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Abstract: This study aims to present an interactive method in order to solve multiple objective linear fractional programming problem
(MOLFPP) according to the linear optimization models. Based on the nonlinear nature of the MOLFPP, presenting interactive methods
to solve this problem usually involves long, massive, and complex calculation processes. In this paper, the MOLFPP turns into a linear
programming problem (LPP) by disregarding some facts (by considering some negligence) through a linearization process. Then, the
answer obtained from the new LPP is tested by an LPP in order todetermine whether it is efficient or not. Finally, an efficient or
dominant solution to the obtained solution is presented to the decision maker (DM). When the obtained solution does not coincide with
the comments of the DM, another LPP is solved based on the judgments of the DM to reach a satisfying solution. Due to the linearity
of the models applied, this method is easy to understand and use. A numerical example is given to illustrate the proposed method.

Keywords: linear programming, multiple objective linear fractionalprogramming, efficient solution, interactive method, decision
maker

1 Introduction

Multiple objective linear fractional programming problem
(MOLFPP) is a special form of multiple objective
fractional problems in which the numerator and the
denominator of the fractions of the intended functions are
linear. MOLFPP has many applications in different
branches of sciences. For example, Ravi and Reddy [13]
modelled chemical process plant operations planning in
an oil refinery as MOLFPP. In order to generate common
weights in data envelopment analysis, an MOLFPP whose
purposes its objective functions include the efficiency of
the DMUs should be solved [8]. In a study done by Duran
Tuksari [5], two applications of MOLFPP including
production planning and financial planning were
presented. The objective functions in production planning
included the maximization for both the profitability of the
owned employed capital and inventory turnover ratio, and
debt ratio, turnover ratio and total ratio of debt and
turnover were considered as three fractional objective
functions in financial planning. In a similar study, Peric
and Balic [11] surveyed a financial planning as MOLFPP

whose objective functions were as follows (1)
minimization of the current ratio, (2) minimization of the
debt ratio, (3) maximization of the turnover ratio, and (4)
maximization of the profitability ratio. To see more
application of MOLFPP, refer to Frenk and Schaible [6].

MOLFPP has been one of the centers of interest to the
researchers. In 1960, a goal programming method was
offered by Charnes and Cooper [2] in order to solve the
problem. Kornbluth and Steuer [9,10] presented two
different procedures for MOLFPP. Stancu-Minasian [15]
introduced 386 recorded cases in a directory. Besides,
Pramanik and Dey [12] as well as Duran Toksari [5] used
the Taylor series in order to transform MOLFPP to a
multiple objective linear programming problem. Finally, a
linearization approach was suggested by Hosseinzadeh
Lofti et al. [7] to check the efficiency of MOLFPP.

One of the proposed methods to deal with MOLFPP is
the interactive method. Sakawa and Yano [14] suggested a
satisfactory interactive fuzzy procedure to solve
MOLFPP. To solve their proposed model, a bisection
method and phase one of simplex method must be
consecutively solved. Moreover, Costa [4] presented an
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interactive procedure for solving an MOLFPP, based on
pay-off table information. Interactional procedures are
complex due to extensive calculations. On the other hand,
the calculations might be more complicated because of
the unfamiliarity of the decision maker (DM) with the
procedure in solving the problem or the existence of
nonlinear programs. In this direction, this article intends
to present an interactive process to solve MOLFPP based
on the linear programming problem (LPP). The proposed
method is to convert MOLFPP into an LPP, and another
linear procedure is carried out for testing the efficiency,
and based on that an LPP is presented for interaction with
the DM in order to meet its judgments. When an efficient
solution is available, in case the judgments of the DM is
not met, the DM is required to divide the goals and
purposes of the objective functions into three groups
including ones that intend to increase, decrease and also
some that the DM has no idea of changing in them, and
then an LPP is solved according to this classification.
Therefore, all the mentioned procedures are LPPs which
help to obtain an easy understanding of the solving
procedure. Furthermore, in comparison to the other
interactive methods for solving MOLFPP such as Sakawa
and Yano’s method [14], the computational bulk will
decline.

Under these circumstances, the present study consists
of the following sections. In the second section the
definitions regarding the MOLFPP are being discussed.
Existing interactive algorithms for solving MOLFPP are
briefly discussed in the next section. In the fourth section
based an interaction with DM a linear process for solving
MOLFPP is suggested. The subsequent section compares
the interactive algorithms in the literature with the
proposed algorithm in this paper. The next section
includes a numerical example to illustrate and expound
the proposed method. The paper presents a conclusion in
the last section.

2 Primary definitions

Consider the following MOLFPP:

max zk(x) =
cT

k x+αk

dT
k x+βk

, k= 1, . . . ,K,

s.t x∈ S= {x| Ax≤ b, x≥ 0}, (1)

so thatαk, βk (k= 1, . . . ,K) are scalar,S is a nonempty as
well as a bounded set,b is anu dimensional vector,ck, dk
(k= 1, . . . ,K) arew dimensional vectors,x∈ Rw, andA is
au×w matrix,∀x∈ S, dT

k x+βk > 0, cT
k x+αk > 0 andzk

is the kth (k = 1, . . . ,K) objective function, and
z= (z1, . . . ,zK) is called the objective vector or a criterion
vector. Positivity assumption of numerator of the
objective functions in MOLFPP (1) is not a usual
supposition. But by adding a suitable large positive
number to the objectives, they are transformed to
objectives with positive numerators. This has been
explained in [7].

Definition 1. x∈ S is called a weakly efficient solution
if and only if there is nox; such thatx ∈ S, x 6= x and
zk(x)> zk(x) (k= 1, . . . ,K).

Definition 2. x∈Sis called a strongly efficient solution
if and only if there is nox; such thatx ∈ S, x 6= x and
zk(x)≥ zk(x) (k= 1, . . . ,K) and at least for onek, zk(x)>
zk(x).

Theorem 1.The set of the strongly efficient solutions
is the subset of the set of the weakly efficient solutions. [3]

Finding the strongly efficient solutions is difficult
because the set of such solutions is not always closed [3].
On the other hand, the set of the weakly efficient solutions
is closed and, as a result, its calculation and generation is
easier compared to the strongly efficient solutions.

3 Interactive algorithms for MOLFPP

Sakawa and Yano [14] proposed an interactive method for
solving MOLFPP. In this method, reference values of DM
are firstly determined and a strongly efficient solution,
which is as closer as possible to the reference values, is
then acquired. Algorithm has many details which the aim
of this paper is not to survey all of them. A summary of
this algorithm is presented as follows:

Algorithm 1:
[Step 0.]
Obtain the individual minimum and maximum of each
objective function on the feasible region. Determine
the membership functionµzk(x) for each objective
functionzk(x).
[Step 1.]
In this step DM selects initial reference valuesµ̄zk (k=
1, . . . ,K) and sets= 0.
[Step 2.]
Solve the following problem by phase one of simplex
method and bisection method to obtain the optimal
valuev:

min v,

s.t cT
k x+αk ≥ µ−1

zk
(µ̄zk − v)(dT

k x+βk),k= 1, . . . ,K,

x∈ S.

[Step 3.]
Determine the appropriate standing objective of DM as
zh (h∈ {1, . . . ,K}) from among the objective functions
and considerx∗ as the optimal solution of following
linear fractional program as:

max zh(x),

s.t zk(x)≥ µ−1
zk

(µ̄zk − v∗), k= 1, . . . ,K,k 6= h,

x∈ S.

[Step 4.]
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Perform the efficiency test onx∗ by solving following
LPP as:

max
K

∑
k=1

εk,

s.t cT
k x+αk− εk = zk(x

∗)(dT
k x+βk), k= 1, . . . ,K,

x∈ S.

Let (x̄, ε̄1, . . . , ε̄K) be an optimal solution for this
problem with optimal valuēε. If ε̄ = 0 or s= K, then
x∗ is an efficient solution. Else
[Step 5.]
Run following linear fractional problem as:

max zj(x),

s.t zk(x) = zk(x̄), k∈ { j|ε̄ j = 0},

zk(x)≥ zk(x̄), k∈ { j|ε̄ j > 0},

x∈ S,

where j is an index in whichε̄ j > 0. Considerx∗ as an
optimal solution for this problem. Puts= s+1 and go
to step 4.
[Step 6.] If the DM is satisfied with the current
efficient solution, the algorithm is finished. Otherwise,
DM modifies reference values̄µzk (k = 1, . . . ,K) by
using the trade-off rate between objective functions

Πk =
−∂ µzh(x)
∂ µzk(x)

, based on the optimal solution of the

model in step 3, and go to step 2.

Another interactive algorithm to MOLFPP was suggested
by Costa [4] in 2007. Costa [4] used judgments of DM to
divide feasible region to several sub-regions, and for each
sub-region pay-off table and middle point were
constructed. In this method, feasible region based on the
DM’s point of views is searched to find efficient
solutions. The algorithm is as follows:

Algorithm 2:
[Step 0.]
ConsiderS(11) = S. S(ni) (i ∈ I) is sub-region ofnth
iteration on theith objective function.I is determined
in step 4.
[Step 1.]
Calculate pay-off table for each sub-regionS(ni) by
solving following linear fractional programming
problem, for eachk, as:

max zk(x),

s.t x∈ S(ni).

[Step 2.]
Produce middle point for each sub-regionS(ni) by
solving following linear fractional programming
problem as:

max zv(x),

s.t x∈ S(ni),

zr(x)≥ zvr +
1
2

∆zr ,

where

∆zr = max
k=1,...,K

{∆zk = (zkk−mins=1,...,K,s6=k{zsk})},

zvr = min
k=1,...,K

{zkr}.

[Step 3.]
DM selects a solution from among the obtained
efficient solutions in steps 1 and 2. Let the selected
solution be a member of sub-regionS(nh) and the
value of thekth objective function for the solution is
z∗k (k= 1, ...,K).
If the DM is satisfied with the solution, algorithm is
stopped. Otherwise. DM determines the expected
value for improvement objectives asγ(nh).
[Step 4.]
Determine new sub-regions as:

S((n+1)i) = S(nh)∩{x∈ Rn|zi ≥ z∗i + γ(nh)}, i ∈ I ,

whereI = {i|zii ≥ z∗i + γ(nh)}. If I = /0, we return to
step 3 and decease the value ofγ(nh) or stop.
[Step 5.]
Return to step 1 withn= n+1, i ∈ I .

4 Suggested interactive method

4.1 Converting MOLFPP into a linear model

Scalarization is a method to find efficient solutions in
multiple objective programming problem in which all
objective functions are combined to obtain a single
objective function. Weighted maximin method [1] is one
of the scalarization methods which use maximin operator
to convert multiple objective programming problem to a
single optimization problem. Thus, the weighted maximin
method is defined as:

max min
k=1,...,K

{wkzk(x)},

s.t x∈ S, (2)

wherewk ≥ 0 (k= 1, ...,K). In this paper, we are going to
consider equal weights for objective functions. The
proposed method in the following can be applied on a
problem with different weights. Therefore, we use the
weighted maximin version of MOLFPP (1), in which
weights are equal, as follows:

max min
k=1,...,K

{zk(x) =
cT

k x+αk

dT
k x+βk

},

s.t x∈ S. (3)
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If v(x) = min
k=1,...,K

{zk(x) =
cT

k x+αk

dT
k x+βk

}, we come up with the

following model:

max v,

s.t v≤
cT

k x+αk

dT
k x+βk

, k= 1, . . . ,K,

x∈ S. (4)

Problem (4) is a nonlinear programming model. Thus, we
propose a process to present an LPP in order to solve
problem (1) instead of solving problem (4). The linear
function fk(.) is going to be found in a way such that
v ≤ fk(.) (k = 1, . . . ,K) and also

fk(.) ≤ zk(x) =
cT

k x+αk

dT
k x+βk

(k = 1, . . . ,K). In doing so, the

following process should be followed:

t = min
k=1,...,K

{
1

dT
k x+βk

}⇒ t ≤
1

dT
k x+βk

, k= 1, . . . ,K.

So, we have:

(cT
k x+αk)t ≤

cT
k x+αk

dT
k x+βk

, k= 1, . . . ,K

⇒ cT
k xt+αkt ≤

cT
k xt+αkt

dT
k xt+βkt

, k= 1, . . . ,K,

and we definey= xt; so that

cT
k y+αkt ≤

cT
k y+αkt

dT
k y+βkt

=
cT

k x+αk

dT
k x+βk

, k= 1, . . . ,K.

In this situation, the function
fk(.) = cT

k y+αkt (k = 1, . . . ,K) possesses the property of

fk(.) ≤
cT

k x+αk

dT
k x+βk

(k = 1, . . . ,K) . Now, considering

v = min
k=1,...,K

{ fk(.) = cT
k y + αkt}, we will have

v≤ fk(.) = cT
k y+αkt. According to the above mentioned

issues, the following LPP is recommended as an
alternative to nonlinear problem (4), as:

max v,

s.t v≤ cT
k y+αkt, k= 1, . . . ,K,

dT
k y+βkt ≤ 1, k= 1, . . . ,K,

Ay−bt ≤ 0,

y≥ 0, t ≥ 0. (5)

The above mentioned problem is an LPP which can be
solved based on the simplex method. If(y, t) is the

optimal solution of (5), x =
y
t

will be a feasible solution

for problem (4). Regarding the nature of problem (5); i.e.,
regarding the fact that v ≤ fk(.) and

fk(.) ≤
cT

k x+αk

dT
k x+βk

(k= 1, . . . ,K), the increase inv leads to

Fig. 1: Slope line ofL1 is less than that ofL2

the increase in
cT

k x+αk

dT
k x+βk

therefore, it is expected that (4)

and (5) models have similar behaviors except for the fact

that model (5) is linear. However, feasible solutionx =
y
t

may not be efficient, and so we need a method to test
efficiency for a solution such asx. In the following
section, we review an efficiency test method for MOLFPP
(1) which has been suggested by Hosseinzadeh Lotfi et al.
[7].

4.2 Efficiency test

Let x is a feasible solution of MOLFPP (1) obtained from
solving the problem (5). Consider the following linear
fractional programming problem:

max
cTx+α
dTx+β

,

s.t x∈ S= {x| Ax≤ b, x≥ 0}, (6)

whereA is a u×w matrix , b ∈ Ru, x, c, d ∈ Rw, S is a
nonempty as well as a bounded set, and∀x∈ S,dTx+β >
0, cTx+α > 0.

Suppose that(m,n) ∈ R2, m> 0, n> 0, y=
n
m

x is a

linear equation which crosses(m, n) points and as well as
the origin. Point(m

′
, n

′
) ∈ R2 , m

′
> 0, n

′
> 0 is located

above the liney=
n
m

x if and only if the linear slope which

crosses the(m
′
, n

′
) point and the origin is more than

n
m

. In

other words,
n
′

m′ >
n
m

. This is illustrated in the following

Figure 1.
Theorem 2. If n

′
> 0, m

′
> 0, m> 0, n> 0 are real

numbers, then
n
′

m′ >
n
m

if and only if ∃θ ∈ R+, d−, d+ ∈

R≥0, such thatn
′
−d+ = nθ , m

′
+d− = mθ , d−+d+ >

0.[7]
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Fig. 2: The path moving from(m,n) to (m
′
,n

′
)

Therefore,
n
′

m′ >
n
m

is equivalent to the fact that it is

possible to move with the step length ofθ > 0 along(m,n)
in order to reach(mθ ,nθ ) and move along(−1,0) with
the step length ofd− ≥ 0. So one can get to the point of
(mθ − d−,nθ ), move along(0,1) with the step length of
d+ ≥0 to get to the point of(m

′
,n

′
)= (mθ −d−,nθ +d+).

This is illustrated in Figure 2.

The above mentioned geometrical interpretation can
be applied for the optimization test of the linear fractional
programming problem (6). The ordered pair
(dTx+ β ,cTx+α) ∈ R2 will be defined for eachx ∈ S.
Therefore,x is an optimal solution if and only if another
feasible solution does not exist; so that the corresponding
ordered pair is situated above the line crossing the origin
and the point(dTx+β ,cTx+α) ∈ R2.

Based on this, the following theorem was presented in
[7] for the optimization test of the linear fractional
programming problem (6).

Theorem 3.x∈ S is an optimal solution for the linear
fractional programming problem (6) if and only if the
optimal value of the following problem is equal to zero.

f ∗To = max d−+d+,

s.t cTx+α −d+ = nθ ,
dTx+β +d− = mθ ,
x∈ S,

d+ ≥ 0, d− ≥ 0, θ ≥ 0. (7)

It must be noted thatn = cTx+α andm= dTx+ β .[7]
To generalize the above discussion, the following theorem
has been stated in [7] for testing the weak efficiency in
MOLFPP.

Theorem 4. x ∈ S is a weakly efficient solution for
MOLFPP (1) if and only if the following optimal value

equals zero.

f ∗Tw = max t,

s.t t ≤ d−
k +d+

k , k= 1, . . . ,K,

cT
k x+αk−d+

k = nkθk, k= 1, . . . ,K,

dT
k x+βk+d−

k = mkθk, k= 1, . . . ,K,

x∈ S,

d−
k ≥ 0, d+

k ≥ 0, θk ≥ 0, k= 1, . . . ,K. (8)

Also, nk = cT
k x+αk andmk = dT

k x+βk (k= 1, . . . ,K).[7]
In the following, a revised version of theorem 4 in [7]

is presented, while this theorem does not need weakly
efficient solution assumption for feasible solutionx.

Theorem 5. x ∈ S is a strongly efficient solution in
MOLFPP (1) if and only if the optimal value of the
following problem equals zero.

f ∗Ts= max
K

∑
k=1

(d−
k +d+

k ),

s.t cT
k x+αk−d+

k = nkθk, k= 1, . . . ,K,

dT
k x+βk+d−

k = mkθk, k= 1, . . . ,K,

x∈ S,

d−
k ≥ 0, d+

k ≥ 0, θk ≥ 0, k= 1, . . . ,K. (9)

Proof. Let x̄ ∈ S be not a strongly efficient solution.
Based on definition2, there exists another feasible

solution as ¯̄x ∈ S; such that
cT
k

¯̄x+αk

dT
k

¯̄x+βk
≥

cT
k x̄+αk

dT
k x̄+βk

(k= 1, . . . ,K) and strict inequality is held for at least one

k = k1. In this situation, we have
cT
k1

¯̄x+αk1

dT
k1

¯̄x+βk1
>

cT
k1

x̄+αk1

dT
k1

x̄+βk1
. This

implies that ∃θk1 ∈ R+,d−
k1
,d+

k1
∈ R≥0 such that

cT
k1

¯̄x+αk1−d+
k1
=nk1θk1, dT

k1
¯̄x+β

k1
+d−

k1
=mk1θk1,d

+
k1
+d−

k1
>0.

This shows that there is a feasible solution for problem (9)
in which its objective function is positive. As a result, the
optimal value of model (9) is more than zero.Converse:
Consider the optimal value of the objective function of
model (9) is positive. Thus, there is ak = k1 in which
d+

k1
+ d−

k1
> 0 in optimality. Without losing generality,

assumed−
k1
> 0. So, based on the constraints of model (9),

we havecT
k1

¯̄x+ αk1 ≥ nk1θk1, dT
k1

¯̄x+β
k1

< mk1θk1, for

x̄ 6= ¯̄x ∈ S which concludes
cT
k1

¯̄x+αk1

dT
k1

¯̄x+βk1
>

cT
k1

x̄+αk1

dT
k1

x̄+βk1
. We have

also
cT
k

¯̄x+αk

dT
k

¯̄x+βk
≥

cT
k x̄+αk

dT
k x̄+βk

(k= 1, . . . ,K,k 6= k1) from the

constraints of model (9). Therefore, ¯x∈ S is not a strongly
efficient solution.

Now, suppose problem (5) is solved and(y, t) is its

optimal solution. Model (8) check whether pointx=
y
t

is

a weakly efficient solution or not. It is tested by model (9)
whether the pointx is a strongly efficient solution or not?
If the optimal value of problem (8) (or (9)) is zero, thenx
is a weakly (strongly) efficient solution. Otherwise, let
(x∗,θ1

∗, . . . ,θK
∗,d−

1
∗
, . . . ,d−

K
∗
,d+

1
∗
, . . . ,d+

K
∗
) be optimal
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solution of model (8) (or (9)). Although,x∗ is a dominant
solution for x, there is no guarantee thatx∗ is a weakly
(strongly) efficient solution. Stanojevic and Stanojevic
[16] proposed to use problem (8) (or (9)) for efficiency
test of x∗. By repeating this procedure, a sequence of
dominant solution forx is constructed. Stanojevic and
Stanojevic [16] proved this sequence is convergent to a
weakly (strongly) efficient solution.

4.3 Interaction with the DM

However,x∗ as a weakly (strongly) efficient solution is
presented to DM. If the solution is acceptable to the DM,
the problem is solved. If not, we ask the DM to determine
what objectives have more priority for increasing than the
other ones.

Suppose thatK1 is an indexical objective set and, as a
result, the DM intends to increase them. Moreover, we’d
like the DM to determine the reduction in which the
objective function is less harmful. Suppose thatK2 is the
set of indices of functions that are acceptable to decrease
in quantity. Therefore,

cT
k x+αk

dT
k x+βk

≤
cT

k x∗+αk

dT
k x∗+βk

, k∈ K2,

According to theorem 2, we have
∀k ∈ K2, ∃θk ∈ R+, d−

k ,d
+
k ∈ R≥0 such that

cT
k x+ αk + d+

k = nkθk, dT
k x+ βk − d−

k = mkθk, where
nk = cT

k x∗+αk andmk = dT
k x∗+βk.

On the other hand, some objectives must be fixed in
the resent values. SupposeK3 is an index set of such
objectives and so we have
cT

k x+αk

dT
k x+βk

=
cT

k x∗+αk

dT
k x∗+βk

(k ∈ K3). Therefore,∀k ∈ K3, we

have θk, such thatcT
k x+ αk = nkθk, dT

k x+ βk = mkθk,
wherenk = cT

k x∗ +αk andmk = dT
k x∗+βk. Based on the

classification indices of objectives into three setsK1, K2
andK3, the following problem is so suggested to survey
the idea of the DM:

f ∗Inw = max t,

s.t t ≤ d−
k +d+

k , k∈ K1,

cT
k x+αk−d+

k = nkθk, k∈ K1,

dT
k x+βk+d−

k = mkθk, k∈ K1,

cT
k x+αk+d+

k = nkθk, k∈ K2,

dT
k x+βk−d−

k = mkθk, k∈ K2,

cT
k x+αk = nkθk, k∈ K3,

dT
k x+βk = mkθk, k∈ K3,

x∈ S,

d−
k ≥ 0, d+

k ≥ 0, k∈ K1∪K2

θk ≥ 0, k= 1, . . . ,K. (10)

Theorem 6. The optimal value for problem (10) equals
zero if and only if there is no feasible solution of MOLFPP
(1) to meet the decision maker’s judgments.

Proof. Supposef ∗Inw = 0 andx∗ ∈ S is a given feasible
solution for MOLFPP (1) and according to the supposition
by contradiction that a point such as ˜x∈ S is better thatx∗

so that it meets all the needs of the DM. Therefore

cT
k x̃+αk

dT
k x̃+βk

>
cT

k x∗+αk

dT
k x∗+βk

, k∈ K1,

cT
k x̃+αk

dT
k x̃+βk

≤
cT

k x∗+αk

dT
k x∗+βk

, k∈ K2,

cT
k x̃+αk

dT
k x̃+βk

=
cT

k x∗+αk

dT
k x∗+βk

, k∈ K3.

According to theorem 2, we have

∀k ∈ K1,∃θ̃k∈ R+, d̃−
k , d̃+

k ∈ R≥0, such that

cT
k x̃ + αk − d̃+

k = nkθ̃k, dT
k x̃ + βk + d̃−

k =

mkθ̃k, d̃+
k + d̃−

k > 0 (a1),

∀k ∈ K2,∃θ̃k ∈ R+, d̃−
k , d̃+

k ∈ R≥0, such that

cT
k x̃ + αk + d̃+

k = nkθ̃k, dT
k x̃ + βk − d̃−

k =

mkθ̃k, d̃+
k + d̃−

k ≥ 0 (b1), and

∀k ∈ K3, ∃θ̃k ∈ R+, d̃−
k , d̃+

k ∈ R≥0 such that

cT
k x̃ + αk − d̃+

k = nkθ̃k, dT
k x̃ + βk + d̃−

k =

mkθk, d̃+
k + d̃−

k = 0 (c1) where nk = cT
k x∗ + αk and

mk = dT
k x∗+βk. Thusd−

k +d+
k > 0 (k∈ K1).

Consequently, (x̃, θ̃1, . . . , θ̃K , d̃−
1 , . . . , d̃

−
K , d̃

+
1 , . . . , d̃

+
K )

is a feasible solution for model (10) so that the value of its
objective function is more than zero, and it contradicts
hypothesis (f ∗Inw = 0). Converse: Suppose there is no
solution better thanx∗. We will then prove that the
optimal value of problem (10) is zero. We consider it with
the supposition by contradiction that the optimal value is
not zero i.e. f ∗Inw > 0 . Let

(x̃, θ̃1, . . . , θ̃K , d̃
−
1 , . . . , d̃

−
K , d̃

+
1 , . . . , d̃

+
K ) is the optimal

solution of problem (10). Because f ∗Inw > 0, then

∃k∈ K1, such that̃d−
k + d̃+

k > 0.
Without reducing the integrity and the generality of the

problem, we suppose that̃d+
k > 0.

So we have:

cT
k x̃+αk > nkθ̃k, dT

k x̃+βk = mkθ̃k, k∈ K1 (a2)

cT
k x̃+αk ≤ nkθ̃k, dT

k x̃+βk ≥ mkθ̃k, k∈ K2 (b2)

cT
k x̃+αk = nkθ̃k, dT

k x̃+βk = mkθ̃k, k∈ K3 (c2)

Supposẽθk = 0 (k= 1, . . . ,K), then

(a2) ⇒ dT
k x̃+βk = 0, k∈ K1

(b2) ⇒ cT
k x̃+αk ≤ 0, k∈ K2
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(c2) ⇒ cT
k x̃+αk = 0, dT

k x̃+βk = 0 k∈ K3

The above relationships contradict the suppositions of the
problem (1). Soθ̃k > 0 (k= 1, . . . ,K) and we have

(a2) ⇒ cT
k x̃+αk > nkθ̃k > 0,

1
dT

k x̃+βk
=

1

mkθ̃k

> 0

⇒
cT

k x̃+αk

dT
k x̃+βk

>
cT

k x∗+αk

dT
k x∗+βk

, k∈ K1 (a3)

(b2) ⇒ 0< cT
k x̃+αk ≤ nkθ̃k, 0<

1
dT

k x̃+βk
≤

1

mkθ̃k

⇒
cT

k x̃+αk

dT
k x̃+βk

≤
cT

k x∗+αk

dT
k x∗+βk

, k∈ K2 (b3)

(c2) ⇒ cT
k x̃+αk = nkθ̃k > 0,

1

dT
k x̃+βk

=
1

mkθ̃k

> 0

⇒
cT

k x̃+αk

dT
k x̃+βk

=
cT

k x∗+αk

dT
k x∗+βk

, k∈ K3 (c3)

It can be concluded from(a3), (b3) and (c3) that x̃ ∈ S
is a point that meets all of the judgments of the DM and
contradicts the supposition.

Suppose that ˜x is a part of the optimal solution for
problem (10). If the DM is satisfied with the obtained
solution, then the problem is over. If ˜x is not in
accordance with the judgment of the DM, so thenK1, K2
and K3 are modified in a way to meet the decision
maker’s judgments and, consequently, problem (10) is
solved again and this process continues so that the DM
judgments and opinions are met.

As a similar manner, considerx∗ as the optimal
solution of (9). The following model can modify the
solution based on the judgments of the DM in order to
obtain a strongly efficient solution.

Theorem 7. The optimal value of the problem (11)
equals zero if and only if there is no feasible solution of
MOLFPP (1) to meet the decision maker’s judgments.

f ∗Ins = max ∑
k∈K1

(
d+

k +d−
k

)
,

s.t cT
k x+αk−d+

k = nkθk, k∈ K1,

dT
k x+βk+d−

k = mkθk, k∈ K1,

cT
k x+αk+d+

k = nkθk, k∈ K2,

dT
k x+βk−d−

k = mkθk, k∈ K2,

cT
k x+αk = nkθk, k∈ K3,

dT
k x+βk = mkθk, k∈ K3,

x∈ S,

d−
k ≥ 0, d+

k ≥ 0, k∈ K1∪K2,

θk ≥ 0, k= 1, . . .K. (11)

Proof. Proof is similar to theorem 6.
Model (10) (or (11)) is thus solved to improvex∗,

based on the judgments of DM. If the optimal value of the

problem (10) (or (11)) equals zero, improvement is
impossible. In such situation, DM acceptsx∗ or changes
its judgments and solve model (10) (or (11)), again.

Otherwise, consider(x̃, θ̃1, . . . , θ̃K , d̃
−
1 , . . . , d̃

−
K , d̃

+
1 , . . . , d̃

+
K )

as an optimal solution for problem (10) (or (11)). Thenx̃
is a feasible solution of (1) which meet the judgments of
DM. Now, we solve model (8) (or (9)) for efficiency test
of x̃. If x̃ is efficient, we have a weakly (strongly) efficient
solution which meet DM’s judgments. Otherwise ( ˜x is not
efficient), by applying the mentioned procedure in the last
paragraph of subsection (4.2) we reach a weakly
(strongly) efficient solution which dominant ˜x and also
meet the judgments of DM.

4.4 Interactive algorithm

Based on the above discussion, the following algorithm is
provided as an interactive method for solving MOLFPP (1)
in order to obtain a satisfactory solution for the DM.

Algorithm 3:
[ Step 0.] (Primal feasible solution)
Solve the LPP (5), consider (y, t) as its optimal

solution, and putx=
y
t
.

[ Step 1.] (Efficiency test)
Solve the LPP (8) (or (9)) for x and consider
(x∗,θ1

∗, . . . ,θK
∗,d−

1
∗
, . . . ,d−

K
∗
,d+

1
∗
, . . . ,d+

K
∗
) as its

optimal solution.
[ Step 2.] (Find efficient solution)
If f ∗Tw = 0 (or f ∗Ts = 0), then go to step 3, otherwise
considerx= x∗ and go to step 1.
[ Step 3.] (Terminate condition)
If the DM satisfies withx, then stop. Otherwise, go to
step 4.
[ Step 4.](Interaction with DM)
DetermineK1, K2 andK3 based on the judgments of
DM and solve problem (10) (or (11)) and consider its
optimal solution as

(x̃, θ̃1, . . . , θ̃K , d̃
−
1 , . . . , d̃

−
K , d̃

+
1 , . . . , d̃

+
K ).

[ Step 5.] (Return step)
If f ∗Inw = 0 (or f ∗Ins = 0), then go to step 3, otherwise
putx= x̃ and go to step 1.

5 Comparison among interactive methods

Although interactive algorithms (Sakawa and Yano [14],
Costa [4] and method in this paper) use LPPs for solving
MOLFPP, they have differences which are compared with
three directions in this section.

Computation Algorithm 1 applies a nonlinear
programming problem in step 2 and solves this problem
using a sequence of linear programming problems. Two
LPPs are utilized in steps 3 and 4. A sequence of LPPs
are solved consecutively in steps 4 and 5. As a result
algorithm 1 includes high performance computing.
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Solving K + 1 LPPs for each sub-region is required
referring to steps 1 and 2 of algorithm 2, though algorithm
2 needs less computing than algorithm 1, its computations
are heavier in comparison with the recommended method
in this article that just requires solving 2 LPPs in steps 1
and 5 plus a sequence of LPPs in steps 1, 2 from the first
iteration, and one LPP in in step 5 along with a sequence
of LPPs in steps 1 and 2 in the other iterations.

Presented solution to DM Suppose we havem
sub-region innth iteration of algorithm 2; Therefore, the
DM should choose a solution from amongm (k + 1)
obtained solutions while one solution is prersented to the
DM in algorithms 1 and 3, by solving optimization
models. The presented solution for the DM in algorithm 1
is created by solving at least two LPPs while such a
solution in algorithm 3 is just obtained by one LPP.

Judgments of DM If the DM is not satisfied with the
obtained result, he should change the reference values
according to algorithm 1 and should determine the
minimum improvement value of the objective functions
using algorithm 2. Performing such numerical changes is
usually difficult task for the DM while the qualitative
determination of the changes is much easier for the
decision maker. Algorithm 3 suggests that the changes in
objective functions be done qualitatively. This kind of
changes includes the decline or lack of change in
objective functions. It is noteworthy that trade-off rate
among objective functions in step 6 of algorithm 1
contributes to the DM in order to determine more new
reference values while such a guide does not exist in other
two algorithms.

6 Example

Take the following MOLFPP in to account:

max z1 =
x1+ x2+2
x1+2x2+5

,

max z2 =
x1+ x2+1
5x1+ x2−1

,

max z3 =
x1+ x2−1

3x1+2x2−1
,

s.t 3x1+2x2 ≥ 6,

x1 ≤ 3,

x2 ≤ 3,

x1,x2 ≥ 0. (12)

We consider two cases: in a case, let there exists a
feasible solution for the system, then the judgments of
DM in order to reach a satisfactory solution is applied on
models (10) and (11). In another case, we illustrate the
proposed algorithm in this paper by solving problem (12).
At last, we compare our numerical results with the
suggested method of Pramanik and Dey [12].

One can easily show that the numerators and
denominators of the objective functions in (12) are
positive on the feasible region. The feasible solution
(3,1.2222) is a strongly efficient solution of (12) and the
values of the objective functions for this solution are:

z1 = 0.5957, z2 = 0.3430, z3 = 0.3085.

Table 1 shows six cases of the conditions that DM can
consider for repairing this solution. Notations↑ and↓ are
used in order to determine the increase as well as the
decrease in the values of objective functions. Notation‖
is considered when DM is satisfied with the value of an
objective function. Although DM can define many
different cases for the objectives functions, especially
when the number of objective functions is large, we need
to solve only one LPP in each case. Moreover, when all of
the results of different cases are presented to DM, he can
determines the effect of each objective function in
comparison to another. This help the DM for making a
correct decision. For example, the first row of Table1
shows that there is no feasible solution; in which, the first,
second, and third objectives are greater than those of the
solution (3,1.2222). In other words, simultaneously,
increasing the objective functions is impossible. Also, in
the last row of Table1, a feasible solution is reported in
which the first objective function shows an increase in its
value, while the second and the third objective functions
show a decrease in their values. The solution is(3,0),
which, is a weakly and strongly efficient solution (Based
on the optimal values of the objective functions in
problems (8) and (9)). An overview of the results of Table
1 shows that improvement in the first objective function is
impossible unless it is contrary to decrease in the second
and third objective functions. Therefore, if DM tends to
increase the first objective function, he must accept to
decrease the second and third objective functions.

Now, we solve problem (12) by the proposed algorithm
in this paper.

[Step 0.] Primal feasible solution
Solve the problem (12) by the linear model (5).
Define

t = min{
1

x1+2x2+5
,

1
5x1+ x2−1

,
1

3x1+2x2−1
}

. Therefore, we have

t ≤
1

x1+2x2+5
, t ≤

1
5x1+ x2−1

, t ≤
1

3x1+2x2−1
.

In this situation,

(x1+ x2+2)t ≤
x1+ x2+2
x1+2x2+5

,

(x1+ x2+1)t ≤
x1+ x2+1
5x1+ x2−1

,
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Table 1: Several cases for objective functions
Goals Interactive test Efficiency test The values of objective functions

z1 z2 z3 f ∗Inw f ∗Ins x f∗Tw f ∗Ts z1 z2 z3
↑ ↑ ↑ 0 0 (3,1.2222) 0 0 0.5957 0.3430 0.3085
↑ ↑ ‖ 0 0 (3,1.2222) 0 0 0.5957 0.3430 0.3085
↑ ↑ ↓ 0 0 (3,1.2222) 0 0 0.5957 0.3430 0.3085
↑ ↓ ↑ 0 0 (3,1.2222) 0 0 0.5957 0.3430 0.3085
↑ ↓ ‖ 0 0 (3,1.2222) 0 0 0.5957 0.3430 0.3085
↑ ↓ ↓ 0.3928 0.3928 (3,0) 0 0 0.6250 0.2857 0.2500

(x1+ x2−1)t ≤
x1+ x2−1

3x1+2x2−1
.

Considery1 = x1t, y2 = x2t; and therefore,

y1+ y2+2t ≤
y1+ y2+2t
y1+2y2+5t

,

y1+ y2+ t ≤
y1+ y2+ t
5y1+ y2− t

,

y1+ y2− t ≤
y1+ y2− t

3y1+2y2− t
.

Thus, the following linear model is solved as:

Max v,

s.t v≤ y1+ y2+2t,

v≤ y1+ y2+ t,

v≤ y1+ y2− t,

y1+2y2+5t ≤ 1,

5y1+ y2− t ≤ 1,

3y1+2y2− t ≤ 1,

3y1+2y2−6t ≥ 0,

y1−3t ≤ 0,

y2−3t ≤ 0,

y1,y2, t ≥ 0. (13)

Point (y1,y2, t) = (0.1698,0.2264,0.0754) is the
optimal solution of the problem (13). Therefore
(x1,x2) = (2.25,3) is a feasible solution of MOLFPP
(12).

[Step 1.] Efficiency test

To survey the weak efficiency of(x1,x2) = (2.25,3),
the following LPP is provided:

f ∗Tw = max t,

s.t t ≤ d−
k +d+

k , k= 1,2,3

x1+ x2+2−d+
1 = 7.25θ1,

x1+2x2+5+d−
1 = 13.25θ1,

x1+ x2+1−d+
2 = 6.25θ2,

5x1+ x2−1+d−
2 = 13.25θ2,

x1+ x2−1−d+
3 = 4.25θ3,

3x1+2x2−1+d−
3 = 11.75θ3,

3x1+2x2 ≥ 6,

x1 ≤ 3,

x2 ≤ 3,

x1, x2 ≥ 0,

d−
k ≥ 0, d+

k ≥ 0, θk ≥ 0, k= 1,2,3. (14)

[Step 2.] Find efficient solution

The optimal value of this problem is zero; therefore,
the solution(x1,x2) = (2.25,3) is a weakly efficient one.
Solving model (9), one realizes that it is a strongly efficient
solution as well.

[Step 3.] Terminate condition

If DM is satisfied with (2.25,3), then the process is
finished, otherwise we go to step 4.

[Step 4.] Interaction with DM

The values of the objective functions for
(x1,x2) = (2.25,3) are:

z1 = 0.5471, z2 = 0.4717, z3 = 0.3617.

Consider that the DM thinks the amount of the second
objective function should increase, and no changes in the
third objective function, while a decrease in the first
objective can be done. Therefore, we have the following
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Table 2: Interactive algorithm for solving model (12).

Iteration Step Discussions
1 0 x̄= (2.25, 3)

1 x∗ = (2.25,3) , z1 = 0.5471,z2 = 0.4717,z3= 0.3617

2 fTw = 0. x̄= (2.25, 3) is efficient.

3 x̄= (2.25,3) is not desirable in the DM’s view.

4 K1 = {2} ,K2 = {1} ,K3 = {3}, x̃= (0.3829,2.4255), z1 = 0.4698,z2 = 1.1402,z3=0.3617

5 fInw 6= 0. Putx̄= x̃= (0.3829,2.4255) and go to step 1 in the next iteration.

2 1 x∗ = (0.3564,3) , z1 = 0.4716,z2 = 1.1518,z3=0.3882

2 fTw 6= 0. x̄= (0.3829,2.4255) is not efficient. Put ¯x= x∗ = (0.3564,3) and go to step1

1 x∗ = (0.3564,3), z1 = 0.5471,z2 = 0.4717,z3= 0.3617

2 fTw = 0. x̄= (0.3564,3) is efficient.

3 x̄= (0.3564,3) is not desirable in the DM’s view.

4 K1 = {1,3} ,K2 = {2} ,K3 = {}, x̃= (0.3564, 3), z1 = 0.4716,z2 = 1.1518,z3=0.3882

5 fInw = 0 and go to step 3 in the next iteration.

3 3 x̄= (0.3564,3) is not desirable in the DM’s view.

4 K1 = {3} ,K2 = {1,2} ,K3 = {},x̃= (0.3564, 3), z1 = 0.4716,z2 = 1.1518,z3=0.3882

5 fInw = 0. go to step 3 in the next iteration.

4 3 x̄= (0.3564,3) is not desirable in the DM’s view.

4 K1 = {2,3} ,K2 = {1} ,K3 = {}, x̃= (0,3), z1 = 0.4545,z2 = 2.00,z3=0.4

4 fInw 6= 0. Putx̄= x̃= (0, 3) and go to step 1 in the next iteration.

5 1 x∗ = (0,3), z1 = 0.4545,z2 = 2.00,z3=0.4

2 fTw = 0. x̄= (0, 3) is efficient.

3 x̄= (0,3) is not desirable in the DM’s view.

4 K1 = {1} ,K2 = {3} ,K3 = {2}, x̃= (0,3), z1 = 0.4545,z2 = 2.00,z3=0.4

5 fInw = 0. go to step 3 in the next iteration.

6 3 x∗ = (0,3) is desirable in the DM’s view.
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linear program as:

f ∗Inw = max t,

s.t t ≤ d−
2 +d+

2 ,

x1+ x2+2+d+
1 = 7.25θ1,

x1+2x2+5−d−
1 = 13.25θ1,

x1+ x2+1−d+
2 = 6.25θ2,

5x1+ x2−1+d−
2 = 13.25θ2,

x1+ x2−1= 4.25θ3,

3x1+2x2−1= 11.75θ3,

3x1+2x2 ≥ 6,

x1 ≤ 3,

x2 ≤ 3,

x1,x2 ≥ 0,

d−
k ≥ 0, d+

k ≥ 0, k= 1,2,

θk ≥ 0, k= 1,2,3. (15)

A feasible solution of problem (12) which is derived
by solving the above model and shown in the fourth row
of Table2 is (x̃1, x̃2) = (0.3829,2.4255).

[Step 5.] Return step
Becausef ∗Inw 6= 0, we put ¯x = x̃ and go to step 1 to

test the efficiency of newx. The process can be continued
successfully to reach a satisfactory solution from the DM’s
point of view. A sample of running the algorithm in some
iterations is reported in Table 2.

Pramanik and Dey [12] proposed a distance function
to compare efficient solutions in MOLFPP. In their
method, membership functionµk(.) is constructed for
each linear fractional objective functionzk(x). This
membership function is transformed to a linear function
µ̃k(.) by using Taylor series. In continuation, two fuzzy
goal programming problems are suggested to solve
MOLFPP. At last, the obtained efficient solutions, by
solving to models, are compared based on the scores from
the distance function(∑K

k=1(1 − µk(.))
2)1/2. Efficient

solution with smaller score has priority than the other, for
DM.

Here, we compare the obtained efficient solutions in
Table 2 by using the distance function presented by
Pramanik and Dey [12]. The example in this section is
also solved by the proposed method of Pramanik and Dey
[12]. Following Table3 provides efficient solutions along
with their scores.

The last column of Table3 shows that efficient
solution (0,3), which is the latest obtained efficient
solution by the proposed algorithm in this paper, has the
smallest score among efficient solutions in Table2. We
only obtained efficient solution(1.000728,3) by solving
two proposed models of Pramanik and Dey [12]. The
score of this solution based on the distance function has
the highest score among all of mentioned efficient
solutions.

As a result, we can use the distance function proposed
by Pramanik and Dey [12] as a tool to help the DM for

Table 3: Efficient solutions and their scores.

Method Efficient solution Distance function
Iteration 1 (2.25,3) 1.0197
Iteration 2 (0.3564,3) 1.0281
Iteration 5 (0,3) 0.9997
Model I (1.000728,3) 1.056
Model II (1.000728,3) 1.056

selecting an efficient solution to concluding condition for
the suggested algorithm in this paper.

7 Conclusions

In this article, a linearization procedure is applied to
present an interactive method for solving an MOLFPP
which includes a simple calculation process and is also
easy to understand. By interacting with the DM, the final
solution intended to meet the judgments of the DM. In the
future, we try to implement the described procedure on
the multiple objective quadratic fractional programming
problems and also work out the multiple objective
fractional programming problems with imprecise data.
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