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Abstract: This paper investigates the effect of partial slip on peristaltic flow of a Sisko fluid through a porous medium. The flow is
streaming through a tapered artery having a mild stenosis. The influences of heat and chemical reactions on blood flow are also taken into
account. The governing equations of motion, energy and concentration are simplified by using the long wavelength and lowReynolds
number approximations. The analytical solutions of these equations are obtained by considering a perturbation technique for small non-
Newtonian Sisko fluid parameter. The pressure rise and friction force are numerically calculated. The numerical calculations with the
help of graphs are adopted to obtain the effects of several parameters, such as the slip parameter, permeability parameter, the taper angle,
Brickmann number, Soret number and the maximum height of stenosis, upon the distributions of velocity, temperature, concentration,
pressure rise and friction force. It is found that the axial velocity increases with the increase of slip parameter. Meanwhile, it decreases
with the increase of permeability parameter. The stream lines are also depicted. It is observed that the trapped bolus increases in size
with the increase of both the slip parameter and the maximum height of stenosis. The other results are also illustrated.

Keywords: Peristaltic flow; Sisko model; Tapered artery; Stenosis flow; Porous medium; Slip flow; Heat transfer; Trapping
phenomena.

1 Introduction

Several researches studied the non-Newtonian fluids
because of their importance in industrial and
technological applications. Sisko [1] proposed a new
model in studying the non-Newtonian fluid, which is later
called sisko fluid. Sisko fluid is a model which combines
the features of viscous and generalized of power law
models. It is capable of describing shear thinning and
thickening phenomena, which commonly exist in nature.
It has many industrial applications such as waterborne
coatings, metallic automotive, cement slurries, lubricating
greases, psueodo-plastic fluids and drilling fluids. Sisko
fluid is an example of viscoelastic materials that include
polymeric liquids, biological fluids, liquid crystals,
lubricating oils, mud and paints [2]. It can demonstrate
many typical characteristics of Newtonian and

non-Newtonian fluids by choosing different material
parameters. Therefore, we may considered it as a blood
model.

Peristaltic transport is produced by a traveling wave
of area contraction and expansion along the wall of the
tubes. It occurs generally from a region of lower pressure
to higher pressure. It is very important in biological
mechanism which responsible for various physiological
functions of the organs of the human body. It has many
applications [3], such as transport deionized water and
whole blood and deliver phosphated buffered saline into
the vein of a rat, the transport of urine from kidney to
bladder, transport of food through oesophagus, the
movement of eggs in the fallopian tube, transport of the
spermatozoa in the cervical canal, transport of blood in
heart, transport of bile in the bile duct. Several theoretical
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and experimental articles have been examined the
peristaltic flows, such as Shapiro [4], Manton [5] and
Fung and Yih [7]. Their works considered several
assumptions, such as long wavelength approximation, low
Reynolds number, small wave number and small
amplitude ratio. The peristaltic transport through
infinitely long symmetric channel or axi-symmetric tubes
containing a Newtonian or non-Newtonian fluids have
been investigated. Asif et al. [8] studied the problem of
peristaltic transport of a non-Newtonian power law fluid
characterized by the streaming blood through an
axi-symmetric tapered tubular vessel under a long wave
length approximation.

Blood is a mixture of of red cells, white cells and
platelets in plasma. The analysis of blood flow through
stenosed arteries is very important. The discovery of the
cardiovascular diseases, such as stenosis or
arteriosclerosis, is closely associated with the flow
conditions in the blood vessels. A stenosis is the abnormal
growth of tissue. Stenosis means narrowing of any body
passage [9]. stenoses may be caused by the impingement
of extra vascular masses. Also, it may be formed due to
intravascular atherosclerotic plaques which develop at the
wall of the artery and protrude into the lumen. It may
leads to cerebral strokes, myocardial infarction and heart
failure by reducing or occluding the blood supply [10].
Also, in case of stenosed artery, stresses and resistance
flow are higher than those in case of the normal ones.
Furthermore, stenosis may damage the internal cells of
the wall. Several efforts have been made to investigate the
blood flow characteristics through stenosed arteries.
Chakravarty et al. [11] investigated the problem of
nonlinear blood flow in a stenosed flexible artery. Also,
Verma and Parihar [12] discussed the mathematical model
of blood flow through a tapered artery with mild stenosis.

Heat transfer analysis is one of the important topic in
studying chemical engineering. It has a great importance
in the peristaltic motion. It is the passage of thermal
energy from a hot body to a colder one. Bio-heat is
considered as heat transfer in human body. It includes
thermotherapy and human thermoregulation system [13].
The thermotherapy system is on of the most important
application of heat in the human body. The human
thermoregulation system is the ability of living body to
maintain temperature with in certain limits in case of
surrounding temperature variations. In physiology, it is
used to study the properties of tissues. Heat transfer
analysis is important especially in case of non-Newtonian
peristaltic rheology. It is used in many complicated
processes in the human body. Heat transfer is used in

perfusion of the arterial venous blood through the pores
of the tissue (process of delivery of blood to capillary
bed). Furthermore, it used to generate metabolic heat and
heat transfer due to some external interactions such as,
mobile phones and radioactive treatments. The
application radio-frequency therapy is important to treat
more diseases such as tissue coagulation, the primary
liver cancer, the lung cancer and the reflux of stomach
acid [14]. Many investigators have reported the influence
of heat transfer on peristaltic flow of Newtonian and
non-Newtonian fluids, see [15].

In the recent past, many researches investigated,
theoretically and experimentally, the combined effects of
heat and mass transfer on bio-fluids [16]. The quantitative
prediction of blood flow rate and heat generation are
important for diagnosing blood circulation illness. Also,
the combining between heat and mass transfer is
important for the noninvasive measurement of blood
glucose [17]. The mass flux caused by the temperature
gradient, which is called Soret effect or thermal-diffusion,
is discussed by Alam et al. [18]. The Soret effect is often
negligible in heat and mass transfer processes due to its
small order of magnitude. However, for the non-
Newtonian fluids with light or medium molecular weight,
it is not appropriate to neglect Soret effect as studied by
Dursunkaya and Worek [19]. Therefore, through this
study, we investigate the combined effects of heat and
mass transfer with Soret effect. Nadeem and Akbar [20]
studied the effect of heat and mass transfer on Walter’s B
fluid through a tapered artery. Also, the problem of
dynamic response of heat and mass transfer in blood flow
through stenosed arteries has been discussed by
Chakravarty and Sen [21].

The effect of vessel tapering is an important factor in
studying peristaltic transport. Pandey and Chaube [22]
studied the axi-symmetric peristaltic transport of a
viscous incompressible viscoelastic fluid through a
circular tube whose cross section changes along the
length (tapered tube). The Newtonian and non-Newtonian
blood flow through tapered arteries with a stenosis have
been investigated. Mandal [23] studied the notable
characteristics of the non-Newtonian blood flow
(Power-law model) through a flexible tapered arteries in
the presence of stenosis subject to the pulsatile pressure
gradient. Also, Mekheimer and El Kot [24] investigated
the influence of heat and chemical reactions of blood flow
through tapered artery with stenosis. They considered a
Sisko fluid as a model of blood. They obtained that the
magnitude of axial velocity is greater for a Newtonian
fluid than that for a Sisko fluid. Also, the curves through
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the convergent tapered artery are greater than those in the
non tapered artery and the diverging tapered artery.

Porous media play an important role in many
branches of engineering, including material science,
petroleum industry, chemical engineering, and soil
mechanics as well as biomechanics. The flow through
porous media has gained a considerable interest during
recent years, particularly among geophysical fluid
dynamicists. It occurs in filtration of fluids in heat pipes
and seepage of water in river beds. There are some
important examples of flow through porous medium such
as solid matrix heat exchangers, electronic cooling
chemical reactors, sandstone, limestone, movement of
underground, water, oils, rye bread, bile duct, wood, the
human lung, gall bladder with stones and small blood
vessels. Also, the seepage under a dam is an important
application through the porous media. An excellent
review in the physics of porous media is given by
Scheidegger [25] and Eldabe [26]. Mekheimer [27]
studied the motion of an incompressible, viscous fluid in
an inclined planar channel filled with a homogenous
porous medium and having walls that are transversely
displaced by an infinite, harmonic traveling wave of large
wavelength. This problem was analyzed using a
perturbation expansion in terms of a variant wave number.
Mekheimer obtained an explicit form for the velocity field
and a relation between the pressure rise and flow rate in
terms of Reynolds number, wave number, permeability
parameter, inclined angle, and the occlusion. Also, Afsar
et al. [28] discussed the problem of peristaltic flow of a
Jeffrey fluid with variable viscosity through a porous
medium in an asymmetric channel. It is observed that the
magnitude of axial velocity decreases with the increasing
of the permeability parameter.

In studying the peristaltic flow, many researches
assumed that the fluid layer next to the surface moves
with it, which is so called no slip condition. However,
there are another works that considered hypotheses
including slippage. The so called slip conditions means
that there is a relative motion between the fluid layer next
to the fluid surface. It states that the velocity of the fluid at
the plate is linearly proportional to the shear stress at this
plate. It is very important in the polishing of artificial
heart valves. Also, it is important for internal cavities ina
variety of manufactured parts, micro-channels or
nano-channels. The slip condition plays a vital role in
shear skin spurt and hysteresis effects. Furthermore, the
fluids that exhibit boundary slip have essential
technological applications when a thin film of light oil is
attached to the moving plates. Also, it is used when the

surface is coated with a special coating such as a thick
monolayer [29]. The problem of effects of magnetic field
and wall slip conditions on the peristaltic transport of a
newtonian fluid in an asymmetric channel is discussed by
Ebaid [30]. Also, Mekheimer et al. [31] investigated the
effects of slip condition and porous medium on
peristaltically induced MHD due to a surface acoustic
wavy wall.

In the last decades, a growing interest [[24] and [31]]
deals with studying the chemical reaction, slip or no slip
conditions in Newtonian as well as the non- Newtonian
fluids. This is because of their great importance in several
areas such as medicine and medical industries. Therefore,
the aim of the present study focus on investigating the
effects of heat and chemical reactions on peristaltic
transport of blood flow. The flow is streaming through a
tapered artery with mild stenosis. The blood is
represented by a Sisko model. Furthermore, the influences
of slip condition and porous medium are also considered.
The governing equations of motion, energy and
concentration are simplified using the long wavelength
and low Reynolds number approximation. These
equations are analytically solved in accordance with the
appropriate boundary conditions. The technique depends
on a perturbation analysis. This technique considers a
small Sisko fluid parameter. The distributions of the
stream function, temperature and concentration are
obtained up to the first order. The pressure rise and
friction force are obtained in terms of dimensionless flow
rate Q by using numerical integration. Numerical
calculations are adopted to obtain the effects of several
parameters, such as the slip parameter, permeability
parameter, the taper angle, Brickmann number, Soret
number and the maximum height of stenosis, on the
above distributions. To clarify the problem at hand, in
Section 2, the physical description of the problem
including the basic equations governing the motion with
the appropriate boundary conditions is presented. Section
3 is devoted to introduce the method of solution according
to a perturbation technique. Through Section 4, we
introduce some important results that are displayed
graphically for pumping characteristics and trapping
phenomena. Finally, in Section 5, we give concluding
remarks for this study based on the obtained results for
peristaltic transport and stream lines.

2 Formulation of the problem

Consider an unsteady motion of Sisko fluid through a
tapered tube with mild stenosis. The surface of the tube
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Fig. 1: Sketch of the physical situation of the problem.

has an infinite sinusoidal wave train traveling along the
axis of the tube. The flow is streaming through a porous
medium. Cylindrical polar co-ordinates system (R, θ , Z)
is used, so that theZ-axis coincides with the axis of the
tube. Through this study, an axial symmetry is
considered. In other words, all physical quantities are
independent on the coordinateθ . The stenosis is
developed in an axially symmetric manner. Heat and mass
transfer are also taken into account. The wall of the tube
is maintained at the uniform temperatureθ1 and
concentrationC1, respectively. Meanwhile, at the centre
of the tube we consider the symmetry conditions on both
temperature and concentration. The slip condition is also
considered.
The effective radius of the tube [12] is taken as follows:

R(z) =







R1−mδ (z+L) L < z<−z0,

R1−mδ (z+L)− H
2 [1+ cosπz

z0
] −z0 ≤ z≤ z0,

R1−mδ (z+L) z0 < z< d,
(1)

whereR(z) is the effective radius of the tapered artery,R1

is the radius of the un-tapered artery,δ = R1
λ , λ is the

wave length,H = hcosφ is the hight of the stenosis in the
tapered artery,φ is the angle of tapering,h is the
maximum hight of the stenosis,z0 is the half-length of the
stenosis andm= tanφ is the slope of the tapered vessel.
Sketch of the problem is given in the figure 1.
The ratio between the height of the stenosis and the radius
of the normal artery is much less than unity. The arterial
is taken to be of finite lengthL+d [11]. This study focus
on all possibilities of different shapes of the artery viz, the
converging taperingφ < 0, non-tapered arteryφ = 0 and
the diverging taperingφ > 0 [23].
The prototype of fluid designed by Sisko is considered.

Therefore, the constitutive equation is then become [2]

S=
(

a1+b1(
√

Θ)n−1
)

A, (2)

whereS is the stress deviator,Θ = 1
2tr(A)2, tr(A)2 is the

sum of elements in main diagonal of(A)2, n is the power
index,a1, b1 are the material constant for Sisko fluid,

A = L +LT (3)

is the rate of strain tensor,V=(U,0,W) is the velocity
field andL=∇V.
Since we assume that the fluid densityρ is uniform, it
follows that the incompressibility condition (continuity
equation) is then become

∇.V = 0. (4)

The equation of motion is

ρ
(

∂V
∂ t

+(V.∇)V
)

=−∇Π +∇.S− η
p

V, (5)

whereΠ is the pressure,η is dynamic viscosity andp is
the permeability parameter.
The equation of energy [13] is

ρcp

(

∂T
∂ t

+V.∇T

)

= Φ1+K∇2T, (6)

whereT is the temperature,k = K
ρcp

is the thermometric
conductivity, K is the thermal conductivity,cp is the
specific heat andΦ1=Sı

∂Vı
∂X is the dissipation term.

The equation of concentration is [17]

∂C
∂ t

+V.∇C= D∇2C+
DKT

Tm
∇2T, (7)

where C is the concentration distribution,D is the
coefficient of thermal diffusivity,KT is the thermal
diffusion andTm is the mean fluid temperature.
The geometry of the peristaltic wall surface is defined as
[7]

h1 = acos
2π
λ

(

Z− kt
R1

)

, (8)

wherea is the wave amplitude,λ is the wave length and
kt
R1

is the wave speed.
The appropriate boundary conditions may be listed as
follows:

U =
∂h1

∂ t
,W=−γSRZ,T = θ1,C=C1at R=R2=R(z)+h1,

(9)

U = 0,
∂W
∂R

= 0,
∂T
∂R

= 0,
∂C
∂R

= 0at R= 0, (10)
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whereγ is the slip parameter.

Combining Eqs. (2) and (3), ther andz-components the
Eq. of motion (5) may be written as follows:
r-component:

ρ
(

∂U

∂ t
+U

∂U

∂R
+W

∂U

∂Z

)

=− ∂ Π
∂R

+
2
R

(

a1+b1(
√

Θ )n−1
) ∂U

∂R

+2
∂

∂R

(

a1 +b1(
√

Θ)n−1
) ∂U

∂R
+2

∂
∂Z

(

a1+b1(
√

Θ )n−1
)

(

∂W
∂R

+
∂U
∂Z

)

− 2U
R2

(

a1+b1(
√

Θ )n−1
)

− η
p

U, (11)

andz-component:

ρ
(

∂W
∂ t

+U
∂W
∂R

+W
∂W
∂Z

)

=−∂Π
∂Z

+
1
R

(

a1+b1(
√

Θ)n−1
)

(

∂W
∂R

+
∂U
∂Z

)

+
∂

∂R

(

a1+b1(
√

Θ)n−1
)

(

∂W
∂R

+
∂U
∂Z

)

+2
∂

∂Z

(

a1+b1(
√

Θ)n−1
) ∂W

∂z
− η

p
W, (12)

whereΘ = 2( ∂U
∂R)

2+2U2

R2 +2( ∂W
∂Z )

2+( ∂U
∂Z + ∂W

∂R )2 .
With the continuity equation

1
R

∂ (RU)

∂R
+

∂W
∂Z

= 0. (13)

The Eq. of energy (6) may be written as follows:

ρcp

(

∂T
∂ t

+U
∂T
∂R

+W
∂T
∂Z

)

=
(

a1+b1(
√

Θ)n−1
)

(

2(
∂U
∂R

)2+2(
∂W
∂Z

)2+(
∂U
∂Z

+
∂W
∂R

)2
)

+K

(

∂ 2T
∂R2 +

1
R

∂T
∂R

+
∂ 2T
∂Z2

)

, (14)

Also, the Eq. of concentration distribution (7) may be
written as follows:

∂C
∂ t

+U
∂C
∂R

+W
∂C
∂Z

= D

(

∂ 2C
∂R2 +

1
R

∂C
∂R

+
∂ 2C
∂Z2

)

+
DKT

Tm

(

∂ 2T
∂R2 +

1
R

∂T
∂R

+
∂ 2T
∂Z2

)

. (15)

The instantaneous volume flow rate in the fixed coordinate
system is defined as:

Q= 2π
∫ R2

0
WRdR, (16)

whereR2 is a function of Z and t.
The time averaged̂Q (time mean flow) over periodτ = λ R1

k
at a fixed Z-position is defined as

Q̂=
1
τ

∫ τ

0
Qdτ. (17)

We assume that the tube length is an integral multiple of
wavelengthλ . Also, the pressure difference across the
ends of the tube is assumed to be a constant. Therefore,
the flow which is unsteady in laboratory frame(R,0,Z)

becomes steady in the wave frame(r,0,z). The
transformation between these two frames is given by

u=U, w=W− k
R1

, r =R, and z=Z− k
R1

t.

(18)
It is convenient to write the above equations in an
appropriate dimensionless form. This can be done in a
number of ways depending primarily on the choice of the
characteristic length, time, and mass. Consider the
following dimensionless forms depending on the
characteristic lengthR1, λ and the characteristic massM.
The other dimensionless quantities are given by

r =
r

R1
,z=

z
λ
,u=

uR1

kδ
,w=

wR1

k
,h1 =

h1

R1
,δ =

R1

λ

S=
SR2

1
ηk

,z0 =
z0

λ
,L =

L
λ
,h=

h
R1

,d =
d
λ
,R(z) =

R(z)
R1

,

Π =
ΠR3

1
ηλk

,T =
T

βR1
,C =

C
∆C

, p=
p

R2
1

,andq=
q

2πR1k
, (19)

whereq is the volume flow rate in the moving coordinate
system.
Consider another dimensionless parameter:b∗ = b1

a1kR2
1

is

the sisko fluid parameter,Pr=
a1
ρk is the Prandtl number,

ν= µ
ρ is the kinematic viscosity,β is the adverse

temperature gradient,ε=a/R1 is the amplitude ratio,

Ec= k2

R3
1cp

is the Eckert number,Br = PrEc is the

Brickmann number,Sc = k
D is the Schmidt number,

Sr = DKT β R1
kTm

∆C is the Soret number andγ1 = γa1
R1

is
Kudsen number or non-dimensional slip parameter. Also,
θ ∗

1 = θ1
β R1

and C∗
1 = C1

∆C . The bars mark refer to the
dimensionless quantities. From now on, these will be
omitted for simplicity.
The dimensionless effective radius of the tubeR(z)
becomes:

R(z)=







1−m(z+L) L < z<−z0,

1−m(z+L)− H
2 [1+ cosπz

z0
] −z0 ≤ z≤ z0,

1−m(z+L) z0 < z< d,
(20)

Assuming that the radial velocityu is very small in
comparison with the axial onew. Also, the variation in
the z-direction is smaller than that in the radial one.
Therefore, we may assume thatu << w and ∂w

∂z << ∂w
∂ r .

Also, it follows that the terms∂u
∂ r ,

∂ 2u
∂ r2 ,

∂ 2u
∂z2 may be ignored

[12]. Furthermore, the assumption of long wave length
approximationδ << 1 can be considered. Therefore, the
terms of orderδ and higher may be neglected. So, The
dimensionless governing Eqs. (11)-(16) may be reduced
to as following:
r-component:

∂Π
∂ r

= 0 , (21)
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andz-component:

dΠ
dz

=
1
r

∂
∂ r

(

r[
∂w
∂ r

+b∗(
∂w
∂ r

)n]

)

− w
p
, (22)

1
r

∂
∂ r

(

r
∂T
∂ r

)

+Br

(

(
∂w
∂ r

)2+b∗(
∂w
∂ r

)n+1
)

= 0, (23)

1
r

∂
∂ r

(

r
∂C
∂ r

)

+SrSc
1
r

∂
∂ r

(

r
∂T
∂ r

)

= 0 (24)

The dimensionless volume flow rate in the moving
coordinate system become:

q=

∫ r2

0
wrdr, (25)

The dimensionless boundary conditions (9) and (10) are
then become

u= 2πε sin2πz,w=−1− γ1

(

∂w
∂ r

+b∗(
∂w
∂ r

)n
)

,T = θ ∗
1 ,

C=C∗
1 at r = r2 = R(z)+h1, (26)

u= 0,
∂w
∂ r

= 0,
∂T
∂ r

= 0,
∂C
∂ r

= 0 at r = 0, (27)

and
h1 = ε cos2πz. (28)

Now, the system of Eqs. (17) and (21)-(25) are nonlinear
partial differential equations. They are difficult to be
solved exactly. Therefore, we are forced to consider an
approximate solution by using a perturbation technique.
This technique is considered in the following section.

3 An approximation solution

The following perturbation technique depends mainly on
considering the small parameter of Sisko Fluidb∗. To solve
the nonlinear system of Eqs. (17) and (21)-(25) under the
appropriate boundary conditions as given by Eq. (26) and
(27), we shall assume that any physical quantity, such as
w, Π , T, C, q andQ̂ may be represented as:

ξ = ξ0+b∗ξ1+ ........, (29)

whereξ0 is the undisturbed quantity andξ1 is the first
perturbed one.
Substituting from Eq. (29) into the system of Eqs. (17)
and (21)-(25) and collect the terms of like powers ofb∗.
This procedure yields zero and first order systems of
partial differential equations with the corresponding
boundary conditions. Because of the complexity in
treating these orders, we shall study the solutions in case
of small intestine or artery, in accordance with the
physical meaning of the length of the diameters of small
arteries. Therefore, we may assume thatr << 1. Through
the following subsections, we shall consider these orders:

3.1 The zero-order system

In the absence of the sisko fluid parameterb∗, the fluid
becomes a Newtonian one. Therefore, the zero-order
system resulted in without any non-Newtonian
parameters as follows:
r-component:

∂Π0

∂ r
= 0, (30)

equation (30) decides thatΠ0 is a function on z only.
z-component:

dΠ0

dz
=

1
r

∂
∂ r

(

r
∂w0

∂ r

)

− w0

p
, (31)

1
r

∂
∂ r

(

r
∂T0

∂ r

)

+Br

(

∂w0

∂ r

)2

= 0, (32)

1
r

∂
∂ r

(

r
∂C0

∂ r

)

+SrSc
1
r

∂
∂ r

(

r
∂T0

∂ r

)

= 0. (33)

q0 =
∫ r2

0
w0rdr, (34)

Q̂0 =
1
τ

∫ τ

0
Q0dτ. (35)

In accordance with the boundary conditions:

u0 = 2πε sin2πz, w0 =−1− γ1

(

∂w0

∂ r

)

,

T0 = θ ∗
1 , C0 =C∗

1 at r = r2 = R(z)+h1, (36)

u0 = 0,
∂w0

∂ r
= 0,

∂T0

∂ r
= 0, and

∂C0

∂ r
= 0atr = 0. (37)

The solutions of Eqs. (31)-(35) with the boundary
conditions (36) and (37) are:

Q0 = q0+
r2
2

2
, (38)

Q̂0 = q0+
1
2

(

[R(z)]2+
ε2

2

)

. (39)

G0(z)=−
4+2γ1r2(z)

p

γ1(r2(z))3



Q̂0−
1
2

(

[R(z)]2+
ε2

2

)

+
(r2(z))2

2+ γ1r2(z)
p



 ,

(40)

w0(r,z) = d1(z)− pG0(z), (41)

T0(r,z) = d2(z)r
4+d3(z), (42)

and
C0(r,z) = d4(z)r

4+d5(z), (43)

where G0(z) =
dΠ0
dz and d1, d2,.....,d5 are given in the

appendix.
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3.2 The first-order system

The zero-order solutions obtained in the previous
subsection will be combined through the first-order
governed system to obtain non-homogeneous set of linear
partial differential equations. This procedure will be
outlined as follows:
r-component:

∂Π1

∂ r
= 0 , (44)

As before, eq. (44) indicates thatΠ1 is a function onzonly.
z-component:

dΠ1

dz
=

1
r

∂
∂ r

(

r[
∂w1

∂ r
+(

∂w0

∂ r
)n]

)

− w1

p
, (45)

1
r

∂
∂ r

(

r
∂T1

∂ r

)

+Br

(

2
∂w0

∂ r
∂w1

∂ r
+(

∂w0

∂ r
)n+1

)

= 0,(46)

1
r

∂
∂ r

(

r
∂C1

∂ r

)

+SrSc
1
r

∂
∂ r

(

r
∂T1

∂ r

)

= 0 (47)

q1 =

∫ r2

0
w1rdr, (48)

Q̂1 =
1
τ

∫ τ

0
Q1dτ. (49)

in accordance with the appropriate boundary conditions:

u1 = 0, w1 =−γ1

(

∂w1

∂ r
+(

∂w1

∂ r
)n
)

, T1 = 0,

C1 = 0 at r = r2 = R(z)+h1, (50)

u1 = 0,
∂w1

∂ r
= 0,

∂T1

∂ r
= 0, and

∂C1

∂ r
= 0 at r = 0. (51)

The solutions of Eqs. (45)-(49) with the boundary
conditions (50) and (51) are:

Q1 = q1+
r2
2

2
, (52)

Q̂1 = q1+
1
2

(

[R(z)]2+
ε2

2

)

. (53)

G1(z) =
1

r6
2

288(7−24ln r2√
p)−

r6
2

32(1−8ln r2√
p)+

γ1r5
2

8 (1+8ln r2√
p)

[Q̂1−
1
2
([R(z)]2+

ε2

2
)− r2

2
2
(
d1(z)
2p

)n(2γ1rn+2
2 (

1
n+3

+2ln
r2√

p
)

+γ1rn
2+2

rn+3
2

n+3
(

1
n+3

−2ln
r2√

p
))−2(

d1(z)
2p

)n
rn+4
2

(n+3)2(n+4)2

(10+3n−2(3+n)(4+n) ln
r2√

p
))], (54)

w1(r,z) = d6(z)+G1(z)
r4
2

16
(1−8ln

r2√
p
)

+2(
d1(z)
2p

)n rn+3
2

n+3
(

1
n+3

−2ln
r2√

p
), (55)

T1(r,z) = Br(
d1(z)G1(z)r5

500p
(−11+40ln

r2√
p
)

+(
d1(z)
2p

)n+1 rn+4
2

(n+3)(n+4)3

×(−8−3n+2(3+n)(4+n) ln
r2√

p
)

−(
d1(z)
2p

)n+1 rn+2
2

(n+2)2)+d7(z), (56)

C1(r,z) = −BrSrSc(
d1(z)G1(z)r5

500p
(−11+40ln

r2√
p
)

+(
d1(z)
2p

)n+1 rn+4
2

(n+3)(n+4)3

×(−8−3n+2(3+n)(4+n) ln
r2√

p
)

−(
d1(z)
2p

)n+1 rn+2
2

(n+2)2)+d8(z), (57)

whereG1(z) =
dΠ1
dz and d6, d7 and d5 are given in the

appendix. From Eqs. (40) and (54) the expression for the
pressure gradient take the following form:

G(z) =

−
4+2γ1r2(z)

p

γ1(r2(z))3



Q̂0−
1
2

(

[R(z)]2+
ε2

2

)

+
(r2(z))2

2+ γ1r2(z)
p



+b∗

×(
1

r6
2

288(7−24ln r2√
p)−

r6
2

32(1−8ln r2√
p)+

γ1r5
2

8 (1+8ln r2√
p)

[Q̂1−
1
2
([R(z)]2+

ε2

2
)

− r2
2
2
(
d1(z)
2p

)n(2γ1rn+2
2 (

1
n+3

+2ln
r2√

p
)

+γ1rn
2 +2

rn+3
2

n+3
(

1
n+3

−2ln
r2√

p
))

−2(
d1(z)
2p

)n
rn+4
2

(n+3)2(n+4)2

(10+3n−2(3+n)(4+n) ln
r2√

p
))]), (58)

whereG(z) = dΠ
dz . From Eqs. (41) and (55) the expression

for the axial velocity component take the following form:

w(r,z) = (d1(z)− pG0(z))+b∗(d6(z)

+G1(z)
r4
2

16
(1−8ln

r2√
p
)+2(

d1(z)
2p

)n rn+3
2

n+3

×(
1

n+3
−2ln

r2√
p
)). (59)
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The pressure rise∆P and the friction force∆F (at the
wall), in the tube of lengthL, in their non -dimensional
forms, are given by

∆P=

∫ L

0
G(z)dz

=
∫ d0

0
G(z)dz+

∫ d0+L0

d0

G(z)dz+
∫ L

d0+L0

G(z)dz, (60)

∆F =
∫ L

0
r2
2(−G(z))dz

=

∫ d0

0
r2
2(−G(z))dz+

∫ d0+L0

d0

r2
2(−G(z))dz

+

∫ L

d0+L0

r2
2(−G(z))dz, (61)

Because of the complexity in evaluating these
integrations, the value of them are computed numerically.
I think that our problem deals with non-Newtonian Sisko
fluid. Also, the flow streaming through the porous
medium with slip condition. Furthermore, peristaltic
motion with mild stenosis through tapered artery are
considered. Moreover, the effects of chemical reaction
with heat transfer rea taken into account. Therefore, this
problem can be considered as a general problem. In case
of ignoring these consideration (b∗, γ1, h andφ tends to
zero andp tends to∞), the terms of the pressure rise and
friction force give the previous results obtained by
Shapiro et al. [4].

4 Discussion of the results

In what follows, numerical calculations will be made.
It is convenient to classify these calculations into two
categories, as follows:

4.1 Pumping characteristics

In order to identify the quantitative effects of various
parameters on the obtained distributions of the axial
velocity w, temperatureT, concentrationC, pressure rise
∆P and friction force, the mathematical software
(Mathematica) is used. Some important results are
graphically displayed in Figures 2-8 as follows.

Figures 2-A describes the variation of axial velocity
w versus (vs)z-axis for different values of the slip
parameterγ1. It is observed that the axial velocity
increases with the increase ofγ1. It is also found that, in
case of no-slip condition (γ1 = 0), the value of the axial
velocity is lower than that in case of slip condition.

Figures 2-B indicates the variation of axial velocityw(z)
for different values of permeability parameterp. It is
showed that the axial velocity decreases with the increase
of p. Figures 2-C shows the variation of axial velocity
w(z) for different values of power indexn. It is indicated
that, whenn is an integer, the axial velocity decreases
with the increase ofn. Furthermore, it is observed that in
case of Newtonian behaviorn= 1, the values of the axial
velocity is greater than those in case of shear thinning
behaviorn < 1 and also for shear thickening onen > 1.
Figures 2-D indicates the variation of axial velocityw(z)
for different values of maximum height of stenosish. It is
observed that the domain of the maximum height of
stenosish becomes (0.01≤ z≤ 0.71), the axial velocity
decreases with the increase ofh. Meanwhile, at the
complementary of this domain, the curves of this velocity
are coincide to each others. It is also found that, in case of
no-stenosis (h = 0), the values of the axial velocity is
greater than that in case of stenosis. Therefore, for the
diseases of blood clot, the existence of the clots at the
artery straitens the blood flow and leads to a harmful
effects for the body organs [10].

Figure 3-A indicates the variation of axial velocityw
vs radial distancer for different values of the taper angle
φ . The importance of the effect of vessel tapering with the
shape of stenosis deserves special attention. Also, the
tapering has a significant aspect arterial system [12].
Therefore, we are interested in studying the flow through
a tapered tube with stenosis. It is observed that in case of
the diverging tapered arteryφ = 0.05(> 0), the values of
the axial velocity are greater than those in case of the non
tapered arteryφ = 0 and the convergent tapered one
φ =−0.05(< 0). Figures 3-B shows the variation of axial
velocity w(r) for different values of the Sisko parameter
b∗. It indicates that the ratio of a power-low part to a
viscous part in a Sisko fluid if (n 6= 1). The case of (n 6= 1,
b∗1 = 0) denotes a viscous Newtonian fluid. Meanwhile,
the case of (b∗ → ∞) describes a purely power-low model
[24]. It is noted that the axial velocity decreases with the
increase ofb∗. Furthermore, the transmission of axial
velocity curves through a Newtonian fluid (b∗ = 0) is
substantially greater than that in case of a Sisko fluid.
Furthermore, the influence of this parameter is in
agreement with the previous work of Mekheimer and El
Kot [24]. Figure 3-C indicates the variation of axial
velocity w(r) for different values of the flow rateQ. It is
observed that the axial velocity increases by the
increasing ofQ.

The variation of temperature profileT(z) for different
values of Brickmann numberBr is shown in figure 4-A. It
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is observed that the temperature increases with the
increase ofBr . Figure 4-B describes the variation of
temperatureT(z) for different values of the Sisko
parameterb∗. It is noted that the temperature increases
with the increase ofb∗. Moreover, the transmission of the
temperature curves through a Sisko fluid is substantially
greater than that through a Newtonian fluid (b∗ = 0) .
Figure 5-A describes the variation of temperatureT(r) for
different values of permeability parameterp. It is
observed that the temperature decreases with the increase
of p. The variation of temperature profileT(r) for
different values of power indexn is described in figure
5-B. It is indicated that in case of Newtonian behavior
n= 1, the values of the temperature is lower than those in
case of shear thinning behaviorn < 1 and also for shear
thickening onen > 1. Figure 6-A indicates the variation
of concentrationC vs z-axis for different values of
permeability parameterp. It is cleared that the
concentration increases with the increase ofp. Figure 6-B
describes the variation of concentrationC vs z-axis for
different values of Soret numberSr . It is noted that the
concentration decreases with the increase ofSr .

The pressure rise∆P is plotted vs the mean flow rate
for different values of Sisko parameterb∗ in figure 7-A. It
is observed that with an increase inb∗, the pressure rise
increase. Also, it is found that the transmission of the
curves through a Sisko fluid (b∗ 6= 0) is greater than that
through a Newtonian fluid (b∗ = 0). Furthermore, the
peristaltic pumping is defined at the region when (∆P> 0
and Q > 0) (pumping region). It os noticed that the
peristaltic pumping region becomes wider as the Sisko
parameterb∗ increases. Figure 7-B describes the variation
of pressure rise vs the mean flow rate for different values
of taper angleφ . It is observed that for a shear thickening
fluid (n = 2), there exist a critical flow rateQc at
(Q = 0.02) approximately. As the domain of theQ
becomes (−0.1 ≤ Q ≤ Qc), in case of the diverging
tapered arteryφ = 0.05(> 0), the values of the pressure
rise are greater than those in case of the non tapered artery
φ = 0 and the convergent tapered oneφ = −0.05(< 0).
Meanwhile, the inverse occurs at the complementary of
this domain. Furthermore, it is noticed that, for a shear
thinning fluid (n = 0.5), in case of converging tapering
artery φ = −0.05(< 0), the values of pressure rise are
greater than those in case of the non tapered oneφ = 0
and the diverging tapered oneφ = 0.05(> 0). Therefore,
the blood can flow freely through diverging arteries,
which have less effect of pressure drop [24]. The pressure
rise is plotted vs the mean flow rate for different values of
permeability parameterp in figure 7-C. It is observed that

the pressure rise decrease with the increase ofp. Figure
7-D shows the variation of pressure rise vs the mean flow
rate for different values of slip parameterγ1. It is found a
critical flow rateQc at (Q = 0.03) approximately. As the
domain of theQ becomes (−0.1≤ Q≤ Qc), the pressure
rise decrease with the increase ofγ1. Meanwhile, the
inverse occurs at the complementary of this domain. From
the pervious figures, it is found that the increase in mean
flow rate decreases the pressure rise. Therefore, the
maximum flow rate is achieved at zero pressure rise.
Also, the maximum pressure rise occurs at zero flow rate.
Finally, the relation between pressure rise and mean flow
rate is linear.

The friction force at the wall∆F is plotted vs the
mean flow rate for different values of permeability
parameterp in figure 8-A. It is observed that the friction
force increase with the increase ofp. Figure 8-B shows
the variation of friction force vs the mean flow rate for
different values of slip parameterγ1. It found a critical
flow rateQc at (Q= 0.01) approximately. As the domain
of the Q becomes (−0.1 ≤ Q ≤ Qc), the friction force
increase with the increase ofγ1. Meanwhile, the inverse
occurs at the complementary of this domain. It is noticed
that, from these paragraph and previous paragraph, the
friction force has the opposite behavior compared to the
pressure rise.

Fig. 2: indicates the variation of the axial velocityw with z-axis
for different values ofγ1, p, n andh.
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Fig. 3: indicates the variation of the axial velocityw with r-axis
for different values ofφ , b∗ andQ.

Fig. 4: indicates the variation of the temperature distributionT
with z-axis for different values ofBr andb∗.

Fig. 5: indicates the variation of the temperature distributionT
with r-axis for different values ofp andn.

4.2 Trapping

In addition to the pumping phenomenon, trapping is
considered as another motivating physical phenomenon in

Fig. 6: indicates the variation of the concentrationT for different
values ofp andSr .

Fig. 7: indicates the variation of pressure rise∆P vs mean flow
rate for different values ofb∗, φ , p andγ1.

Fig. 8: indicates the variation of friction force∆F vs mean flow
rate for different values ofp andγ1.

peristaltic motion. As the walls are stationary, trapping
phenomenon may be anticipated that the streamlines have
a shape similar to the walls. However, in the wave frame,
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some streamlines under specific conditions may be
separated to enclose a bolus of fluid particles in closed
streamlines. Therefore, the structure of an internally
circulating bolus of the fluid by closed stream lines is
defined as a trapping. Furthermore, this trapped bolus is
moved forward along with the speed of the peristaltic
wave. Also, bolus is defined as a volume of fluid bounded
by closed streamlines. In addition, the trapping
phenomenon has been discussed by many researchers,
such that Shapiro [4] and Jaffrin [32]. The following
figures illustrate the stream lines graphes for different
values of several parameters.
The effect of the Sisko parameterb∗ on trapping is
illustrated in figure 9. It is observed that the trapped bolus
increases in size by the increasing of the Sisko parameter
b∗. The effect of the slip parameterγ1 is illustrated in
figure 10. It is observed that the size of trapping bolus
increases by the increasing ofγ1. The effects of the
maximum height of stenosish on the trapping are
displayed in figures 11. It is observed that the bolus
increases in size by the increasing ofh. The effects of the
permeability parameterp on the trapping are displayed in
figures 12. It is observed that the bolus decreases in size
by the increasing ofp.

Fig. 9: Streamlines for different values of Sisko parameterb∗.

5 Conclusions

In this study we have presented a theoretical
approach to investigate the effects of heat and chemical
reactions on peristaltic transport of blood flow. The flow
is streaming through a tapered artery with mild stenosis.
The blood is represented by a Sisko model. Furthermore,
the influences of slip condition and porous medium are
studied. The governing equations of motion, energy and

Fig. 10: Streamlines for different values of slip parameterγ1.

Fig. 11: Streamlines for different values of maximum height of
stenosish.

Fig. 12: Streamlines for different values of permeability
parameterp.

concentration are analytically solved by using the long
wavelength and low Reynolds number approximations.
These equations are treated in accordance with the
appropriate boundary conditions. The analytical solutions
depend on a perturbation method. This technique
considered a small Sisko fluid parameterb∗. The
distributions of velocity, stream function, temperature and
concentration are obtained up to the first order. The
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expressions for pressure rise and friction force are
obtained in terms of dimensionless flow rateQ by using
the numerical integration. The numerical calculations are
adopted to obtain the effects of several parameters, such
as the slip parameterγ1, permeability parameterp, the
taper angle, Brickmann numberBr , Soret numberSr and
the maximum height of stenosish, on the above
distributions. Trapping phenomena is also discussed.
The concluding remarks may be drawn as follows:

–Pumping characteristics
1.The axial velocity increases with the increase ofγ1

and by the decrease of bothp andb∗.
2.As the domain of the maximum height of stenosis

h becomes (0.01 ≤ z ≤ 0.71), the axial velocity
decreases with the increase ofh. Meanwhile, at
the complementary of this domain, the curves of
this velocity are coincide to each others.

3.The temperature increases with the increase ofBr .
4.The concentration decreases with the increase of

Sr .
5.As the domain of the Q becomes

(−0.1 ≤ Q ≤ 0.02), in case of the diverging
tapered arteryφ = 0.05(> 0), the values of the
pressure rise are greater than those in case of the
non tapered arteryφ = 0 and the convergent
tapered oneφ = −0.05(< 0). Meanwhile, the
inverse occurs at the complementary of this
domain.

6.The increase in mean flow rate decreases the
pressure rise. Therefore, the maximum flow rate is
achieved at zero pressure rise. Also, the maximum
pressure rise occurs at zero flow rate.

7.There exist a critical flow rateQc at (Q = 0.01)
approximately. As the domain of theQ becomes
(−0.1≤ Q≤ Qc), the friction force increases with
the increase ofγ1. Meanwhile, the inverse occurs
at the complementary of this domain.

8.The friction force has the opposite behavior
compared to the pressure rise.

–Trapping
1.The size of the trapped bolus decreases with the

increasing of permeability parameterp.
2.The size of the trapped bolus increases with the

increasing of Sisko parameterb∗, slip parameter
γ1 and maximum height of stenosish.

To the best of our knowledge, This study is very
important in the field of fluid mechanics because it have
many applications in many scientific fields such as
medicine, medical industrial and others.

Caption of figures

–Figure 2-A is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, Q = 3, p = 0.01,
b∗ = 0.1, ε = 0.1, n = 0.5, φ = 0.05, h = 0.2 and
(γ1 = 0,0.001,0.002).

–Figure 2-B is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, Q = 3, γ1 = 0.5,
b∗ = 0.1, ε = 0.1, n = 1.7, φ = 0.05, h = 0.1 and
(p = 0.5,2,10).

–Figure 2-C is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, Q = 3, γ1 = 0.5,
b∗ = 0.1, ε = 0.1, p = 3, φ = 0.05, h = 0.1 and
(n= 1,0.25,1.5).

–Figure 2-D is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, Q= 3, γ1 = 0.01,
b∗ = 0.01, ε = 0.1, p = 0.01, φ = 0.05, n = 2 and
(h= 0,0.1,0.2).

–Figure 3-A is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, Q = 3, γ1 = 0.5,
b∗ = 0.01, ε = 0.1, p = 0.01, n = 2, h = 0.1 and
(φ = 0,0.005,−0.005).

–Figure 3-B is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, Q = 3, γ1 = 0.5,
n = 1.7, ε = 0.1, p = 3, φ = 0.05, h = 0.1 and
(b∗ = 0,0.01,0.02).

–Figure 3-C is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, n= 1.7, γ1 = 0.5,
b∗ = 0.2, ε = 0.1, p = 3, φ = 0.05, h = 0.1 and
(Q= 3,4,5).

–Figure 4-A is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, n= 0.5, γ1 = 0.8,
b∗ = 0.2, ε = 0.01, p = 0.01, φ = 0.05, θ ∗

1 = 10,
Q=3, h= 0.1 and (Br = 0.2,0.3,0.4).

–Figure 4-B is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, n= 0.5, γ1 = 0.8,
Br = 0.2, ε = 0.01, p = 0.01, φ = 0.05, θ ∗

1 = 10,
Q=3, h= 0.1 and (b∗ = 0,0.1,0.2).

–Figure 5-A is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, n= 0.5, γ1 = 0.8,
Br = 0.1, ε = 0.01, b∗ = 0.01, φ = 0.05, θ ∗

1 = 10,
Q=3, h= 0.1 and (p = 0.1,0.2,0.3).

–Figure 5-B is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, b∗ = 0.01,
γ1 = 0.8, Br = 0.1, ε = 0.01, p = 0.01, φ = 0.05,
θ ∗

1 = 10,Q=3, h= 0.1 and (n= 1,0.25,1.5).
–Figures 6-A is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, n= 1.5, γ1 = 0.8,
Br = 0.1, Sc = .4, Sr = 0.5, ε = 0.01, b∗ = 0.2,
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φ = 0.05, c∗1 = 10, Q=3, h = 0.1 and
(p = 0.01,0.02,0.03).

–Figures 6-B is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, n= 1.5, γ1 = 0.8,
Br = 0.1, Sc = .4, p = 0.01, ε = 0.01, b∗ = 0.2,
φ = 0.05, c∗1 = 10, Q=3, h = 0.1 and
(Sr = 0.5,0.6,0.7).

–Figure 7-A is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, p = 3, ε = 0.1,
n = 1.5, γ1 = 0.5, φ = 0.05, h = 0.2 and
(b∗ = 0,0.1,0.2).

–Figure 7-B is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, γ1 = 0.5, b∗ = 0.1,
ε = 0.1, n = 2, p = 3, h = 0.1 and
(φ = 0,0.05,−0.05).

–Figure 7-C is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, γ1 = 0.5, b∗ = 0.1,
ε = 0.1, n= 2, φ = 0.05,h= 0.1 and (p = 3,7,15).

–Figure 7-D is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, h= 0.1, b∗ = 0.1,
ε = 0.1, p = 3, φ = 0.05, n = 2 and
(γ1 = 0.5,0.6,0.7).

–Figure 8-A is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, ε = 0.1, n = 2,
γ1 = 0.5, φ = 0.05,b∗ = 0.1, h= 0.1 and (p = 2,4,9).

–Figure 8-B is prepared for various values of the
parameters:L = 1, d = 2, z0 = 0.8, φ = 0.05,
b∗ = 0.1, ε = 0.1, n = 2, p = 4, h = 0.1 and
(γ1 = 0.5,0.6,0.7).

–Figure 9: Stream lines forL = 1, d = 2, z0 = 0.8, p =

0.001,ε = 0.1, n= 1.7, γ1 = 0.5, φ = 0.05,h= 0.12,
Q= 3 and (b∗ = 0.2,0.205,0.21).

–Figure 10: Stream lines forL = 1, d = 2,z0 = 0.8,p =

0.001,ε = 0.1, n= 1.7, b∗ = 0.2, φ = 0.05, h= 0.1,
Q= 3 and (γ1 = 0.5,0.53,0.55).

–Figure 12: Stream lines forL = 1, d = 2,z0 = 0.8,p =

0.001,ε = 0.1, n= 1.7, b∗ = 0.2, φ = 0.05,γ1 = 0.5,
Q= 3 and (h= 0.1,0.11,0.12).

–Figure 15: Stream lines forL= 1,d= 2,z0 = 0.8, γ1 =

0.5, ε = 0.1,n= 1.7,b∗ = 0.2, φ = 0.05,h= 0.1,Q=

3 and (p = 0.001,0.0015,0.002).

Appendix

The constant coefficientscı ,ı=1,2,....,8 are given by the
following forms:

d1(z) =
pG0(z)−1

1+
γ1r2(z)

2p

,

d2(z) =−Brd2
1(z)

64p ,

d3(z) = θ ∗
1 −d2(z)r4

2(z),

d4(z) =−SrScd2(z),

d5(z) = c∗1−d4(z)r4
2(z),

d6(z) = γ1[G1(z)r3
2(z)(

1
4 +2ln r2√

p)+2( d1(z)
2p )nrn+2

2 ( 1
n+3 +2ln r2√

p)

+( d1(z)
2p )nrn

2]−
G1(z)r4

2(z)
2 ( 1

8 − ln r2√
p)+2( d1(z)

2p )n
rn+3
2

n+3(
1

n+3 −2ln r2√
p),

d7(z) =−Br [
d1(z)G1(z)r5

2(z)
500p (−11+40ln r2√

p)+
4

(n+3)(n+4)3 (
d1(z)
2p )n+1rn+4

2

×(−8−3n+2(3+n)(4+n) ln r2√
p)− (

d1(z)
2p )n+1 rn+2

2
(n+2)2 ],

d8(z) =−SrScd7(z).
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