
Appl. Math. Inf. Sci.10, No. 2, 657-662 (2016) 657

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100225

Some Statistical Quantities of a Quantum System
in Hypergeometric and Negative Hypergeometric
Distributions
Ali Algarni 1 and S. Abdel-Khalek 2,∗

1 Statistics Department, Faculty of Science, King AbdulazizUniversity, Jeddah, Saudi Arabia
2 Mathematics Department, Faculty of Science, Taif University, Taif, Saudi Arabia

Received: 22 Aug. 2015, Revised: 9 Nov. 2015, Accepted: 10 Nov. 2015
Published online: 1 Mar. 2016

Abstract: In this paper we introduce a quantum system of the interaction between a two-level atom and input field initially preparedin
hypergeometric and negative hypergeometric distributions. We study the dynamics of nonlocal correlation measured byvon Neumann
entropy or the field entropy. The statistical properties of the considered field will be discussed through the evolution of Wehrl space
entropy. The relationship between Wehrl space entropy and entanglement will be explored. The effects of the field distribution
parameters on the evolution of statistical quantities willbe examined. It is shown that when the field is closed to the classical state
no quantum correlation can be found and the system return to its separable state.
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1 Introduction

The probability distribution (PD) plays a central role in
quantum optics and quantum information processing. In
the class of atom-field interaction PD is acts the
distribution of the electromagnetic field elements which is
change with time. In this way, the binomial states (BSs)
are intermediate number coherent states in the sense that
they reduce to the number and coherent states in two
different limits. Complementary to the BSs, the negative
binomial states (NBSs) are also introduced and
investigated [1,2,3,4], they interpolate between the
Susskind-Glogower phase states and coherent states [6].

Different generation of the NBSs have been applied.
For example the even and odd NBSs are introduced as the
interpolation state between the even and odd coherent
states and the even and odd quasi-thermal states
depending on the values of the parameters involved. In
this regard the quasi probability distributions of the of the
even and odd NBSs such as Wigner Functions
(W-function) and tomograms have been discussed [7].
Furthermore quantum statistical properties of the even
and odd NBSs.

Entanglement is one of the most peculiar features of
quantum mechanics and the heart of quantum information
theory. It is an important kind of quantum correlations
between two or more systems [8]. The concept of entropy
is used for detecting the squeezing and entanglement [9,
10,11]. The nonlocal nature of entanglement has been
used as essential resources to perform different tasks in
quantum information processing such as quantum
cryptography [12,13], quantum teleportation [14] and
quantum estimation [15]. These quantum information
tasks depend on finding the quantum states in which
entanglement can be created or enhanced. One of these
important states is the non-Gaussian quantum states
which used to perform certain continuous-variable
quantum information tasks, such as quantum error
correction [16], quantum entanglement distillation [17],
and universal quantum computation [18].

It has been noted that ignoring the effect of time
dependence in any quantum system gives an incomplete
picture of the phenomena connected with such a system.
The Jaynes-Cummings model (JCM) for moving atom or
time dependent coupling becomes more realistic model.
Therefore it will be important to consider the effect of
time dependence when studying physical models. It is not
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an easy task to obtain general solutions for
nonconservative quantum system [19], however, some
solutions can be obtained for some particular systems or
under certain conditions. Therefore, some explicit
expressions for the time-dependent dynamical operators
may be obtained in such cases [20]. In a previous paper a
bimodal time-dependent JCM assuming that the
instantaneous position of the particle within the cavity
depends on time have considered. Consequently the
effects of both the velocity and the acceleration have been
taken into account during the interaction process [21].
Also, the problem of the interaction between a three-level
atom and a quantized bimodal cavity field when the
coupling parameter between the atom and the field is
taken to be time dependent by taking the atomic motion
into consideration was considered [22]. It was found that
both of the velocity and detuning parameters play an
essential role in the dynamics of the system entanglement
and geometric phase.

Here, we investigate the statistical properties and
nonlocal correlation between a two-level atom system and
optical field initially prepared the HGSs and NHGSs. The
statistical properties of the field will be studied through
the evolution of the Wehrl space entropy while the
nonlocal correlation or entanglement will be discussed
through the evolution of the von Neumann (field) entropy.
The influence of the initial state of the input field mode
parameters and the two-level atom motion will be
examined.

2 Hypergeometric and negative
hypergeometric states

Recently three quantum states, Polya states (PSs)[23], the
generalized non-classical states related to Hahn
polynomials[24], and negative hypergeometric states
(NHGSs)[25] are introduced as different intermediate
BS-NBS states. The phase properties of the HGSs and
NHGSs based on the Hermitial-phase-operator formalism
are studied [26]. It is found that the number of peaks of
phase probability distribution depicts one peak for the
HGSs and M peaks for the NHGSs. The (HGSs) which
are complementary to the NHGSs are defined as [26,27].

The hypergeometric states (HGSs) which are
complementary to the NHGSs are defined as

|L,M,η〉 =
M

∑
n=0

(

ηL
n

)(

L−ηL
M− n

)−1/2(ηL
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)−1/2

|n〉
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where L is a real number satisfying
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The HGS can be reduced to the BS in certain limit and
the BS to the number and coherent state. The NHGSs is
defined as [27]
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whereβ is real number and s a non-negative integer

satisfyings < Mβ
1−β < M

1−β . The NHGSs is also claimed to
be a intermediate BS-NBS state. One can see that it is
equivalent to the PS and the generalized non-classical
state. Using the following identities
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It is found that the NHGS and PS are equivalent. Thus the
three intermediate BS-NBS states, the PS, the generalized
non-classical state related to Hahn polynomials and the
NHGS are equivalent. In Section 3 of this article, we will
discuss the dynamical properties of the Wehrl space
entropy and entanglement of the single two-level atom
system and optical field initially prepared in the HGS and
NHGS.

Model and its dynamics
The field-atom interaction is a main application in

quantum information and quantum statistic. In this regard
the important and simplest model is known as JCM [28],
which describes interaction between a two-level atom and
optical radiation field. JCM have important significance
because JCM is experimentally realized and it have many
theoretical investigations [29]. Stimulated by the JCM
success, more researchers have paid special attention to
the generalizations by considering new quantum effects
[30].

Here, the model under consideration is an
intensity-dependent JCM of a two-level atom interacting
resonantly with a single mode of the radiation field in a
cavity via multi-photon process where the coupling is
intensity dependent; this coupling preserves the energy of
the system. Under the rotating-wave approximation, the
interaction Hamiltonian of the system reservoir is given
by

Ĥin = G(t)
(

√
â†ââ|0〉〈1|+ â†

√
â†â|1〉〈0|

)

. (4)

Here, |0〉 (|1〉) is the upper (lower) state of a two-level
atom, â†(â) is the creation (annihilation) operator of the
field mode,G(t) is the time dependent coupling between
the two-level atom and field. In the case of neglecting the
atomic motion effectG(t) = g = const. When the time
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dependent couplingG(t) is taken into account, the
transient regime where the coupling varies rapidly with
time t. The generalization from the constant couplingg to
arbitrary time dependent couplingG(t) enables us to
model several new physical situations not discussed
before. A realization of particular interest whenG(t) may
be the time-dependent alignment or orientation of the
atomic/molecular dipole moment using laser pulse [31]
and motion of the atom through the cavity. So, we assume
that the coupling is modeled approximately to be
sinusoidalG(t) = gsin2(t).

The initial state is given by |ψ(0)〉
= |ψA(0)〉⊗ |ψF(0)〉, where|ψA(0)〉 is the initial state of
the two-level atom and|ψF(0)〉 is the initial state of the
input field. The combined two-level atom-field system
can be written as

|ψ(0)〉= |0〉⊗ |ψF(0)〉

=







|L,M,η ,0〉 for the HGSs given by Eq. (1)
M
∑

n=0
Ω M

n (β ,s) |n,0〉 for the NHGSs given by Eq. (3)
.

(5)
The wave function can be obtained as

|ψ(t)〉= exp

[

−i
∫ t

0
HI (τ)dτ

]

|ψ(0)〉 . (6)

All information about the system is carried by either
the wave function (6) or the total (atom-field) density
matrix ρ̂(t) = ρ̂AF(t) = |ψ(t)〉〈ψ(t)|. Therefore, we
evaluate the field reduced density matrixρ̂F(t) via the
relation

ρ̂F (t) = TrA {ρ̂(t)} , (7)

where the subscriptQ means that the trace is taken over the
two-level atom basis. We close this section by evaluating
the Husimi Q functionQF of the field mode in terms of the
diagonal elements of the density operator in the coherent
state basis. We get

QF (β ,β ∗) =
1
π
〈β |ρF (t)|β 〉 (8)

whereρF is the field’s reduced density operator.

3 Statistical properties,Wehrl space entropy
and nonlocal correlation

In this section we turn our attention to the concept of the
classical-like (semiclassical) Wehrl entropy [32], as a
very useful measure for describing the time evolution of a
quantum system in phase-space. The atomic Wehrl
entropy is used for detecing the entanglement in quantum
systems [33,34,35]. The Wehrl entropy, introduced as a
classical entropy of a quantum state yields additional
insights into the dynamics of the system, as compared to
other entropies [32]. This semiclassical information

entropy is defined as the coherent-state representation of
the density matrix [32,36] via

SW (t) =−
∫

QF (β , t) lnQF (β , t)d2β , (9)

whereQF (β , t) is given by (8) and d2β = |β |d |β |dΘ .
We can specialize things by recourse to the Wehrl phase
distribution (Wehrl PD), defined to be the phase density
of the Wehrl entropy [37,38], i.e.,

SΘ (t) =−
∫

QF (β , t) lnQF (β , t) |β |d |β | (10)

whereΘ = arg(β ).
It is well known that the nonlocal correlation or

entanglement between the two-level atom and field state
can be quantified by the von Neumann entropy [39,40],
which is generally defined in terms of the reduced field
(atom) density matrix as

SF =−Tr (ρF lnρF) =−
∞

∑
j=0

λ j lnλ j (11)

whereρF = TrA (ρAF) is the reduced density operator of
field F , andλ j are its eigenvalues.
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Fig. 1: The time evolution of the: a) Wehrl space entropySW and
b) von Neumann (field) entropySF of a stationary two-level atom
interacting with field initially prepared in HGD forM = 10, and
with η = 0.5 (solid line) andη = 0.9 (dashed line).

4 Numerical results and discursion

In this section, we discuss a atom-field system whose
dynamics is described by the JC-model with and without
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Fig. 2: The same as Fig.1 but for moving two-level atom case
where the atomic motion is considered throughG(t) = gsin2(t).
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Fig. 3: The time evolution of the: a) Wehrl space entropySW and
b) von Neumann (field) entropySF of a stationary two-level atom
interacting with field initially prepared in NHGD forM = 10 and
with β = 0.5 (solid line) andβ = 0.9 (dashed line).

time-dependent coupling effect. To explore the influence
of the different parameters on the dynamical behavior of
the quantum entanglement, nonclassical properties and
Wehrl entropy of the system under consideration, we have
plotted in Figs 1 and 2 the time evolution of the field
entropy,SF and Wehrl entropySW as a function of the
scaled timegt when the time-dependent coupling is
neglected (i.e. G(t) = g = const.) and considered
(G(t) = gsin2(t)) for various values of the HGSs. Figs.
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Fig. 4: The same as Fig.3 but for moving two-level atom case
where the atomic motion is considered throughG(t) = gsin2(t).

3,4 are the same as Figs. 1,2 but the field starts from
NHGSs.

Fig. 1 depicts the dynamical behavior of the Wehrl
entropySW (t) of the field initially prepared in HGS for
M = 10. The dashed red line line is forη = 0.9 and the
solid blue line is for η = 0.5. Generally, the Wehrl
entropy increases with increasing time and stabilizes at
the maximal values after long time, indicating that the
field becomes more quantum mechanical in this limit.
From another side,SW (mπ) = 1+ ln(π) detect the field is
more classical forη = 0.5, but in the case of high values
of the parameterη (e.g.η = 0.9) the initial value ofSW at
t = mπ increase to be 2.8. As the parameterη increases
the field being more quantum. A saturation behavior of
SW is obtained through the time intervalπ/4≤ t ≤ 3π/4.
A growth of SW is observed 0≤ gt ≤ π/4 and the
decreasingπ/4≤ gt ≤ 3π/4.

To describe the dynamical behavior of the
entanglement in this model, it is useful to investigate the
variation of the field entropy as shown in Fig. 1(b). It is
observed that the field entropy has a different order as a
function of the scaled time in the stationary two-level
atom case. Interestingly, after an initial change with rapid
oscillatory, in a periodic manner through every periodic
intervalmπ ≤ gt ≤ (m+1)π . Also, the system returns to
its separable state (zero value of field entropy) which
corresponding to minimum value of Wehrl entropy and
the classicality of the field. These results resported that
the strong correlation between the field entropy and Wehrl
entropy. On the other hand through the comparison
between the solid curve and dashed curve it is clear that
Wehrl entropy is very sensitive to the initial field
distribution parameter so it is gives a good description for
the statistical properties of the field.
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According to Fig.2 we can see that the
time-dependent coupling does not a strong effect the time
evolution of the Wehrl entropy in the presence of the
atomic motion. In this case the only effect appear though
the change the periodic time fromgt = mπ in the
stationary atom case togt = 2mπ the moving atom case.
The atom-field entanglement or nonlocal correlation is
affected by the atomic motion (see Fig.2 (b)). It is
observed that a short time around the periodic time these
no quantum correlation observed where the field is more
classical in this interval.

Fig. 3 illustrates the influence of the changing the
initial field state or the distribution of the input field
elements from the HGSs to the NHGSs on the time
evolution of the atom-field entanglement. From another
side, the dependance on the time-dependent coupling is
shown in Fig. 4 (a,b), where the field entropy and Wehrl
entropy are plotted as a function of the indexgt. As can
be seen, the field entropy and Wehrl entropy have a
periodic behavior during the time evolution in the case
case of high and low value of the NHGSs parameters.
Also, the field entropy exhibiting the phenomena of
sudden death and sudden birth of entanglement.

5 Conclusion:

In conclusion, we have analyzed the dynamics of a
two-level atom interacting with field initially in HGSs and
NHGSs with time-dependent coupling effect. We have
investigated the quantum features sudden birth and
sudden death of entanglement, and statistical properties.
We have established the analytical results for certain
parametric conditions and we analyze the influence of
initial field distribution parameters on the entanglement
and Wehrl entropy. We have determined the different
situations of the atom-field system for which the
time-dependent coupling effect and atomic motion are
very significant for this model. Finally, we have explored
an interesting relation between the atom-field
entanglement and Wehrl entropy behavior during the time
evolution where it is shown that the amount of atom-field
entanglement can be enhanced as the field tends to be
more quantum. Also, when the field is closed to the
classical state no quantum correlations can be obtained
and the system return to its separable state.
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