4)
Multiple objective linear fractional programming problem maximization of the profitability ratio. To see more

(MOLFPP) is a special form of multiple objective o, jication of MOLFPP, refer to Frenk and Schaitfig [
fractional problems in which the numerator and the

denominator of the fractions of the intended functions are MOLFPP has been one of the centers of interest to the
linear. MOLFPP has many applications in different féSearchers. In 1960, a goal programming method was
branches of sciences. For example, Ravi and Redigy [ °ffered by Chames and Coope] n order to solve the
modelled chemical process plant operations planning irProblem. Kornbluth and Steue9,10] presented two

an oil refinery as MOLFPP. In order to generate commondifférent procedures for MOLFPP. Stancu-Minasias|[
weights in data envelopment analysis, an MOLFPP whosdtroduced 386 recorded cases in a directory. Besides,
purposes its objective functions include the efficiency of Pramanik and Deyl[2] as well as Duran Toksarb] used

the DMUs should be solved]. In a study done by Duran  the Taylor series in order to transform MOLFPP to a
Tuksari B], two applications of MOLFPP including multlple quecnve linear programming problem. Flnglly, a
production planning and financial planning were Imegrlzatlon approach Was.s.uggested by Hosseinzadeh
presented. The objective functions in production planning-Ofti et al. [7] to check the efficiency of MOLFPP.

included the maximization for both the profitability of the One of the proposed methods to deal with MOLFPP is
owned employed capital and inventory turnover ratio, andthe interactive method. Sakawa and Yahd][suggested a
debt ratio, turnover ratio and total ratio of debt and satisfactory interactive fuzzy procedure to solve
turnover were considered as three fractional objectiveMOLFPP. To solve their proposed model, a bisection
functions in financial planning. In a similar study, Peric method and phase one of simplex method must be
and Balic [L1] surveyed a financial planning as MOLFPP consecutively solved. Moreover, Cos#] presented an

* Corresponding author e-magayaniauz@yahoo.com, a.payan@iauzah.ac.ir

(@© 2016 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/100228

690 N SS

T. Hossein-Abadi, A. Payan: An interactive method for sadvmultiple...

interactive procedure for solving an MOLFPP, based on  Definition 1. X € Sis called a weakly efficient solution
pay-off table information. Interactional procedures areif and only if there is nox; such thatx € S, x # X and
complex due to extensive calculations. On the other handz(x) > z(X) (k=1,...,K).

the calculations might be more complicated because of Definition 2.X € Sis called a strongly efficient solution
the unfamiliarity of the decision maker (DM) with the if and only if there is nox; such thatx € S, x # X and
procedure in solving the problem or the existence ofz(x) > z(X) (k=1,...,K) and at least for onk, z(x) >
nonlinear programs. In this direction, this article intend z(x).

to present an interactive process to solve MOLFPP based Theorem 1.The set of the strongly efficient solutions
on the linear programming problem (LPP). The proposeds the subset of the set of the weakly efficient solutio8. [
method is to convert MOLFPP into an LPP, and another  ringing the strongly efficient solutions is difficult
linear procedure is carrled. out for testing .the efﬂglency, because the set of such solutions is not always claged [
and based on that an LPP is presented for interaction withh, the other hand, the set of the weakly efficient solutions
the DM in order to meet its judgments. When an efficientjs ¢josed and, as a result, its calculation and generation is

solution is available, in case the judgments of the DM is gasjer compared to the strongly efficient solutions.
not met, the DM is required to divide the goals and

purposes of the objective functions into three groups

including ones that intend to increase, decrease and also

some that the DM has no idea of changing in them, and

then an LPP is solved according to this classification. : :

Therefore, all the mentioned proc%dures are LPPs which?’ Interactive algorithms for MOLFPP

help to obtain an easy understanding of the solving

procedure. Furthermore, in comparison to the otherSakawa and Yandlf] proposed an interactive method for

interactive methods for solving MOLFPP such as Sakawasolving MOLFPP. In this method, reference values of DM

and Yano’s method 14], the computational bulk will are firstly determined and a strongly efficient solution,

decline. which is as closer as possible to the reference values, is
Under these circumstances, the present study consistien acquired. Algorithm has many details which the aim

of the following sections. In the second section the of this paper is not to survey all of them. A summary of

definitions regarding the MOLFPP are being discussedthis algorithm is presented as follows:

Existing interactive algorithms for solving MOLFPP are
briefly discussed in the next section. In the fourth section
based an interaction with DM a linear process for solving
MOLFPP is suggested. The subsequent section compares
the interactive algorithms in the literature with the
proposed algorithm in this paper. The next section
includes a numerical example to illustrate and expound
the proposed method. The paper presents a conclusion in
the last section.

2 Primary definitions

Consider the following MOLFPP:
_ Ch X+ O

d;{x—i— Bk’
st xe S={x Ax<b, x> 0}, 1)

so thatay, Bk (k=1,...,K) are scalarSis a nonempty as
well as a bounded sdi,is anu dimensional vectorg, dy
(k=1,...,K) arew dimensional vectorx € R", andA is
auxwmatrix,vx € S, df x+ B > 0, ¢l x+ ay > 0 andz

is the kth (k = 1,...,K) objective function, and
z=(z,...,%) is called the objective vector or a criterion
vector. Positivity assumption of numerator of the
objective functions in MOLFPP 1j is not a usual
supposition. But by adding a suitable large positive
number to the objectives, they are transformed to
objectives with positive numerators. This has been
explained in f].

max z(X) k=1,...,K,

Algorithm 1:

[Step 0.]

Obtain the individual minimum and maximum of each
objective function on the feasible region. Determine
the membership functiom, (x) for each objective
functionz(x).

[Step 1.]

In this step DM selects initial reference valyes (k=
1,...,K)and ses=0.

[Step 2.]

Solve the following problem by phase one of simplex
method and bisection method to obtain the optimal
valuev:

min v,
St CEX+ Ok > g, H(Hg — V) (dg X+ Bi) k=1,
X€ES

7K7

[Step 3.]

Determine the appropriate standing objective of DM as
z, (he {1,...,K}) from among the objective functions
and considex* as the optimal solution of following
linear fractional program as:

max z(X),

st Zk(x) > Uil(ﬁzk_\fk)a kzlv"'7K7k7éh7
X€ES

[Step 4.]
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Perform the efficiency test oxi by solving following
LPP as:

K
max Z &,
K=1

st ol x+ ax— & = z(X) (AT x+ Be), k=1,...
XeS.

K

) )

Let (X,€1,...,&) be an optimal solution for this
problem with optimal value. If £ = 0 ors=K, then
x* is an efficient solution. Else

[Step 5.]

Run following linear fractional problem as:

max z(x),

st 2()=%(%), ke {jlg=0},
2(x) > 2(%), ke {jl& >0},
XeS

wherej is an index in whickej > 0. Considex* as an
optimal solution for this problem. Pst= s+ 1 and go

to step 4.

[Step 6.] If the DM is satisfied with the current
efficient solution, the algorithm is finished. Otherwise,
DM modifies reference valugg, (k= 1,...,K) by
using the trade-off rate between objective functions

My = 75“2“0(), based on the optimal solution of the

9 iz (X)
model in step 3, and go to step 2.

where

Az = k—nfaXK{AZk = (zk— minkl,...,K,s#k{zsk})}a

=1,...,

Zo = min {Zq}-
[Step 3.]
DM selects a solution from among the obtained
efficient solutions in steps 1 and 2. Let the selected
solution be a member of sub-regi@n") and the
value of thekth objective function for the solution is
z (k=1,...,K).
If the DM is satisfied with the solution, algorithm is
stopped. Otherwise. DM determines the expected
value for improvement objectives gg").
[Step 4.]
Determine new sub-regions as:

S(n+1)) =S N{xe Rz >Z +yn"}iel,

wherel = {i|zi >z +y(n"}. If | =0, we return to
step 3 and decease the valug/ai") or stop.

[Step 5.]

Returnto step 1 with=n+1,i €.

Another interactive algorithm to MOLFPP was suggested4 Suggested interactive method

by Costa fi] in 2007. Costa4] used judgments of DM to
divide feasible region to several sub-regions, and for eac
sub-region pay-off table and middle point were

%.1 Converting MOLFPP into a linear model

constructed. In this method, feasible region based on the

DM’'s point of views is searched to find efficient
solutions. The algorithm is as follows:

Algorithm 2:

[Step 0.] _

ConsiderS(1!) = S. S(n') (i € 1) is sub-region ofith
iteration on theth objective functionl is determined
in step 4.

[Step 1.] .
Calculate pay-off table for each sub-regim') by
solving following linear fractional programming
problem, for eaclk, as:

max %(x),
st xe S(n').

[Step 2.] _
Produce middle point for each sub-regi&n') by
solving following linear fractional programming
problem as:

max %(X),
st xe g(n'),

1
Zr(X)ZZvr‘FEAZra

Scalarization is a method to find efficient solutions in
multiple objective programming problem in which all
objective functions are combined to obtain a single
objective function. Weighted maximin method [is one

of the scalarization methods which use maximin operator
to convert multiple objective programming problem to a
single optimization problem. Thus, the weighted maximin
method is defined as:

(2)

wherewy > 0 (k= 1,...,K). In this paper, we are going to
consider equal weights for objective functions. The
proposed method in the following can be applied on a
problem with different weights. Therefore, we use the
weighted maximin version of MOLFPPL), in which
weights are equal, as follows:

G X+ O
N d;X—I— Bk

b

max min
X k=1,!..,K{Zk(X)

st xe S

3)
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Ifv(x)= min {z(x) = CIXJFGK} we come up with the
T A= dix+ B P ly — axis
following model: Lz
max v L
T P
C X+ a 1
st vgg, —1,.. K, (m',n)
dy X+ B«
xeS (4)
Problem @) is a nonlinear programming model. Thus, we
propose a process to present an LPP in order to solv
problem @) instead of solving problem4f. The linear
function fx(.) is going to be found in a way such that 0.0 ;
v < f() (k = 1,...K) and also (0.0) =
T
C, X+ Ok .
fi(\) < z(X) = X———% (k=1,....K). In doing so, the
() = 2 d;x—k B« ( ) g Fig. 1: Slope line ofL1 is less than that df,

following process should be followed:

1 1
t= mn { ——}=t<———, k=1,...,K.
k=17...7K{ dl x+ Bk} ~drx+ B
So, we have:
(Tt a)t < CiX+og 1K
k k = dl'(rX+Bk7 ’" I
T
T C Xt + axt
= oxt+at < X——= k=1,...,K,
K K= ngt—l—Bkt
and we defing/ = xt; so that
T T
c Y+ ogt < = , k=1... K.
k dly+Bd  dlx+ B
In this situation, the function
fu(.) =cfy+ait (k=1,...,K) possesses the property of
T
C, X+ Qg .
fi() < X k =1,....,K) . Now, considerin
v= min {fi() = Gy + axt}, we wil have

v < fi(.) = ¢ly+ at. According to the above mentioned
issues, the following LPP is recommended as an
alternative to nonlinear problem)( as:
max Vv
st v<cly+at, k=1,....K,
dly+ Bt <1, k=1,....K,
Ay—bt <0,

y>0,t>0. (5)

. _CIX+ o

the increase inF——

dy X+ B«

and 6) models have similar behaviors except for the fact
y

therefore, it is expected thad)(

that model §) is linear. However, feasible solutioh=

may not be efficient, and so we need a method to test
efficiency for a solution such ag. In the following
section, we review an efficiency test method for MOLFPP
(1) which has been suggested by Hosseinzadeh Lotffi et al.

[7].

4.2 Efficiency test

Letxis a feasible solution of MOLFPPL) obtained from
solving the problem5). Consider the following linear
fractional programming problem:
dTx+p’
st xe S= {x Ax<b, x>0}, (6)
whereAis aux w matrix ,be RY, x, ¢, de R", Sis a

nonempty as well as a bounded set, sred S,d"x+ 3 >
0, c™x+a > 0.

Suppose thatm,n) e R, m>0, n> 0,y = %x is a
linear equation which crossés), n) points and as well as
the origin. Pointm, n) e R2 , m >0, n > 0 is located
above the ling/ = ax if and only if the linear slope which

/ U . .. . n
crosses thém , n') point and the origin is more tharl?] .In

/

The above mentioned problem is an LPP which can b%therwords,% > This s illustrated in the following

solved based on the simplex method. (i£t) is the

optimal solution of §), X = %/ will be a feasible solution
for problem @). Regarding the nature of problem){i.e.,

Figure 1.
Theorem 2.1f N >0, m >0, m> 0, n> 0 are real

numbers, thenr% > % ifand only if36 ¢ R™, d—, d™ ¢

regarding the fact that v < f(.) and
X+ oy . . R=0, such thatn —d* =n@, m +d~ =mé, d~ +d*t >
fi() < X k=1,...,K), the increase in leads to ’ ' ’
() = d;x+[3k( ) 0.[7]
(@© 2016 NSP
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¥y — axis

(m',n") = (mb—d - ,n6+d*)

(m8,nd)

-’
X —axis

(0.0)

Fig. 2: The path moving fronfm,n) to (m,n’)

U

n n. . L
Therefore,m > = is equivalent to the fact that it is

possible to move with the step length®f> 0 along(m, n)

in order to reac{m@,nf) and move alond—1,0) with
the step length ofl~ > 0. So one can get to the point of
(m6 —d~,nB), move along(0,1) with the step length of
d* > 0to getto the pointofm,n’) = (MmO —d~,n6+d").
This is illustrated in Figure 2.

equals zero.
fly=max t
st t<d, +d;, k=1,....K,
cx+ox—dl =nb, k=1,... K,
dp x+ Be+de =meb, k=1,... K,
XeS§
d. >0,df >0, 6,>0 k=1,....K. (8)

Also, ng = cI X+ ax andmy = dI X+ B« (k= 1,...,K).[7]
In the following, a revised version of theorem 4 ifj [
is presented, while this theorem does not need weakly
efficient solution assumption for feasible solutin
Theorem 5.X € Sis a strongly efficient solution in
MOLFPP @) if and only if the optimal value of the
following problem equals zero.

K
ffg=max 3 (d +d).
k=1

st o x+ax—df =nb, k=1,...,K,
df x+ B+ de =meb, k=1,... K,
XeS
d. >0,d >0 6,>0 k=1....K. (9

Proof. Let x € S be not a strongly efficient solution.

The above mentioned geometrical interpretation cangased on definition2, there exists another feasible

be applied for the optimization test of the linear fractibna

programming problem 6). The ordered pair
(d"™x+ B,c"x+ a) € R? will be defined for eachx € S.
Therefore x is an optimal solution if and only if another

feasible solution does not exist; so that the correspondin
ordered pair is situated above the line crossing the origi

and the pointd™x+ B,c"x+a) € R%.

Based on this, the following theorem was presented inrpis show

[7] for the optimization test of the linear fractional
programming problengj.

Theorem 3.X € Sis an optimal solution for the linear
fractional programming problemg) if and only if the
optimal value of the following problem is equal to zero.

ffo=max d +d*,
st c'x+a—dt=neé,
d"x+pB+d™ =mé,
XeS

dt>0,d >0, 6>0. (7)

It must be noted that = c'x+ a andm = d"x+ B.[7]
To generalize the above discussion, the following theore
has been stated ir7] for testing the weak efficiency in
MOLFPP.

Theorem 4.X € Sis a weakly efficient solution for
MOLFPP () if and only if the following optimal value

5: k1. In this situation, we hav

ol XFay b Xay
that %— Le

T o dixHBc = dlx+B«
(k=1,...,K) and strict inequality is held for at least one
CI1>T+akl CI1>T+akl

_ —+——=. This
k1X+Ek1 dklx-‘rﬁkl

soluton as x € S such

mplies that 36, € R'.d,d. € R>0 such that

cllx+akl—d;’1:nk16kl, d[lx+Bkl+dk‘1:m<16kl,d;;+dk‘l>0.
s that there is a feasible solution for probl&m (
in which its objective function is positive. As a result, the
optimal value of model9) is more than zeroConverse
Consider the optimal value of the objective function of
model Q) is positive. Thus, there is k= k; in which
dk+1+dk‘1 > 0 in optimality. Without losing generality,
assumel, > 0. So, based on the constraints of mo@] (
we havei X+ 0ig > N By, diX+B, < mq 6, for
ecllfﬁ-akl CI1>T+akl

S— —— . We have
d[lxﬂ?kl d[lxﬂ?kl

X # X € S which conclude
o x+a o X+a .
also A5 B 2 dTxiB (k=1,...,K,k#k;) from the

constraints of model). Thereforex € Sis not a strongly
efficient solution.
Now, suppose problenb) is solved and(y.) is its

optimal solution. Model§) check whether poirt = = is

<

m weakly efficient solution or not. It is tested by mod@ (

whether the poink is a strongly efficient solution or not?
If the optimal value of problem8] (or (9)) is zero, therx
is a weakly (strongly) efficient solution. Otherwise, let
(X,01%,...,6¢",dy ..., ,df .. dET) be optimal
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solution of model 8) (or (9)). Although,x* is a dominant Theorem 6. The optimal value for probleml(Q) equals
solution forX, there is no guarantee thst is a weakly  zeroif and only if there is no feasible solution of MOLFPP
(strongly) efficient solution. Stanojevic and Stanojevic (1) to meet the decision maker’s judgments.

[16] proposed to use problen8)((or (9)) for efficiency Proof. Suppose,,, = 0 andx* € Sis a given feasible
test of x*. By repeating this procedure, a sequence ofsolution for MOLFPP {) and according to the supposition
dominant solution forx is constructed. Stanojevic and by contradiction that a point such as Sis better thak*
Stanojevic 6] proved this sequence is convergent to aso that it meets all the needs of the DM. Therefore

weakly (strongly) efficient solution.
y( aly) CLR+ax - olIX + g

= , keKy,
dl K+ B~ dlxt+ By !
4.3 Interaction with the DM &%+ o _ X+t .
- - TR B A+ B T2
However,x* as a weakly (strongly) efficient solution is k K k k
presented to DM. If the solution is acceptable to the DM, TR+ ax o X 4ok
the problem is solved. If not, we ask the DM to determine = k € Ks.

T T qTy ’

what objectives have more priority for increasing than the A Xt B dext + B

other ones. According to theorem 2, we have
Suppose tha is an indexical objective set and, as a yx ¢ K1,36ke R, dk 7 d* RO, such  that

result, the DM intends to increase them. Moreover, we'd . To ~

like the DM to determine the reduction in which the %X + Gk — dk = nkﬂﬁ X + B + do =

objective function is less harmful. Suppose tKatis the  mg, d.  + dg > 0 (a1),

set of indices of functions that are acceptable to decrea 5 -~

in quantity. Therefore, P k€ K236 € R d, df € R such that

% + o+ df = nbe R+ B - d =

C-er—FakSC-er*‘Fak’ ke Ko, My Bk, df + d > 0 (ba), and

dl X+ B — dlxt+ By vk € Kz, 36 € R, akt, dE € RZ% such that
According  to  theorem 2, we  have C{X + ak _Nak: = nb A%+ B+ d =

~ g >0
V_ll_( € Ky, iek S R+, Tdk,dk S _R* such that n,kek’ dl-(i-_|_dk— =0 (Cl) where ng = CIX* + oy and
C X+ ak + dk = nk6, de+ Bk — dk = my6, where m = dl'(l'x* + B ThUSdk_ _|_d|-(i- >0 (ke Ky).

Nk = ¢l X* + ax andmy = d} x* + B S ~ ~ -
On the other hand, some objectives must be fixed in Consequently, (X, 01,...,6k.d;,...,d,dy ;... d)
the resent values. Suppo#g is an index set of such 'S a feasible solution for model()) so that the value of its
objectives and S0 we have obijective function is more than zero, and it contradicts
Ix+on  OX +a hypothesis {;,, = 0). Converse Suppose there is no
K k= X K (k € Kg). Thereforeyk € K3, we  solution better tharnx*. We will then prove that the

T T , . - e o

A X+ B dex+ @rk . optimal value of problemi1(0) is zero. We consider it with
have 6, such thatc, X+ ax = N, dyx+ B = Mbk,  the supposition by contradiction that the optimal value is
whereny = c¢fx* + ax andmy, = d] x* + B. Based onthe not  zero ie. frw > O . Let

classification indices of objectives into three skis Ky G A ~ — -~
andKg, the following problem is so suggested to survey (% 61,6,y .o G, oo )
the idea of the DM:

is the optimal
solution of problem 10). Because f, > 0, then

Ik € Ky, such that, +d,” > 0.

fiow = max t Without reducing theiNntegrity and the generality of the
st t<dg +dg, KEKy, problem, we suppose thdj > 0.
X+ ax—df = b, ke Ky, So we have:
di X+ e+ d =meb, ke Ky, oy %40y > B, Oy K+ = mb, keKy (ap)

Cex+ax+dd =, keKa,

T A To ~
CX+ar<n , dy X > , ke K b
dy X+ Bx—d. = M6, ke Ky, W X+ o < b, dy X+ B > B » (b2

Ixt ax =B, ke Ka, ol K4 o = B, Oy K+ Bo=mb, keKs (cp)
dl x4 B = meB, keKs, Supposé =0 (k=1,...,K), then
X€ES, Te

a) = d X+ =0, keK
do >0,d7 >0, keKiUK; (22) X+ B !
6,>0, k=1,... K. (10) (by) = ol X+ a, <0, keK,
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(C2) = i X+ =0, df X+ B =0 keKs
The above relationships contradict the suppositions of th
problem (). So6 >0 (k=1,...,K) and we have
1 1

(@) = L%+ 0ok > NG >0, =—— = ——= >0
‘ di%+Bc  meby
T T \*
C X+ Ok _ G X"+ Ok
= , keKy (a
dl K4 B~ dlx* + By 1 (as)
A 1
(bp) = 0< &+ o <nb, 0< ——— < —
di X4 B ~ mcb
T T \*
G X+ 0k _ X"+ 0k
- , keKy (b
dl K4 Be — dlx* + By 2 (bs)
To
) = %+ oy =mbB >0 -—— = —=_ >0
« ‘ dI X+ B¢ mebi
T T %
cX+ax X +a
i O GeX i ke Kz (cs)

di K+ B dix+ B’

It can be concluded fronfag), (bz) and(c3) thatXxe S
is a point that meets all of the judgments of the DM and
contradicts the supposition.

Suppose thak is a part of the optimal solution for
problem (0). If the DM is satisfied with the obtained
solution, then the problem is over. Ik iS5 not in
accordance with the judgment of the DM, so then Ko
and K3 are modified in a way to meet the decision
maker’s judgments and, consequently, probletf) (is

solved again and this process continues so that the DM

judgments and opinions are met.

As a similar manner, considex* as the optimal
solution of @). The following model can modify the
solution based on the judgments of the DM in order to
obtain a strongly efficient solution.

Theorem 7. The optimal value of the problent()
equals zero if and only if there is no feasible solution of
MOLFPP (1) to meet the decision maker’s judgments.

di +d,),
k;l(k k)

Cex+ax—df =, keKy,
df X+ B+ de =meby, keKy,
cix+ag+dS =B, keKy,
dix+ Bk —dg =mebk, keKy,
Ch X4 ax = kb, keKs,

di X+ B = mcbk, ke Ks,

xXe S

de >0, df >0, keKiUKj,
6 >0, k=1,...K.

Proof. Proof is similar to theorem 6.

Model (10) (or (11) is thus solved to improve*,
based on the judgments of DM. If the optimal value of the

*
fins = Max

st

(11)

problem (0) (or (11)) equals zero, improvement is
impossible. In such situation, DM acceptsor changes
Gts judgments and solve model@ (or (11)), again.

Otherwise, conside, 0y, ..., 6k.dy ,....dg.d ,...,dJ)

as an optimal solution for probleni@) (or (11)). Thenx

is a feasible solution oflj which meet the judgments of
DM. Now, we solve model8) (or (9)) for efficiency test

of X. If X is efficient, we have a weakly (strongly) efficient
solution which meet DM’s judgments. Otherwiseighot
efficient), by applying the mentioned procedure in the last
paragraph of subsection (4.2) we reach a weakly
(strongly) efficient solution which dominamnt &nhd also
meet the judgments of DM.

4.4 Interactive algorithm

Based on the above discussion, the following algorithm is
provided as an interactive method for solving MOLFRP (
in order to obtain a satisfactory solution for the DM.

Algorithm 3:
[ Step 0.] (Primal feasible solution)
Solve the LPP §), consider (y,f) as its optimal

solution, and pux =

[ Step 1.] (Efficiency test)

Solve the LPP & (or (9)) for x and consider
(X, 01%,..., 6" dy ... d L d T dE ) as its
optimal solution.

[ Step 2.] (Find efficient solution)

If ff,, =0 (or f{4=0), then go to step 3, otherwise
considex = x* and go to step 1.

[ Step 3.] (Terminate condition)

If the DM satisfies withg, then stop. Otherwise, go to
step 4.

[ Step 4.](Interaction with DM)

DetermineKy, K, andK3 based on the judgments of
DM and solve problem1(0) (or (11)) and consider its
optimal solution as
(X,01,...,6¢,dy,....dc.df,....dJ).

[ Step 5.] (Return step)

If fihw =0 (or fio = 0), then go to step 3, otherwise
putX =X and go to step 1.

<

5 Comparison among interactive methods

Although interactive algorithms (Sakawa and Yaiid]|
Costa f] and method in this paper) use LPPs for solving
MOLFPP, they have differences which are compared with
three directions in this section.

Computation Algorithm 1 applies a nonlinear
programming problem in step 2 and solves this problem
using a sequence of linear programming problems. Two
LPPs are utilized in steps 3 and 4. A sequence of LPPs
are solved consecutively in steps 4 and 5. As a result
algorithm 1 includes high performance computing.
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Solving K+ 1 LPPs for each sub-region is required One can easily show that the numerators and
referring to steps 1 and 2 of algorithm 2, though algorithmdenominators of the objective functions il2f are
2 needs less computing than algorithm 1, its computationpositive on the feasible region. The feasible solution
are heavier in comparison with the recommended method3,1.2222) is a strongly efficient solution ofl@) and the
in this article that just requires solving 2 LPPs in steps 1values of the objective functions for this solution are:
and 5 plus a sequence of LPPs in steps 1, 2 from the first
iteration, and one LPP in in step 5 along with a sequence 73 =0.5957, z,=0.3430 z3=0.3085
of LPPs in steps 1 and 2 in the other iterations.

Presented solution to DM Suppose we haven
sub-region inmnth iteration of algorithm 2; Therefore, the Table 1 shows six cases of the conditions that DM can
DM should choose a solution from amomg (k + 1) consider for repairing this solution. Notatiohsnd are
obtained solutions while one solution is prersented to theused in order to determine the increase as well as the
DM in algorithms 1 and 3, by solving optimization decrease in the values of objective functions. Notatjon
models. The presented solution for the DM in algorithm 1 is considered when DM is satisfied with the value of an
is created by solving at least two LPPs while such aobjective function. Although DM can define many
solution in algorithm 3 is just obtained by one LPP. different cases for the objectives functions, especially

Judgments of DM If the DM is not satisfied with the ~When the number of objective functions is large, we need
obtained result, he should change the reference value® solve only one LPP in each case. Moreover, when all of
according to algorithm 1 and should determine thethe results of different cases are presented to DM, he can
minimum improvement value of the objective functions determines the effect of each objective function in
using algorithm 2. Performing such numerical changes iscomparison to another. This help the DM for making a
usually difficult task for the DM while the qualitative correct decision. For example, the first row of Tatile
determination of the Changes is much easier for theShOWS that there is no feasible SO|Uti0n; in WhiCh, the first,
decision maker. Algorithm 3 suggests that the changes ifecond, and third objectives are greater than those of the
objective functions be done qualitatively. This kind of solution (3,1.2222). In other words, simultaneously,
changes includes the decline or lack of change inincreasing the objective functions is impossible. Also, in

objective functions. It is noteworthy that trade-off rate the last row of Tablel, a feasible solution is reported in
among objective functions in step 6 of algorithm 1 Which the first objective function shows an increase in its

contributes to the DM in order to determine more neraIue, while the second and the third objective functions

reference values while such a guide does not exist in otheghow a decrease in their values. The solutiof3s0),

two algorithms. which, is a weakly and strongly efficient solution (Based
on the optimal values of the objective functions in
problems 8§) and @)). An overview of the results of Table
1 shows that improvement in the first objective function is
impossible unless it is contrary to decrease in the second

6 Example and third objective functions. Therefore, if DM tends to
increase the first objective function, he must accept to
Take the following MOLFPP in to account: decrease the second and third objective functions.
Now, we solve probleml2) by the proposed algorithm
max z; = M7 in this paper.
X1+ 2%+ 5 [Step 0.] Primal feasible solution
X1+X2+1 Solve the problem1(2) by the linear modelS).
max zp = ————— .
51+ X% —1 Define
X1+X—1 1 1 1
max zzg=-———"— .
X +2%—1 t_mln{ ) ) }
X1+ 2% +5 5 +X%X—1" 3 +2%—1
St 3x;+ 2% > 6, 1 2 17T X2 1 2
x1 < 3, . Therefore, we have
X2 <3, . 1 . 1 t 1
<t — < —
X1,%2 > 0. (12) T X1+ 2+5 T B +X—1" T 3x+2—1

We consider two cases: in a case, let there exists g this situation
feasible solution for the system, then the judgments of '

DM in order to reach a satisfactory solution is applied on X1 +Xo+2
models (0) and (L1). In another case, we illustrate the (X1 X +2)t < X, + 2+ 5’
proposed algorithm in this paper by solving probleif)(
At last, we compare our numerical results with the X1+ Xo+1

: Nr< 22T
suggested method of Pramanik and Degj [ (x+xp+ 1)t < BxitXp— 1’
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Table 1: Several cases for objective functions
Goals Interactive test Efficiency test  The values of obyecfinctions
1 D Z3 fIT1W fﬁ.l s X fT*W f-if s Z Z Z3
T 1T 1 0 0 (3.1.2222) 0 0 0.5957 0.3430 0.3085
T I 0 0 (3,1.2222) 0 0 0.5957 0.3430 0.3085
ol 0 0 (3,1.2222) 0 0 0.5957  0.3430 0.3085
L1 0 0 (3,1.2222) 0 0 0.5957  0.3430 0.3085
Tl I 0 0 (3,1.2222) 0 0 0.5957 0.3430 0.3085
¢ ] 03928 0.3928 (3,0 0 0 0.6250 0.2857 0.2500
X1+X—1 . . o
(Xp+x -t < VR — To survey the weak efficiency dk;,%p) = (2.25,3),
X1+ 2Xp — the following LPP is provided:
Considely; = xqt, y2 = Xot; and therefore,
idery; = xgt, yo = X fr, = max t
st t<d, +df, k=123
ity o< iyt X1+ Xo+ 2 — di = 7.250),
Y1+ 2y2+ 5t _
X1+ 2%+ 54 dl = 13.2560;,
X1 +X+1—d) = 6.250,,
ot 5X1—|—X2—1—|—d£= 13.256,,
Y1+YZ-HS%, X1—|—X2—1—d§r=4.2593,
1+Y2—
X1+ 2% — 1+ dy = 11.75865,
3X1 + 2Xp > 6,
X1 < 37
—t
Y1+Y2—t§7yl+y2 . X2 <3,
3y1+2y2—t X1, X2207
d. >0,d7 >0, 6>0 k=123 (14)
Thus, the following linear model is solved as:
[Step 2.] Find efficient solution
Max v The optimal value of this problem is zero; therefore,
st v<y1+y2+2t, the solution(X;,X2) = (2.25,3) is a weakly efficient one.
V<Y1 + Yo+t Solving model 9), one realizes that it is a strongly efficient
V<YYot solution as well.
Vi+2y,+5t <1, [Step 3.] Terminate condition
Sy14+y,—t <1 If DM is satisfied with (2.25,3), then the process is
3y +2y,—t <1, finished, otherwise we go to step 4.
3y1+2y2,—6t >0, [Step 4.] Interaction with DM
y1—3t<0, The values of the objective functions for
Yo —3t <0, (X1,X2) = (2.25,3) are:
Y1,Y2,t > 0. (13)

Point (¥,,9,,F) = (0.16980.22640.0754) is the

optimal solution of the problem 1@8). Therefore
(X1,%2) = (2.25,3) is a feasible solution of MOLFPP
(12.

[Step 1.] Efficiency test

71 = 05471 2, =0.4717 23=0.3617

Consider that the DM thinks the amount of the second
objective function should increase, and no changes in the
third objective function, while a decrease in the first
objective can be done. Therefore, we have the following
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Table 2: Interactive algorithm for solving model ).

Iteration Step Discussions

1 0 X= (2.25, 3)
1 X*=(2.25,3),2 = 05471z = 0.4717z3= 0.3617
2 frw=0.x= (2.25, 3) is efficient.
3 X = (2.25,3) is not desirable in the DM’s view.
4 Ky={2},Kz={1},Kz = {3}, %= (0.38292.4255), z; = 0.46982, = 1.140223=0.3617
5 finw # 0. Putx= X = (0.3829 2.4255) and go to step 1 in the next iteration.

2 1 xX*=(0.35643),z = 0.47162, = 1.151823=0.3882
2 frw # 0. x= (0.38292.4255) is not efficient. Puk = x* = (0.3564 3) and go to stepl
1 x* = (0.35643), z1 = 0.54712, = 0.4717z3= 0.3617
2 frw = 0.x= (0.3564 3) is efficient.
3 x = (0.3564 3) is not desirable in the DM'’s view.
4 Ki={1,3},Ko = {2} Kz = {}, %= (0.3564 3), 2y = 0.47162, = 1.151823=0.3882
5 finw = 0 and go to step 3 in the next iteration.

3 3 x = (0.3564 3) is not desirable in the DM'’s view.
4 Ki = {3},Kz = {1,2} Kz = {},%= (0.3564 3), 7 = 0.47162, = 1.151823=0.3882
5 finw = 0. go to step 3 in the next iteration.

4 3 x = (0.3564 3) is not desirable in the DM'’s view.
4 Ki={2,3},Ko = {1},Kz = {}, %= (0,3), z7 = 0.45452, = 2.00,3=0.4
4 finw # 0. Putx= X = (0, 3) and go to step 1 in the next iteration.

5 1 x* = (0,3), z = 0.45452, = 2.00,23=0.4
2 frw=0.x= (0, 3) is efficient.
3 x = (0,3) is not desirable in the DM’s view.
4 Ki = {1},Ky = {3} ,Kz = {2}, %= (0,3), z = 0.45452, = 2.00,23=0.4
5 finw = 0. go to step 3 in the next iteration.

6 3 x* = (0,3) is desirable in the DM’s view.
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linear program as: Table 3: Efficient solutions and their scores.
finw = max t Method  Efficient solution  Distance function
st t<d, +dj, Iteration 1 (2.25,3) 1.0197
N Iteration 2 (0.3564,3) 1.0281
X1+ X+ 2+ dp = 7.256, lteration 5 (0,3) 0.9997
X1+ 2% +5—d; = 13256, Model | (1.000728,3) 1.056
Model Il (1.000728,3) 1.056

X1 +Xo+1—df = 6.256,,
BX1+Xxo— 1+ dg = 13.256,,
X1+ %o — 1= 4.2503,
33Xy + 2% — 1= 117563,

selecting an efficient solution to concluding condition for

3X1+ 2%2 > 6, the suggested algorithm in this paper.

X1 S 37

X2 S 37

X1,%2 > 0, .

4 >0.d >0, k=12, 7 Conclusions

6 >0, k=123 (15) In this article, a linearization procedure is applied to

A feasible solution of problem1@) which is derived ~ present an interactive method for solving an MOLFPP

by solving the above model and shown in the fourth rowWhich includes a simple calculation process and is also
of Table2 is (%1,%) = (0.38292.4255). easy to understand. By interacting with the DM, the final

[Step 5.] Return step solution intended to meet the judgments of the DM. In the
Becausef;:,, # 0, we putx = X and go to step 1 to future, we try to implement the described procedure on
test the efficiency of new. The process can be continued the multiple objective quadratic fractional programming
successfully to reach a satisfactory solution from the DM'sproblems and also work out the multiple objective
point of view. A sample of running the algorithm in some fractional programming problems with imprecise data.
iterations is reported in Table 2.
Pramanik and Deyl2] proposed a distance function
to compare efficient soluti.ons in_ MOLFPP. In their References
method, membership functiopy(.) is constructed for
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