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Abstract: A general method for constructing families of pairing-friendly elliptic curves is the Brezing-Weng method. In many cases,
the Brezing-Weng method generates curves with discriminant D = 1 or 3 and restricts the form ofr(x) to be a cyclotomic polynomial.
However, since we desire a greater degree of randomness on curve parameters to maximize security, there have been studies to develop
algorithms that are applicable for almost arbitrary valuesof D and more various forms ofr(x). In this paper, we suggest a new method to
construct families of pairing-friendly elliptic curves with variableD and no restriction on the form ofr(x) for arbitraryk by extending
and modifying the Dupont-Enge-Morain method. As a result, we obtain complete families of curves with improvedρ-values for
k= 8,12,16,20 and 24. We present the algorithm and some examples of our construction.
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1 Introduction

Pairings have been crucial primitives for a number of
novel and functional cryptographic schemes such as one
round tripartite key-exchange [16], identity-based
encryption [5], short signatures [6] etc. Up to now, several
efficient pairings have been suggested such as the EtaT
pairing [2], the Ate pairing [14], the Atei pairing [26], the
R-ate pairing [19] and the optimal ate pairing [25]. Since
all these pairings are usually defined on elliptic curves
over finite fields, it is important to construct suitable
elliptic curves in order to build an efficient pairing-based
system for all kinds of applications as well as for all
desired levels of security. Freeman, Scott and Teske [12]
called such an elliptic curveE over a finite fieldFq, where
q is a prime or a prime power, as apairing-friendlycurve
which has a large prime factorr of the order of the elliptic
curve groupE(Fq) and a small embedding degreek with
respect tor. Here, the embedding degreek is defined as
the smallest integer such thatr dividesqk−1.

To construct a pairing-friendly elliptic curveE over a
finite field Fq, we usually follow two common steps. The
first step is to look for suitable values for curve
parameters(t, r,q) whereq is the size of the finite field,r

is the prime subgroup order andt is the trace of the
Frobenius endomorphism of the curve. The second step is
to find the equation ofE which is usually done by the
Complex Multiplication(CM) method [1]. Considering
the current computational power, the method is valid
when a CM discriminantD defined by a positive
square-free part of 4q− t2 is less than 1015 [24]. For
secure cryptographic schemes based on pairings on
elliptic curves, we consider two values, namely, the ratio
ρ of the size of the base field relative to that of the
prime-order subgroup on the curve and the embedding
degreek. Whenk is given, curves with smallerρ-values
are often more desirable to speed up the arithmetic on the
elliptic curves.

The Cocks-Pinch method [8] and the
Dupont-Enge-Morain method [10] are well-known
methods that generate pairing-friendly ordinary elliptic
curves withρ ≈ 2 for arbitrary embedding degrees. These
methods produce individual curves that do not belong to a
type of a family where the curve parameters are
represented by polynomials. For the parameters in
polynomials, we define the rho-value asρ = degree o f q(x)

degree o f r(x) .
The Cocks-Pinch method has been generalized to the
more efficient method, due to Brezing and Weng [7], that
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provides curve parameters in polynomial types for
ordinary elliptic curves with ρ < 2. However, the
Dupont-Enge-Morain method has yet to be generalized to
produce families of curves with significantly improved
ρ-values. In this paper, we extend and modify the
Dupont-Enge-Morain method and contribute to
overcoming its downside regardingρ-values.

Families of elliptic curves are classified into complete
families and sparse families depending on the existence of
y(x) ∈ Q[x] satisfying the equation
Dy(x)2 = 4q(x)− t(x)2 which is calledCM equation. If
there exists such ay(x), then we say that the family is
complete. Otherwise, we define the family as a sparse
family [12]. When we construct elliptic curves via the
CM method, complete families are more efficient than
sparse families in obtaining elliptic curves because
generating elliptic curves from sparse families involves
transformations on the CM equation into a generalized
Pell equation for finding solutions(x,y) satisfying
Dy2 = 4q(x) − t(x)2. Because of the inefficiency, we
prefer complete families to sparse families to construct
elliptic curves.

A general approach for constructing complete
families of ordinary elliptic curves is the Brezing-Weng
method [7]. The method provides a bulk of existing
constructions for ordinary curves with various embedding
degrees. However, it restrictsr(x) to be a cyclotomic
polynomial and mostly deals with a small CM
discriminantD such asD = 1 or 3. Thus there have been
studies to overcome such limits on the Brezing-Weng
construction. First, Barreto and Naehrig [3] applied the
work, due to Galbraith, McKee and Valenca [13], on
factorizations ofk-th cyclotomic polynomialΦk(u(x)) for
some quadratic polynomialsu(x) in Z[x] and
k ∈ {5,8,10,12} to the Brezing-Weng method for
generating a complete family of pairing-friendly elliptic
curves which have a non-cyclotomic polynomialr(x) for
k = 12 and D = 3. The curves are calledBN curves,
which is the only currently-known complete family of
elliptic curves withρ = 1. After, Kachisa, Schaefer and
Scott [17] suggested a curve construction method with a
non-cyclotomic polynomialr(x), which can be computed
as the minimal polynomial of a randomly chosen element
of Q(ζl ), where ζl is a primitive l -th root of unity in
K =Q[x]/(r(x)).

Next, for security reason, some methods with various
discriminantsD have been suggested which are also
based on the Brezing-Weng method ([4], [9], [12], [20],
[21] etc.). For example, Freeman, Scott and Teske [12]
suggested families of curves with a variable discriminant
by substitutingx with Dx2 on the existing Brezing-Weng
construction. However, because these families preserved
theρ-values, the method could not provide improvements
on ρ-values.

On the other hand, Scott and Barreto [23] proposed an
algorithm to remove the restrictions onr(x) andD which
does not rely on the Brezing-Weng method but it is
computationally inefficient due to its exhaustive searching

step for the suitable values for curve parameters.

In this paper, we present a new construction of
pairing-friendly ordinary elliptic curves by extending and
modifying the Dupont-Enge-Morain method. Our new
method enables to derive families having various
polynomials r(x), and it also produces the curve
parameters for variable discriminantsD without an
assumption that a fieldK contains a square root of a given
−D, which is required for the Brezing-Weng method.

As a result, our construction provides complete
families for k = 8,12,16,20 and 24 with improved
ρ-values. These improvements compared to the known
best results are given in Table 1.

The paper is organized as follows. In Section2, we
review basic definitions and properties related to the
construction of pairing-friendly elliptic curves. We
propose a new approach to construct families of curves by
extending and modifying the Dupont-Enge-Morain
method in Section3. We provide examples of curves
constructed by our new method in Section4. Finally, we
draw conclusions in Section 5.

2 Preliminaries

In this section, we review basic definitions, properties
and some well-known methods for constructing pairing-
friendly elliptic curves. Refer to the paper [12] for further
details.

Let E be an elliptic curve defined over a prime field
Fq andr be a large prime number which divides the order
of E(Fq). A pairing-friendly curve is formally defined as
follows.

Definition 1([12], Def.2.3).Suppose E is an elliptic curve
defined over a finite fieldFq. We say that E is pairing-
friendly if the following two conditions hold:

(1) there is a prime r≥√
q dividing the order of E(Fq),

and
(2) the embedding degree k of E with respect to r is

less than1
8 log2 r.

Such pairing-friendly ordinary elliptic curves can be
constructed if and only if the following conditions hold:

(C1)q is a prime or a prime power.
(C2) r is a prime.
(C3) t is relatively prime toq.
(C4) r dividesq+1− t
(C5) r|qk−1 andr ∤ qi −1 for 1≤ i < k.
(C6)Dy2 = 4q− t2 for some sufficiently

small positive integerD and some integery.

Now we recall two typical algorithms, due to
Cocks-Pinch and Dupont-Enge-Morain, to generate
individual pairing-friendly elliptic curves that take
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constant parameters(t, r,q) satisfying the above six
conditions. In other words, both the Cocks-Pinch
algorithm and the Dupont-Enge-Morain algorithm gives
elliptic curves not in families.

Algorithm 1 Cocks-Pinch method [8]

Input: a positive integerk, a positive square-free integerD< 1015

Output:t, r, q

1: Let r be a prime such thatk|r −1 and(−D
r ) = 1.

2: Letz be ak-th primitive root of unity inZ/rZ.
3: Let t0 = z+1.
4: Lety0 =

(t0−2)√
−D

(mod r).

5: Chooset,y∈ Z such thatt ≡ t0 mod r andy≡ y0 mod r.
6: Letq= 1

4(t
2+Dy2) . If q is a prime, then returnt, r,q.

Dupontet al used the following property to determine
r that satisfies the three conditions (C4), (C5) and (C6)
simultaneously.

Lemma 1([18], Corollary IV 8.4). Let f(x),g(x) be
polynomials in a field K. Then f(x) and g(x) have a
common zero in̄K if and only if Resx( f (x),g(x)) = 0.

Algorithm 2 Dupont-Enge-Morain method [10]
Input: a positive integerk
Output:t, r, q

1: Compute the resultantR(a) = Resx(Φk(x − 1),a + (x −
2)2) ∈ Z[a].

2: Choosea ∈ Z of the formDy2 with a positive square-free
integerD ≤ 1015 such thatR(a) is a prime.

3: Setr = R(a).
4: Computeg(x) = GCD(Φk(x−1),a+(x−2)2) in Fr [x].
5: Let t0 ∈ Fr be a root of the polynomialg(x).
6: Let t ∈ Z such thatt ≡ t0 (modr).
7: Letq= 1

4(t
2+Dy2). If q is a prime, then returnt, r,q.

Both methods produce individual curves withρ ≈ 2
for arbitrary embedding degrees. Brezing-Weng [7]
generalizes the Cocks-Pinch method whereby the
unknowns(t, r,q) live in the ring of polynomials with
rational coefficients instead of in the ring of integers with
ρ < 2.

To extend constant curve parameters to polynomial
types, we give the definition of polynomials representing
primes.

Definition 2([12], Def.2.5).Let f(x) be a polynomial with
rational coefficients. We say f represents primes if the
following conditions are satisfied:

(1) f(x) is non-constant,
(2) f(x) has a positive leading coefficient,
(3) f(x) is irreducible,
(4) f(x) ∈ Z for some x∈ Z, and
(5) gcd( f (x) : x, f (x) ∈ Z) = 1.

Definition 3([12], Def.2.6).A polynomial f(x) ∈ Q[x] is
integer-valued if f(x) ∈ Z for every x∈ Z.

Next we define families of pairing-friendly curves.

Definition 4([12], Def.2.7). Let t(x), r(x), and q(x) be
nonzero polynomials with rational coefficients.
(i) For a given positive integer k and a positive

square-free integer D, the triple(t, r,q) parameterizes
a family of elliptic curves with embedding degree k
and discriminant D if the following conditions are
satisfied:
(1) q(x) = p(x)m for some m≥ 1 and p(x) that

represents primes,
(2) r(x) is non-constant, irreducible, integer-valued,

and has a positive leading coefficient,
(3) r(x) divides q(x)+1− t(x),
(4) r(x) dividesΦk(t(x)−1),

whereΦk is the kth cyclotomic polynomial,
(5) the CM equation Dy2 = 4q(x)− t(x)2 has

infinitely many integer solutions(x,y).
If these conditions are satisfied, we refer to the triple
(t(x), r(x),q(x)) as a family.

(ii) For (t(x), r(x),q(x)) as in (i), if x0 is an integer and E
is an elliptic curve overFq(x0) with the trace t(x0), then
we say E is a curve in the family(t(x), r(x),q(x)).

(iii) We say that a family(t(x), r(x),q(x)) is ordinary
if gcd(t(x),q(x)) = 1.

(iv) We say that a family(t(x), r(x),q(x)) is complete
if there is some y(x) ∈ Q[x] such that
Dy(x)2 = 4q(x)− t(x)2; otherwise we say that the
family is sparse.

Now, we recall the Brezing-Weng method. The output
(t(x), r(x),q(x)) parameterizes a complete family of
elliptic curves for a given embedding degreek and a fixed
discriminantD.

Algorithm 3 Brezing-Weng method [7]

Input: a positive integerk, a positive square-free integerD< 1015

Output:t(x), r(x), q(x) in Q[x]

1: Find an irreducible polynomialr(x) ∈ Z[x] with a positive
leading coefficient such thatK = Q[x]/(r(x)) is a number
field containing

√
−D and the cyclotomic fieldQ(ζ k).

2: Choose a primitivekth root of unityζk ∈ K.
3: Let t(x) ∈Q[x] be a polynomial mapping toζk+1 in K.

4: Lety(x) ∈Q[x] be a polynomial mapping to(ζk−1)√
−D

in K.

(So if
√
−D 7→ s(x), then y(x) ≡ − 1

D (t(x) − 2)s(x)
modr(x)).

5: Letq(x) ∈Q[x] be given by1
4(t(x)

2+Dy(x)2).
6: If q(x) represents prime andy(x0) ∈ Z for somex0 ∈ Z, then

returnt(x), r(x),q(x).

The Brezing-Weng method places some restrictions
on the selection ofr(x). One is that r(x) is only
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considered to be in a cyclotomic polynomial form. The
other is the assumption that the number field
K = Q[x]/(r(x)) contains

√
−D. Scott and Barreto

proposed an algorithm to improve the restrictions by
adopting a cofactor polynomialh(x) and exhaustive
searching suitable values for variables(h′0,h

′
1, . . .,h′n,d).

Algorithm 4 Scott-Barreto method [23]
Input: a positive integerk
Output:h(x), t(x), r(x), q(x) in Q[x]

1: Choose a polynomialt(x) such thatΦk(t(x) − 1) has a
suitable irreducible factorr(x) satisfying Definition 4(i)(2).

2: Writeh
′
(x) = h′0+h′1x+h′2x2+ . . .+h′nxn for a smalln∈ Z

Use an exhaustive search over the variables(h′0,h
′
1, . . .,h′n,d)

until d(t(x)−2)2−4h′(x)r(x) is a perfect square.

3: Computeh(x) = h′(x)
d ,D ∈ Z the square-free part ofd.

4: Set q(x) = h(x)r(x) + t(x) − 1 and y(x) =√
(d(t(x)−2)2−4h′(x)r(x)

D .
If q(x) represents prime, then returnt(x), r(x),q(x).

Similar to Scott-Barreto method, we provide a new
algorithm to generate families of elliptic curves with
various r(x) and CM discriminantsD by adopting
variables (c0,c1,c2,D) in a modification of the
Dupont-Enge-Morain method. However, our method does
not need exhaustive searching steps to obtain a suitable
irreducible factorr(x) of Φk(t(x)−1) and suitable values
of (c0,c1,c2,D). Now, we recall the following lemmas
and the definitions, which will be used in our new
proposed method in Section 3.

Lemma 2([11], Lemma 5.1). Fix k. Let t(x) be a
polynomial and r(x) be an irreducible factor of
Φk(t(x)− 1). Then the degree of r(x) is a multiple of
ϕ(k), whereϕ is the Euler phi function.

Definition 5([15], Definition V 4.4). Let K be a field with
charK 6= 2 and f(x)∈K[x] a polynomial of degree n with n
distinct roots u1, ...,un in some splitting fieldF of f(x) over
K. Let△= ∏(ui −u j) for i < j. Then the discriminant of
f is defined asdisc( f ) =△2.

Lemma 3([12], Prop.6.22).Let f(x) = ∑aixi ∈ Z[x], i =
1, · · · ,n, be irreducible. Letα be a square-free integer such
thatα ∤ a0andisc( f ). Then f(αx2) is irreducible.

3 Main Algorithm

Most of previous works for constructing complete
families of pairing-friendly curves are based on the
Brezing-Weng method. However we propose a new
method that produces complete families of ordinary
elliptic curves having variousr(x) andD, which is built
on the Dupont-Enge-Morain method with polynomial

curve parameters. Furthermore, our construction gives
betterρ-values less than 2 for arbitraryk.

If we try to extend the original Dupont-Enge-Morain
method by simply substituting constant parameters with
polynomial ones, then we face a difficulty as to how to
choose the input polynomialy(x) for achieving a smallρ-
value since aρ-value is automatically determined by the
outputt(x) corresponding to the inputy(x). To solve this
problem, we express the input polynomialy(x) as a linear
combination oft(x), x, and variablesci ’s, whereci ’s are
chosen as some proper rational numbers which reduce the
degree of the outputt(x) for a smallerρ-value. Note that
the parametert(x) in Definition 4 is replaced withu(x)+1
in our algorithm.

With this construction, one can compute a number of
well-known non-cyclotomic curves including BN
curves [3] and Scott-Barreto curves [23] without
exhaustive efforts. Moreover, if one setsDy(x)2 as a
linear combination oft(x), x, and variablesci ’s, then the
sparse families such as MNT curves [22] and Freeman
curves [11] are also obtained easily.

Now, we start from several notations for simplicity in
the description of our method.

Notation Let f (x,y) and g(x,y) be multivariate
polynomials with variablesx,y and rational coefficients.

degx f (x,y)
:= the degree off (x,y) with respect to the variablex,

Resx( f (x,y),g(x,y))
:= the resultant off (x,y) andg(x,y) with respect to

the variablex,

f (x,y) modx g(x,y)
:= the residue off (x,y) with respect tog(x,y) as a

polynomial inx.

From now we describe how to produce polynomials
(t(x), r(x), q(x)) for the goal of achieving variousr(x) and
D in our construction. For a fixed embedding degreek,
the starting point of our method is the setting ofy(x,u)
asc2u+ c1x+ c0 ∈ Q[x,u]. From Definition 4(i) (3), (4)
and (5), we findr(x) satisfying both congruent equations
(u−1)2+Dy(x,u)2 ≡ 0 andΦk(u)≡ 0 for modr(x) using
the property of the resultant. We compute the resultant of
(u−1)2+Dy(x,u)2 andΦk(u) with respect tou, and set it
to beR(x) in Q[x]. By Lemma 1, both(u−1)2+Dy(x,u)2

andΦk(u) should be congruent to 0 modxR(x). Hence we
need to computeu so that the both equations are congruent
to 0 modxR(x). Here, since there is nou-term inR(x), from
the former modular equation,

(u−1)2+Dy(x,u)2

= (Dc2
2+1)u2+2(Dc2c1x+Dc2c0−1)u

+ (Dc2
1x2+2Dc1c0x+Dc2

0+1)

≡ 0 modxR(x),
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and we can derive the following relation

u2 ≡− 1

(Dc2
2+1)

{2(Dc2c1x+Dc2c0−1)u

+(Dc2
1x2+2Dc1c0x+Dc2

0+1)} modxR(x).

Then we reduce the later modular equation, thekth

cyclotomic polynomial of degreeφ(k) expressed inu
terms, to the linear form ofu as follows,

Φk(u)≡ G(x)u+H(x) modu((u−1)2 +Dy(x,u)2).

Since Φk(u) should be divided byR(x), G(x)u +
H(x) should be congruent to 0 inK = Q[x]/(R(x)). Now
the inverse polynomial ofG(x) in K, G−1(x) can be
computed by using the extended Euclidean algorithm.
Here we note that sinceR(x) is an irreducible polynomial,
K is a field and GCD(R(x),G(x)) = 1. Thus, there exists
G−1(x) in K. Therefore u can be determined as a
polynomial in x such as u(x) ≡ −G−1(x) · H(x)
modxR(x). With the derivedu(x), we obtain t(x) by
setting t(x) = u(x) + 1. From the CM equation, we set
q(x) = 1

4((u(x) + 1)2 + Dy(x,u)2). Next we choose
rational numbers(c2,c1,c0) so that the coefficient of the
highest degree ofu(x) is 0 andq(x) is irreducible if there
exist such rational numbersci ’s. Otherwise, choose any
proper rational numbers(c2,c1,c0). After determining
ci ’s, make R(x) to be an integer coefficient irreducible
polynomial with a positive leading coefficient by
multiplying someC ∈ Q and letting the polynomial be
r(x).

According to Lemma 3, choose a positive square-free
integer D that does not divide both disc(r(x)) and
disc(q(x)) to preserve the irreducibilities ofr(x) andq(x).
Finally, if q(x) represents primes, then(t(x), r(x),q(x))
parameterizes a complete family of paring-friendly curves
with embedding degreek and discriminantD. Algorithm
5 gives a brief description of our method.

(Note) We treatu merely as a variable from Step 1 to
Step 4 beforeu is determined as thex-polynomial in Step
5.

Remark.In Step 9, if a square-free positive integerD0 that
makesR(x) be decomposed into irreducible polynomials
R1(x) andR2(x) inQ[x]with degxRi = φ(k), i =1,2, where
φ is the Euler phi function, is chosen, then just follow from
Step 6 to Step 10 except Step 9 withD := D0 andui(x) :=
u(x) modxRi(x) for i = 1,2. We demonstrate this relation
in the following statement.

Suppose that a chosenD0 makesR(x) be factored into
R1(x)·R2(x), with degxRi = φ(k), i = 1,2, then we perform
modularRi(x) to the resultu(x), and call itui(x), where

Algorithm 5 New method : Modified Dupont-Enge-
Morain method
Input: a positive integerk
Output:D, t(x), r(x), q(x) in Q[x]

1: Sety(x,u) = c2u+ c1x+ c0 ∈ Q[x,u] with variablesci ’s in
Q.

2: Compute the resultant with an additional variableD in Z

R(x) := Resu(Φk(u),(u−1)2 +Dy(x,u)2) ∈Q[x].
3: ComputeG(x) andH(x) such that

Φk(u) modu((u−1)2+Dy(x,u)2) = G(x) ·u+H(x).
4: Compute the inverse polynomialG−1(x) of G(x) modxR(x).

5: Obtainu as a polynomial inx by
u(x)≡−G−1(x) ·H(x) modxR(x).

6: Let t(x) = u(x)+1, q(x) = 1
4((u(x)+1)2+Dy(x)2).

7: Choose(c0,c1,c2) ∈ Q that make the leading coefficient of
u(x) to be zero and preserve the irreducibilities of bothq(x)
andR(x).

8: ChooseC ∈ Q such thatC ·R(x) ∈ Z[x] and setr(x) = C ·
R(x).

9: Determine a positive square-free integerD that does not
divide both disc(r(x)) and disc(q(x)).

10: If q(x) represents primes, then returnD, t(x), r(x),q(x).

i = 1,2. Then

(ui(x)−1)2 +D0y(x)2

= (u(x) modxRi(x)−1)2 +D0y(x)2

= (u(x)−Ri (x)T(x)−1)2+D0y(x)2

= (u(x)−1)2 +D0y(x)2−2Ri(x)T(x)(u(x)−1)+(Ri (x)T(x))2,

f or some T(x) ∈Q[x] and degT(x) = degu(x)−degRi(x).

Since eachRi(x,D0) for i = 1,2 is a factor ofR(x),
(ui(x)−1)2+D0y(x)2 ≡ 0 modx Ri(x). Therefore, for the
specificD0 such thatR(x) can be factored intoR1(x) ·
R2(x) with degxRi = φ(k) for i = 1,2, computeui(x)=
u(x) modxRi(x). Then we obtain(ti(x), r i(x),qi(x)) for
eachi.

4 Examples

4.1 Applications to the Barreto-Naehrig curves

Now we apply our new method to derive the
Barreto-Naehrig curvesfor embedding degreek = 12,
D = 3 without the analysis of factorizations of cyclotomic
polynomials.

Example 1. For embedding degreek = 12 and CM
discriminantD = 3, set

u(x) = 3
8(c1x+c0+1)2,

t(x) = 1
8{3c2

1x2+6(c1c0+1)x+3c2
0+6c0+11},

y(x) = − 1
8{3c2

1x2+2(3c1c0−c1)x+3c2
0−2c0+3},

r(x) = 1
64{9c4

1x4+36c3
1c0x3+18(3c2

1c2
0+c2

1)x
2+12(3c1
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· c3
0 + 3c1c0 − 2c1)x + 9c4

0 + 18c2
0 − 24c0 + 13},

q(x) = 1
64{9c4

1x4+36c3
1c0x3+6(9c2

1c2
0+7c2

1)x
2+12(3c1

·c3
0+7c1c0+2c1)x+9c4

0+42c2
0+24c0+37}.

Then for suitableci ’s, (t(x), r(x),q(x)) parameterizes a
complete family of elliptic curves with embedding degree
k= 12, discriminantD = 3, ρ = 1 and a prime order.

Proof. After settingy(x,u) = c2u+ c1x+ c0, we compute
the resultantR(x) of the 12th cyclotomic polynomial
Φ12(u) = u4 − u2 + 1 and the CM equation
(u−1)2+Dy(x,u)2 as the following

R(x) : = Resu(u4−u2+1,(u−1)2+Dy(x,u)2),

= D4c8
1x8+8D4c7

1c0x7+ . . .−16Dc2c0−6Dc2
0+1.

and letK=Q[x]/(R(x)).
Now, we reduceu4−u2+1 in K by the relation

u2 ≡− 1

(Dc2
2+1)

{2(Dc2c1x+Dc2c0−1)u

+(Dc2
1x2+2Dc1c0x+Dc2

0+1)} modx R(x).

Then we obtain
u4−u2+1= G(x)u+H(x) in K, where





G(x) =− (4D3c3
2c3

1−4D2c2c3
1)x

3+..+4Dc2
0−2

(Dc2
2+1)3 ,

H(x) =− (3D3c2
2c4

1−D2c4
1)x

4+..+Dc2
0+1

(Dc2
2+1)3

By using the extended Euclidean algorithm, we can
compute

G−1(x)= (63D13c19
2 c7

1+..+220319D7c7
2c7

1)x
7+..+2850Dc2

0+225
2(81D13c26

2 +..+625)
,

and findu as anx-polynomial by,
u(x)≡−G−1(x) ·H(x) modxR(x)

=
−(12D6c5

2c7
1+..+3D7c7

2c7
1)x

7+..+155D0c2
0+5

2(9D7c14
2 +..+25)

.

In the case ofk = 12, only two CM discriminants
D = 1,3 allowsR(x) to be factored intoR1(x) andR2(x)
with degx Ri = φ(k).

WhenD = 3, if we takeR1(x) for r(x), where
R1(x) = 9c4

1x4+36c3
1c0x3− (9c2

2c2
1+18c2c2

1−54c2
1c2

0
−9c2

1)x
2− (18c2

2c1c0+18c2
2c1+36c2c1c0−12c2c1

−36c1c3
0−18c1c0−6c1)x+(9c4

2−9c2
2c2

0−18c2
2c0

+9c2
2−18c2c2

0+12c2c0+6c2+9c4
0+9c2

0+6c0+1),
then
u1(x,3) modxR1(x)
=
− 1

(81c6
2−108c5

2−63c4
2−144c3

2−45c2
2−36c2−5)

{(54c22c3
1+36c2c3

1−18c31)x
3

+(54c3
2c2

1+162c2
2c2

1c0+108c2c2
1c0+54c2c2

1
−54c2

1c0+12c2
1)x

2+(81c5
2c1−135c4

2c1+108c3
2c1c0

−162c3
2c1+162c2

2c1c2
0−72c2

2c1+108c2c1c2
0+108c2c1c0

+45c2c1−54c1c2
0+24c1c0−21c1)x+(81c5

2c0−27c5
2

−135c4
2c0−135c4

2+54c3
2c2

0−162c3
2c0+54c2

2c3
0−72c2

2c0
+30c2

2+36c2c3
0+54c2c2

0+45c2c0+15c2−18c3
0+12c2

0
−21c0−3)}

The coefficient of the highest degree ofu1(x) which is
written as bold types has factorsc1,(c2+1) and(c2− 1

3).

If c1 = 0, then degx R1 = 2. Since the degree ofr(x) is a
multiple of φ(12) = 4 by Lemma 2, this is impossible.
Thus, we takec2 = −1 or 1

3. If we want to produce the
original BN curves withD = 3, then takec2 = −1, u(x) =
3
8(c1x + c0 + 1)2. There are infinitely many possible
choices ofc1 andc0. For simplicity, we takec1 = 4, c0 =
−1. Finally, we obtain the BN curves withu(x) =
6x2, t(x) = 6x2 − 1, r(x) = 36x4 + 36x3+ 18x2 + 6x+ 1
andq(x) = 36x4+36x3+24x2+6x+1.

4.2 Some examples

Now we suggest several examples which parameterize
the complete families and have improvements on
ρ-values. Note that we state examples with a variableD
to show that one can obtain abundant families by
choosingD. For embedding degreesk = 5, 8, 12, 16, 20
and 24, we obtain complete families of ordinary elliptic
curves with improvedρ-values. As we explained in the
Introduction, sparse families are less efficient than
complete families in computing elliptic curves via the
CM method. Therefore, we prefer to use complete
families to construct pairing-friendly elliptic curves. For k
= 5, there exist a sparse family with the best record
ρ = 1.5 [20] and a complete family havingρ = 1.750
[12]. In these examples, we provide the complete family
of elliptic curves with embedding degreek = 5 and the
best recordρ = 1.50. For the cases ofk = 8, 16, 20 and
24, there exist only sparse families of curves proposed by
[21]. For those embedding degrees, our construction
allows to obtain the complete type of families. Moreover,
these complete families have betterρ-values. For the case
of k = 12, we obtain the complete family with improved
valueρ = 1.5, which is better than the previously-known
complete type of family withρ = 1.75. We compare the
previously-known smallest records ofρ-values and our
improved ρ-values for k = 5,8,12,16,20,24 with the
types of the families in Table 1.

(Note) We denote our improvedρ-values and previously
known bestρ-values with variable discriminants asρnew
andρrecord, respectively.

Example 2.For embedding degreek= 5,
t(x,D) = 1

11(3125D3x6+875D2x4+175Dx2 +14),
r(x,D) = 15625D4x8+3125D3x6+250D2x4+1,
q(x,D) = 1

484(9765625D6x12+5468750D5x10

+1859375D4x8+393750D3x6+55125D2x4

+7925Dx2 +196).
Let D be a square-free positive integer not dividing
2 · 5 · 7 · 11 · 4430894490089. Then(t(x,D), r(x,D),q(x,D))
parameterizes a complete family of curves with
ρnew = 1.50, whereρrecord = 1.50 for the sparse family
andρrecord = 1.75 for the complete family.

Proof. By substituting Dx2 with z, we obtain the
irreducible polynomial̃r(z) =15625z4 +3125z3+250z2+1.
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Since the discriminant of̃r(z) is 519 · 112 , by Lemma 3,
when D does not divide525 · 112, r(x,D) is irreducible.
Moreover, since q̃(z) = 1

484(9765625z6 + 5468750z5 +
1859375z4 + 393750z3 + 55125z2 + 7925z + 196) is
irreducible, andq(x,D) is also irreducible ifD does not
divide 22 · 559 · 72 · 116 · 4430894490089. Since D is
square-free, it is sufficient to takeD that does not divide
2 · 5 · 7 · 11 · 4430894490089.Thus (t(x,D), r(x,D),q(x,D))
parameterizes a complete family of curves with
embedding degree 5 and discriminantD that does not
divide2·5·7·11·4430894490089.

Example 3.For embedding degreek= 8,
t(x,D) = 1

6(32D3x6+40D2x4+32Dx2+7),
r(x,D) = 64D4x8+64D3x6+32D2x4−8Dx2+1,
q(x,D) = 1

144(1024D6x12+2560D5x10+3648D4x8

+3008D3x6 +1584D2x4+592Dx2+49).
Let D be a square-free positive integer not dividing
2 · 3 · 5 · 7 · 151 · 112237. Then (t(x,D), r(x,D),q(x,D))
parameterizes a complete family of curves with
ρnew= 1.50, whereρrecord = 1.75.

Proof. By substituting Dx2 with z, we obtain the
irreducible polynomial̃r(z) =64z4 + 64z3 + 32z2 − 8z+ 1.
Since the discriminant of̃r(z) =228 · 32 , by Lemma 3,
when D does not divide234 · 32, r(x,D) is irreducible.
Moreover, since q̃(z) = 1

144(1024z6 + 2560z5 + 3648z4 +
3008z3 + 1584z2 + 592z+ 49) is irreducible,q(x,D) is also
irreducible if D ∤ 272 · 36 · 5 · 72 · 151· 112237. SinceD is
square-free, it is sufficient to takeD that does not divide
2 · 3 · 5 · 7 · 151 · 112237. Thus (t(x,D), r(x,D),q(x,D))
parameterizes a complete family of curves withk= 8 and
discriminantD ∤2·3·5·7·151·112237.

Example 4.For embedding degreek= 12,
t(x,D) = 1

10(2D3x6+13D2x4+31Dx2+11),
r(x,D) = D4x8+6D3x6+11D2x4−6Dx2+1,
q(x,D) = 1

400(4D6x12+52D5x10+293D4x8+850D3x6

+1247D2x4+782Dx2+121).
Let D be a square-free positive integer not dividing
2 · 3 · 5 · 11 · 17 · 31 · 9181. Then (t(x,D), r(x,D),q(x,D))
parameterizes a complete family of curves
withρnew= 1.50, whereρrecord = 1.75.

Proof. By substituting Dx2 with z, we obtain the
irreducible polynomial̃r(z) =z4+6z3+11z2−6z+1. Since
the discriminant of̃r(z) =28 ·32 · 52 , by Lemma 3, when
D does not divides28 · 32 · 52, r(x,D) is irreducible.
Moreover, sinceq̃(z) = 1

400(4z6 + 52z5 + 293z4 + 850z3 +
1247z2 + 782z + 121)is irreducible, q(x,D) is also
irreducible if D ∤ 219 · 56 · 112 · 172 · 31 · 9181. SinceD is
square-free, it is sufficient to takeD that does not divide
2 · 3 · 5 · 11 · 17 · 31 · 9181. Thus (t(x,D), r(x,D),q(x,D))
parameterizes a complete family of curves with
embedding degree 12 and discriminant withD ∤
2·3·5·11·17·31·9181.

Example 5.For embedding degreek= 16,
t(x,D) = 1

15368(492D7x14+4044D6x12+14683D5x10

+30957D4x8+43038D3x6+11994D2x4

+94858Dx2 +15970),
r(x,D) =D8x16+8D7x14+28D6x12+56D5x10

+72D4x8+168D2x4−48Dx2+4,
q(x,D) = 1

944701696(242064D14x28+3979296D13x26

+30802008D12x24+149217792D11x22

+508320097D10x20+1268976702D9x18

+2412537501D8x16+3799796520D7x14

+5509631348D6x12+7374408776D5x10

+9297619824D4x8+3650087424D3x6

+9381128524D2x4+3265939944Dx2

+255040900).
Let D be a square-free positive integer not dividing
2 · 3 · 5 · 17 · 23 · 41 · 109 · 113 · 1597 · 565604969. Then
(t(x,D), r(x,D),q(x,D)) parameterizes a complete family
of curves with withρnew= 1.750, whereρrecord = 1.875.

Proof. By substituting Dx2 with z, we obtain the
irreducible polynomial̃r(z) = z8+8z7+28z6+56z5+72z4

+ 168z2 − 48z + 4. Since the discriminant of̃r(z) =
248 · 174 · 1132, by Lemma 3, whenD does not divide
250 · 174 · 1132, r(x,D) is irreducible. Moreover, since
q̃(z) = 1

944701696(242064z14+3979296z13+30802008z12+14
9217792z11+508320097z10+1268976702z9 +241253701z8 +
3799796520z7 +5509631348z6 +7374408776z5 +9297619824
z4+3650087424z3 +9381128524z2 +3265939944z+2550409
00) is irreducible,q(x,D) is also irreducible whenever
D ∤ 2112 · 317 · 52 · 1714 · 23 · 4115 · 109 · 11314 · 15972 ·
565604969. Note that we do not consider the factors of
disc(q(z)) that are larger than 1015. Since D is
square-free, it is sufficient to takeD that does not divide
2 · 3 · 5 · 17 · 23 · 41 · 109 · 113 · 1597 · 565604969. Thus
(t(x,D), r(x,D),q(x,D)) parameterizes a complete family
of curves with embedding degree 8 and
discriminant D ∤ 2 · 3 · 5 · 17 · 23 · 41 · 109 · 113 · 1597·
565604969.

Example 6.For embedding degreek= 20,
t(x,D) = 1

3169178(304480D7x14+3089993D6x12

+12948870D5x10+26353063D4x8

+18270164D3x6−17618777D2x4+35118045Dx2

+3039654),
r(x,D) =D8x16+10D7x14+41D6x12+80D5x10

+46D4x8−70D3x6+116D2x4−20Dx2+1,
q(x,D) = 1

40174756782736(92708070400D14x28

+1881682137280D13x26+17433400615249D12x24

+96071796560300D11x22+341660593743458D10x20

+784665001073404D9x18+1080141575997407D8x16

+725543114107894D7x14+333444429942138D6x12

+1285860383086774D5x10+1753854572714893D4x8

−1126404052895418D3x6+1126167112655709D2x4

+223537101108544Dx2 +9239496439716).
Let D be a square-free positive integer not dividing2 ·3 ·
5·11·29·37·101·173·239·541·506609·6811303·17244169.
Then (t(x,D), r(x,D),q(x,D)) parameterizes a complete
family of curves with ρnew = 1.750 where
ρRecord= 1.875.
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Proof. By substituting Dx2 with z, we obtain the
irreducible polynomial r̃(z) =z8 + 10z7 + 41z6 + 80z5 +

46z4 − 70z3 + 116z2 − 20z+ 1. Since the discriminant of
r̃(z) = 216 ·56 ·292 ·1012 ·5412 , by Lemma 3, whenD does
not divide 216 · 56 · 292 · 1012 · 5412, r(x,D) is irreducible.
And q̃(z) = 1

40174756782736(92708070400z14+1
881682137280z13+17433400615249z12 +96071796560300z11

+ 341660593743458z10 +784665001073404z9 +10801415759
97407z8+725543114107894z7 +333444429942138z6 +12858
60383086774z5 +1753854572714893z4 −1126404052895418
z3+1126167112655709z2 +223537101108544z+9239496439
716) is irreducible, q(x,D) is also irreducible if
D ∤2107 · 36 · 515 · 1115 · 2914 · 37 · 10114 · 17315 · 239· 54114 ·
5066092 ·6811303·17244169. Note that we do not consider
the factors of disc(q(z)) that are larger than 1015. SinceD
is square-free, it is sufficient to takeD that does not divide
2 · 3 · 5 · 11 · 29 · 37 · 101· 173· 239· 541· 506609· 6811303·
17244169. Thus (t(x,D), r(x,D),q(x,D)) parameterizes a
complete family of curves with embedding degree 20 and
discriminant D ∤2 · 3 · 5·11 · 29 · 37 · 101 · 173 · 239 · 541 ·
506609·6811303·17244169.

Example 7.For embedding degreek= 24,
t(x,D) = 1

392700(24503D7x14+198575D6x12

+658203D5x10+1542931D4x8+2800473D3x6

+1821521D2x4+5485400Dx2 +402966),
r(x,D) = D8x16+8D7x14+26D6x12+60D5x10

+107D4x8+60D3x6+206D2x4−28Dx2+1,
q(x,D) = 1

616853160000(600397009D14x28

+9731366450D13x26+71687926843D12x24

+337018198036D11x22+1183246215697D10x20

+3232596936062D9x18+7059430108349D8x16

+13238008748048D7x14+20844662879131D6x12

+27659895033862D5x10+35284865408533D4x8

+22240533392636D3x6+31557635222572D2x4

+4575072682800Dx2 +162381597156) .
Let D be a square-free positive integer not dividing2 ·3 ·
5 · 7 · 11· 17·19· 47· 61· 107· 229·367· 56531·69846486007·
209843489291.

Then (t(x,D), r(x,D),q(x,D)) parameterizes a
complete family of curves withρnew = 1.750 where
ρrecord = 1.875.

Proof. By substituting Dx2 with z, we obtain the
irreducible polynomial̃r(z) = z8+8z7+26z6+60z5+107z4

+ 60z3 + 206z2 − 28z+ 1. Since the discriminant of̃r(z) =
232 · 38 · 54 · 72 · 112 · 172, by Lemma 3, whenD does not
divide 232 · 38 · 54 · 72 · 112 · 172, r(x,D) is irreducible.
Moreover, sincẽq(z) = 1

616853160000(600397009z14+973136
6450z13 + 71687926843z12 + 337018198036z11 +
1183246215697z10 + 3232596936062z9 + 7059430108349z8 +
13238008748048z7 +20844662879131z6 +276598950338
62z5 + 35284865408533z4 + 22240533392636z3 +
31557635222572z2 + 4575072682800z + 162381597156) is
irreducible, q(x,D) is also irreducible if D ∤
256 ·326 ·528 ·714 ·1114 ·1714 ·19·47·612 ·10715 ·22915 ·3672 ·
56531· 69846486007· 209843489291.Note that we do not

Table 1: Comparison of the recordedρ-values and the improved
ρ-values of families of elliptic curves having variableD.

φ(k) k ρrec Family Typerec degxr(x)rec
ρnew Family Typenew degxr(x)new

2 4 1.000 sparse 2
- complete -

1.000† sparse 2
1.500 complete 4

6 1.000 sparse 2
- complete -

1.000† sparse 2
1.500 complete 4

4 5 1.500 sparse 8
1.750 complete 8
1.500† sparse 4
1.500 complete 8

8 1.750 sparse 4
1.500 complete 8

10 1.000 sparse 4
- complete -

1.000† sparse 4
1.500 complete 8

12 1.750 complete 8
1.500 complete 8

8 16 1.875 sparse 8
1.750 complete 16

20 1.875 sparse 8
1.750 complete 16

24 1.875 sparse 8
1.750 complete 16

(Note) (1)By setting Dy(x)2 as c2u+ c1x+ c0 in Step 1 of
the Algorithm 5, we can also produce the sparse families. We
describe theρ-values marked with† for the comparison.
(2)The entries in bold indicate our improved results.

consider the factors of disc(q(z)) that are larger than 1015.
SinceD is square-free, it is sufficient to takeD that does
not divide 2·3·5·7·11·17·19·47·61·107·229·367·
56531·69846486007·209843489291.

Therefore, (t(x,D), r(x,D),q(x,D)) parameterizes a
complete family of curves with embedding degree 24 and
discriminantD ∤ 2 ·3 ·5 ·7 ·11·17·19·47·61·107·229·367·
56531·69846486007·209843489291.

We have summarized theρ-values, the family types
and the degrees ofr(x) from the new modified
Dupont-Enge-Morain method according toφ(k) and have
compared them with the previously reported best records
including both complete families and sparse families in
Table 1. The compared previous works in Table 1 are
contained in [4], [9], [12], [20] and [21].

5 Conclusion

In this paper, we propose a new algorithm for
constructing complete families of pairing friendly elliptic
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curves having variousr(x) andD for arbitrary embedding
degrees by extending and modifying the original the
Dupont-Enge-Morain method. The Dupont-Enge-Morain
method is known to have constant curve parameters
(t, r,q) and the weakness ofρ ≈ 2. In our modification, by
choosing a special form of the input polynomial
parameter y(x), families of elliptic curves can be
constructed by polynomial curve parameters
(t(x), r(x),q(x)) having ρ < 2 with variable CM
discriminantsD. Moreover, fork = 5,8,12,16,20 and 24,
the family types and theρ-values have been improved.
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