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Abstract: A general method for constructing families of pairing-frifly elliptic curves is the Brezing-Weng method. In manyesas
the Brezing-Weng method generates curves with discrintiBaa 1 or 3 and restricts the form ofx) to be a cyclotomic polynomial.
However, since we desire a greater degree of randomness\agarameters to maximize security, there have been sttmaevelop
algorithms that are applicable for almost arbitrary valefe® and more various forms ofx). In this paper, we suggest a new method to
construct families of pairing-friendly elliptic curves thivariableD and no restriction on the form ofx) for arbitraryk by extending
and modifying the Dupont-Enge-Morain method. As a resul, abtain complete families of curves with improvpevalues for
k=8,12 16,20 and 24 We present the algorithm and some examples of our consinucti
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1 Introduction is the prime subgroup order ardis the trace of the
Frobenius endomorphism of the curve. The second step is
fto find the equation oE which is usually done by the

Pairings have been crucial primitives for a number o omplex Multiplication(CM) method 1]. Considering

novel and functional cryptographic schemes such as Oni%e current computational power, the method is valid
round tripartite  key-exchange 1@, identity-based b BT oNT i ciminantD  defined by a positive

encryption p], short signatures] etc. Up to now, several 5

efficient pairings have been suggested such as the Etasquare-free tpart thc.f"_t hIS less éhandlﬁ_’ [24].'|_:or
pairing [2], the Ate pairing [L4], the Atg pairing [2€], the Secure cryptographic schemes based on pairings on
R-ate pairing 19 and the optimal ate pairinp]. Since elliptic curves, we consider two values, namely, the ratio

all these pairings are usually defined on elliptic Curvespri%f Eh$d3|rze gf rthe bar?ethﬂeld rr\leatl\lgeczj 'E[(r)\ tharzlgfdtgii
over finite fields, it is important to construct suitable prime-orcer subgroup o € curve a € embe 9

elliptic curves in order to build an efficient pairing-based dfgritahvrxh?ng 'Si?'\glan’t curvede|thtr?marI:?r:Jr}:/a:iuesn th
system for all kinds of applications as well as for all are often more desirable to speed up the a eticonthe

: : lliptic curves.
desired levels of security. Freeman, Scott and Te&kp [ € .
called such an elliptic curvi over a finite fieldfq, where The  Cocks-Pinch ~ method 8] ~ and the

. : : o ; Dupont-Enge-Morain method 1] are well-known
is a prime or a prime power, aspairing-friendly curve L : ) .
\(/qvhich%as a Iargepprimepfactorof the ordgerof thgelliptic methods that generate pairing-friendly ordinary elliptic

- ; curves withp ~ 2 for arbitrary embedding degrees. These
fg;g:g?;ﬁg‘g ?rr]lg Z;Lneﬂld?nn;bfggﬁggsdggfﬁﬁgﬂtgs methods produce individual curves that do not belong to a
the smalleét integ,er such thatlividesqf — 1. type of a family where the curve parameters are

o . . represented by polynomials. For the parameters in
To construct a pairing-friendly elliptic curve over a , i degree of ()
finite field Fq, we usually follow two common steps. The polynomials, we define the rho-value @s= geareaor -

first step is to look for suitable values for curve The Cocks-Pinch method has been generalized to the
parameterst,r,q) whereq is the size of the finite field, ~ more efficient method, due to Brezing and Weidg fhat
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provides curve parameters in polynomial types for step for the suitable values for curve parameters.
ordinary elliptic curves withp < 2. However, the
Dupont-Enge-Morain method has yet to be generalizedto In this paper, we present a new construction of
produce families of curves with significantly improved pairing-friendly ordinary elliptic curves by extendingdn
p-values. In this paper, we extend and modify the modifying the Dupont-Enge-Morain method. Our new
Dupont-Enge-Morain  method and contribute to method enables to derive families having various
overcoming its downside regardipgvalues. polynomials r(x), and it also produces the curve

Families of elliptic curves are classified into complete parameters for variable discriminanf® without an
families and sparse families depending on the existence aissumption that a field contains a square root of a given
yx) € QX satisfying the equation —D, which is required for the Brezing-Weng method.
Dy(x)? = 4q(x) — t(x)? which is calledCM equation If As a result, our construction provides complete
there exists such @(x), then we say that the family is families for k = 8,12 16,20 and 24 with improved
complete. Otherwise, we define the family as a sparsep-values. These improvements compared to the known
family [12]. When we construct elliptic curves via the bestresults are given in Table 1.
CM method, complete families are more efficient than
sparse families in obtaining elliptic curves because The paper is organized as follows. In Sect®nwe
generating elliptic curves from sparse families involvesreview basic definitions and properties related to the
transformations on the CM equation into a generalizedconstruction of pairing-friendly elliptic curves. We
Pell equation for finding solutiongx,y) satisfying  propose a new approach to construct families of curves by
Dy? = 4q(x) — t(x)?. Because of the inefficiency, we extending and modifying the Dupont-Enge-Morain
prefer complete families to sparse families to constructmethod in Sectior3. We provide examples of curves
elliptic curves. constructed by our new method in SectibrFinally, we

A general approach for constructing complete draw conclusions in Section 5.
families of ordinary elliptic curves is the Brezing-Weng
method []. The method provides a bulk of existing
constructions for ordinary curves with various embedding2 Preliminaries
degrees. However, it restrictgx) to be a cyclotomic

polynomial and mostly deals with a small CM In this section, we review basic definitions, properties
discriminantD such asD = 1 or 3. Thus there have been 4,4 some well-known methods for constructing pairing-

studies to overcome such limits on the Brezing-Wenggriendly elliptic curves. Refer to the papetd] for further
construction. First, Barreto and Naehrig] fapplied the  yetails.

work, due to Galbraith, McKee and Valenca3], on Let E be an elliptic curve defined over a prime field
factorizations ok-th cyclotomic polynomial(u(x)) for - g andr be a large prime number which divides the order

some quadratic polynomialsu(x) in Z[x] and of E(FFq). A pairing-friendly curve is formally defined as
k € {5,8,10,12} to the Brezing-Weng method for tqows.

generating a complete family of pairing-friendly elliptic

curves which have a non-cyclotomic polynomiék) for  Definition 1([12], Def.2.3).Suppose E is an elliptic curve
k=12 andD = 3. The curves are calleBN curves  defined over a finite field’y. We say that E is pairing-
which is the only currently-known complete family of friendly if the following two conditions hold:

elliptic curves withp = 1. After, Kachisa, Schaefer and (1) there is a prime & /g dividing the order of EFg),

Scott [L7] suggested a curve construction method with a and
non-cyclotomic polynomiat(x), which can be computed (2) the embedding degree k of E with respect to r is
as the minimal polynomial of a randomly chosen element less than% log,r.

of Q(¢), where ¢ is a primitive I-th root of unity in
K = Q[X]/(r(x)). o , N
Next, for security reason, some methods with various  Such pairing-friendly ordinary elliptic curves can be
discriminantsD have been suggested which are alsoconstructed if and only if the following conditions hold:
based on the Brezing-Weng method]([[9], [12], [20], (C1)qis a prime or a prime power.
[2]] etc.). For example, Freeman, Scott and Teskd [ (C2)r is a prime.
suggested families of curves with a variable discriminant  (C3)t is relatively prime tag.
by substitutingx with Dx2 on the existing Brezing-Weng (C4)r dividesq+1—t
construction. However, because these families preserved (C5)r|g<—1andrtg —1for1<i <k
the p-values, the method could not provide improvements  (C6) Dy? = 4q— t? for some sufficiently

on p-values. small positive integeD and some integey.
On the other hand, Scott and Barre23][proposed an
algorithm to remove the restrictions o(x) andD which Now we recall two typical algorithms, due to

does not rely on the Brezing-Weng method but it is Cocks-Pinch and Dupont-Enge-Morain, to generate
computationally inefficient due to its exhaustive searghin individual pairing-friendly elliptic curves that take
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constant parameterst,r,q) satisfying the above six Definition 3([12], Def.2.6). A polynomial {x) € Q[ is

conditions. In other words,
algorithm and the Dupont-Enge-Morain algorithm gives
elliptic curves not in families.

both the Cocks-Pinch integer-valued if {x) € Z for every xe Z.

Next we define families of pairing-friendly curves.

Definition 4([12], Def.2.7). Let t(x),r(x), and gx) be

Algorithm 1 Cocks-Pinch method]

Input: a positive integek, a positive square-free integdr< 10%°
Output:t, r, g

(i)

1: Letr be a prime such thadr — 1 and(—= Dy—1.

2. Letzbe ak-th primitive root of unity mZ/rZ.

3: Lettg=2z+1.

4: Letyp = % (modr).

5: Choosd,y € Z such that =ty modr andy = yp modr.
6: Letq= #(t>+Dy?) . If gis a prime, then returtir, q.

Dupontet al used the following property to determine
r that satisfies the three conditions (C4), (C5) and (C6)
simultaneously.

Lemma 1([18], Corollary IV 8.4). Let f(x),g(x) b

polynomials in a field K. Then (X) and gXx) have a
common zero i if and only if Reg(f(x),g(x)) = 0.
Algorithm 2 Dupont-Enge-Morain method (]
Input: a positive integek
Output:t, r, g
1: Compute the resultanR(a) = Res(®x(x — 1),a+ (x —
2)?) € Z[al.

2: Choosea e Z of the formDy? with a positive square-free
integerD < 10'® such thaR(a) is a prime.

: Setr =R(a).

: Computeg(x) = GCD(®(x—1),a+ (x—2)2) in Fy[x].

. Lettp € Fy be a root of the polynomiaj(x).

Lett € Z such that =tp (modr).

: Letq= (t>+Dy?). If qis a prime, then returtir, q.

No oA w

nonzero polynomials with rational coefficients.

For a given positive integer k and a positive
square-free integer D, the tripl@,r,q) parameterizes
a family of elliptic curves with embedding degree k
and discriminant D if the following conditions are
satisfied:
(1) q(x) = p(x)™ for some m> 1 and p(x) that
represents primes,
(2) r(x) is non-constant, irreducible, integer-valued,
and has a positive leading coefficient,
(3) r(x) divides dx) +1 —t(x),
(4) r(x) divides®y(t(x) — 1),
where®y is the K" cyclotomic polynomial,
(5) the CM equation Dy= 4q(x) —t(x)? has
infinitely many integer solutions,y).
If these conditions are satisfied, we refer to the triple
(t(x),r(x),q(x)) as a family.

(i) For (t(x),r(x),q(x)) asin (i), if % is an integer and E

is an elliptic curve ovelF ) with the trace {xo), then
we say E is a curve in the fami{y(x),r(x),q(x)).

(iii) We say that a familyt(x),r(x),q(x)) is ordinary

if gcd(t(x),q(x)) = 1.

(iv) We say that a familyt(x),r(x),q(x)) is complete

if there is some () € Q[x] such that
Dy(x)? = 4q(x) — t(x)?; otherwise we say that the
family is sparse.

Now, we recall the Brezing-Weng method. The output

(t(x),r(x),q(x)) parameterizes a complete family of
elliptic curves for a given embedding degieand a fixed
discriminantD.

Algorithm 3 Brezing-Weng method/|

Both methods produce individual curves wiph~ 2

for arbitrary embedding degrees. Brezing-Weng [ Output:t(x), r(x),
generalizes the Cocks-Pinch method whereby thel:

unknowns(t,r,q) live in the ring of polynomials with
rational coefficients instead of in the ring of integers with

p<2. 2:
To extend constant curve parameters to polynomial 3:
types, we give the definition of polynomials representing 4:

primes.

Definition 2([12], Def.2.5).Let f(x) be a polynomial with

rational coefficients. We say f represents primes if the °

following conditions are satisfied: 6
(1) f(x) is non-constant,

Input: a positive integek, a positive square-free integdr< 10%°

q(x) in Q[x]

Find an irreducible polynomial(x) € Z[x] with a positive
leading coefficient such tha€ = Q[x]/(r(x)) is a number
field containingy/—D and the cyclotomic field)(Z¥).
Choose a primitivé" root of unity g € K.

Lett(x) € Q[x] be a polynomial mapping t{ + 1 in K.
Lety(x) € Q[x] be a polynomial mapping téik:jé)in K.

(So if /=D ~ s(x), then y(x) = —&(t(X) — 2)s(x)
modr (x)).

: Letq(x) € Q[x] be given byj (t(x)? + Dy(x)?).

. If q(x) represents prime andxp) € Z for somexg € Z, then

returnt(x),r

(¥),9(%).

(2) f(x) has a positive leading coefficient,
(3) f(x) is irreducible,

(4) f(x) € Z for some x Z, and

(5) gedf(x) :x, f(x) € Z) = 1.

on the selection ofr(x).

The Brezing-Weng method places some restrictions
One is thatr(x) is only
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considered to be in a cyclotomic polynomial form. The curve parameters. Furthermore, our construction gives

other is
K = Q[X/(r(x)) contains /—D. Scott and Barreto

proposed an algorithm to improve the restrictions byme
adopting a cofactor polynomiah(x) and exhaustive
searching suitable values for variablé§,h’, . .

the assumption that the number

h,d).

Algorithm 4 Scott-Barreto metho®3]

Input: a positive integek

Out
1:

put:h(x), t(x), r(x), g(x) in Q[X]
Choose a polynomial(x) such that@®(t(x) — 1) has a
suitable irreducible factar(x) satisfying Definition 4(i)(2).

field betterp-values less than 2 for arbitraky

If we try to extend the original Dupont-Enge-Morain
thod by simply substituting constant parameters with
polynomial ones, then we face a difficulty as to how to
choose the input polynomig(x) for achieving a smalp-
value since g-value is automatically determined by the
outputt(x) corresponding to the inpy{x). To solve this
problem, we express the input polynomyék) as a linear
combination oft(x), x, and variables;'s, wherec;’s are
chosen as some proper rational numbers which reduce the
degree of the outputx) for a smallerp-value. Note that
the parametet(x) in Definition 4 is replaced withi(x) + 1

2: Writeh () = Wo+hx+hpx®+... +hx"forasmalne Z  jn our algorithm.
Use an exhaustive search over the variattgsh;, . . ., hj,, d) ) . .
until d(t(x) — 2)2 — 4 (x)r (x) is a perfect square. With this construction, one can compute a 'number of
3: Computeh(x) = "% D € 7 the square-free part of well-known non-cyclotomic curves including BN
. — T7 - N _ H
4 Set qx) = horx) + tx) — 1 and yx) — curves B] and Scott-Barreto curves 2§ without

(d(t()—2)>—4r ()r(x)

5 .
If q(x) represents prime, then retur(x), r (x),q(x).

exhaustive efforts. Moreover, if one seBy(x)? as a
linear combination of(x), x, and variableg;’s, then the
sparse families such as MNT curve®?] and Freeman

curves [L1] are also obtained easily.

Similar to Scott-Barreto method, we provide a new
algorithm to generate families of elliptic curves with L
various r(x) and CM discriminantsD by adopting the descr-|pt|on of our method. o
variables (co,c1,c2,D) in a modification of the Notation Let f(xy) and g(x,y) be multivariate
Dupont-Enge-Morain method. However, our method doegPolynomials with variables,y and rational coefficients.
not need exhaustive searching steps to obtain a suitable deg f(x,y)

ir;e(ducible fag;‘)'f’\gx) of @(t(x) . %r)] arf1d”sui'gablei values = the degree of (x,y) with respect to the variabbe
of (Co,c1,C2,D). Now, we recall the following lemmas
e ; Res(f(x,y),9(xy))

and the definitions, which will be used in our new - .
proposed method in Section 3. :=the resgltant of (x,y) andg(x,y) with respect to
the variablex,

f(x,y) modc g(x.y) .
:=the residue of (x,y) with respect t@(x,y) as a
polynomial inx.

From now we describe how to produce polynomials
(t(x), r(x), q(x)) for the goal of achieving variougx) and
D in our construction. For a fixed embedding degkee
the starting point of our method is the settingygk, u)
asCyu+ C1x+ Cg € Q[x,u]. From Definition 4(i) (3), (4)
and (5), we findr(x) satisfying both congruent equations
(u—1)?+Dy(x,u)2 = 0 and®d(u) = 0 for modr (x) using
the property of the resultant. We compute the resultant of
(u—1)%+ Dy(x,u)? and d(u) with respect tai, and set it
to beR(x) in Q[x]. By Lemma 1, both{u— 1)2+ Dy(x, u)?
and @ (u) should be congruent to 0 mgR(x). Hence we
need to compute so that the both equations are congruent
to 0 mogR(x). Here, since there is neterm inR(x), from
the former modular equation,

Now, we start from several notations for simplicity in

Lemma 2([11], Lemma 5.1). Fix k. Let tx) be a
polynomial and (x) be an irreducible factor of
@(t(x) — 1). Then the degree of(x) is a multiple of
¢ (K), whereg is the Euler phi function.

Definition 5([15], Definition V 4.4). Let K be a field with
charK+# 2and f(x) € K[x] a polynomial of degree n with n
distinct roots y, ..., U, in some splitting field of f(x) over
K. LetA =[](ui —uj) fori < j. Then the discriminant of
f is defined aglisq( f) = A2,

Lemma 3([12], Prop.6.22).Let f(x) = Yax € Z[x], i =
1,---,n, beirreducible. Letr be a square-free integer such
that a { apandisq( f). Then fax?) is irreducible.

3 Main Algorithm

Most of previous works for constructing complete
families of pairing-friendly curves are based on the
Brezing-Weng method. However we propose a new
method that produces complete families of ordinary
elliptic curves having various(x) and D, which is built
on the Dupont-Enge-Morain method with polynomial

(u—1)2 4+ Dy(x,u)?

= (D3 + 1)u? 4 2(Dcpcix+ Depcg — 1)u
+ (Dc3x? 4 2Dcycox + D3 + 1)

= 0 modR(x),
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and we can derive the following relation

1

2 _

U= ——-——{2(Dcycix+ Dcocg — 1)u
(D2 1){( 2C1 2Co—1)

+ (Dc2x? +2Dc1Cox+ DG+ 1)} modeR(X).

Then we reduce the later modular equation, ke
cyclotomic polynomial of degreep(k) expressed inu
terms, to the linear form af as follows,

@ (u) = G(x)u+H(x) mod,((u— 1) +Dy(x,u)?).
Since @(u) should be divided byR(x), G(x)u +

H(x) should be congruentto 0 id = Q[x]/(R(x)). Now

the inverse polynomial ofG(x) in K, G %(x) can be

computed by using the extended Euclidean algorithm. g-

Here we note that sind&(x) is an irreducible polynomial,
K is a field and GCIDR(x),G(x)) = 1. Thus, there exists
G 1(x) in K. Thereforeu can be determined as a
polynomial in x such asu(x) = —G 1(x) - H(x)
modR(x). With the derivedu(x), we obtaint(x) by
settingt(x) = u(x) + 1. From the CM equation, we set
a(x) = 2((u(x) + 1)2 + Dy(x,u)?). Next we choose
rational numbergc,,c1,Co) so that the coefficient of the
highest degree af(x) is 0 andq(x) is irreducible if there
exist such rational numbeig’'s. Otherwise, choose any
proper rational numbers$cy,ci,Cp). After determining
¢i's, makeR(x) to be an integer coefficient irreducible
polynomial with a positive leading coefficient by
multiplying someC € Q and letting the polynomial be

r(x).

Algorithm 5 New method :
Morain method

Input: a positive integek
Output:, t(x), (%), q(x) in Q[

1: Sety(x,u) = Cou+ C1x+ Cp € Q[x,u] with variablesci’s in

Q.
2. Compute the resultant with an additional variablen Z
R(X) := Res(®(u), (u—1)>+Dy(x,u)?) € Q[X.
3: ComputeG(x) andH (x) such that
@ (u) mod,((u—1)2+Dy(x,u)?) = G(X) - u+H(x).
4: Compute the inverse polynomialL(x) of G(x) modkR(x).

Modified Dupont-Enge-

5: Obtainu as a polynomial ix by
u(x) = —G1(x) - H(x) modkR(x).
6: Lett(x) = u(x)+1,q(x) = F((u(x) +1)2+Dy(x)?).
7: Choosg(cp, c1,C2) € Q that make the leading coefficient of
u(x) to be zero and preserve the irreducibilities of batk)
andR(x).
ChooseC € Q such thatC- R(x) € Z[x] and setr(x) =C-
R(x).
9. Determine a positive square-free intederthat does not
divide both dis¢r(x)) and dis¢q(x)).
(x),9(%).

10: If (x) represents primes, then retudnt(x),r

i=12. Then

x) — 1)+ Doy(x)?
Ri(x) — 1)% + Doy(x)?
R ()T (X) —1)? + Doy(x)?
—1)? +Doy(x)? = 2R () T (X) (U(X) — 1) + (R ()T (x))?,
or some Tx) € Q[x] anddegT (x) = degu(x) — degR (x).

(ui(

= (u(x) mod

= (u(x) -
(u(
for

= (U(X

According to Lemma 3, choose a positive square-free

integer D that does not divide both diggx)) and
dis(q(x)) to preserve the irreducibilities ofx) andq(x).
Finally, if q(x) represents primes, thef(x),r(x),q(x))

Since eackR.(x Do) fori = 1,2 is a factor ofR(x),
(ui(X) — 1)% 4 Dgy(x)? = 0 mod, Ri(x). Therefore, for the
specificDg such thatR(x) can be factored intdR;(x) -

parameterizes a complete family of paring-friendly curvesRy(x) with degR = @(k) for i = 1,2, computeu;(x)=

with embedding degrek and discriminanD. Algorithm
5 gives a brief description of our method.

(Note) We treatu merely as a variable from Step 1 to
Step 4 beforel is determined as thepolynomial in Step
5.

Remarkln Step 9, if a square-free positive inted&y that

makesR( ) be decomposed into irreducible polynomials Ba

R1(x) andRx(x) in Q[X] with degR; = @(k), i = 1,2, where

@is the Euler phifunction, is chosen, thenjust follow from

Step 6 to Step 10 except Step 9 with= Do anduy;(x) :=
u(x) modiRi(x) for i = 1,2. We demonstrate this relation
in the following statement.

Suppose that a chos®y makesR(x) be factored into
R1(X)-Ra(x), withdegiR = @(K), i =1, 2, then we perform
modularR;(x) to the resultu(x), and call itu;(x), where

u(x) modRi(x). Then we obtain(tj(x),
eachi.

ri(x).Gi(x)) for

4 Examples

4.1 Applications to the Barreto-Naehrig curves

Now we apply our new method to derive the
rreto-Naehrig curvefor embedding degre& = 12,

D = 3 without the analysis of factorizations of cyclotomic
polynomials.

Example 1. For embedding degre& = 12 and CM

discriminantD = 3, set

u(x) = g(c1x+co+ 1)?,

t(x) = 8{302x2 +6(cyCo+ 1)x+ 33 + 6co + 11},
Y(X) = —§{3c2x? +2(3c1Co — €)X+ 3¢5 — 2¢o + 3},
r(x) = 64{9c‘1‘x4 +36c5cox° + 18(3c§c5 +¢2)x%+12(3¢;
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cO + 3c1Cp — 2¢1)X + 9¢g + 18¢3 — 24co + 13}, If c; =0, then degR; = 2. Since the degree ofx) is a
q(x) = 43 {9ctx* + 36c3 c0x3+6(9c§cz+702)x2+12(3c1 multiple of @(12) = 4 by Lemma 2, this is impossible.
-G8+ 7cCo + 201 )X+ 9¢§ + 4263 + 24co + 37} Thus, we takec, = —1 or % If we want to produce the
Then for suitablec;’s, (t(x),r(x),q(x)) parameterizes a original BN curves wittD = 3, then take, = —1, u(x) =
complete family of eII|pt|c curves with embedding degree 3(c1x + cop + 1)°. There are infinitely many possible
k=12, discriminanD = 3, p = 1 and a prime order. choices ofc; andcg. For simplicity, we takes; = 4, cg =
—1. Finally, we obtain the BN curves withu(x) =
6x?, t(x) = 6x% — 1, r(x) = 36x* + 363 + 18¢% + 6x+ 1
andq(x) = 36x*+ 36x>+ 24x% + 6x + 1.

Proof. After settingy(x,u) = Cou+ C1X+ Cp, We compute
the resultantR(x) of the 12" cyclotomic polynomial
®p(u) = u* —u?> + 1 and the CM equation
(u—1)%2+ Dy(x,u)? as the following

R(x) : = Reg,(u*— u?+ 1, (u— 1)?+ Dy(x,u)?), 4.2 Some examples
4.8.8 4.7 .7 2 . .
= D%cx" + 8Dy Cox’ + ... — 16DcxCo — 6Dy + 1. Now we suggest several examples which parameterize
and letk=Q[x]/ (R(x)). the complete families and have improvements on

p-values. Note that we state examples with a varidble
to show that one can obtain abundant families by
2 1 choosingD. For embedding degreés= 5, 8, 12, 16, 20

Now, we reduce’* — u? + 1 in K by the relation

u=- D2+ 1){2(DC201X+ Deato — 1)u and 24, we obtain complete families of ordinary elliptic
; ) ) curves with improvedo-values. As we explained in the

+ (Deix” + 2Deacox + Deg + 1)} modc R(x). Introduction, sparse families are less efficient than
Then we obtain complete families in computing elliptic curves via the

W2+ 1=G(Xu+H(x) inK, where CM method. Therefore, we prefer to use complete

families to construct pairing-friendly elliptic curvesoiFk
= 5, there exist a sparse family with the best record
p = 1.5 [20] and a complete family having = 1.750

__ (4D°c3c3-4D%c,63)x3+..+4DC3— 2
{G<x> a1

H(x) = _ (30%3ct-D2cH)x*+.. +DC3+ 1 [12. In these examples, we provide the complete family
(Dc5+1)2 of elliptic curves with embedding degrée= 5 and the
By using the extended Euclidean algorithm, we canP€st recorcp = 1.50. For the cases df = 8, 16, 20 and
compute 24, there exist only sparse families of curves proposed by
G L= (630132 +.+ 2203197 cJc])x +..+ 285(DG3 + 225 [21]. For tho;e embedding degrees, our construction
_ 2(81D3cZ%+..+625) ' allows to obtain the complete type of families. Moreover,
and findu as anx—polynom|al by, these complete families have betteralues. For the case
U(X) =-G (x X) - H(x) modR(x) of k =12, we obtain the complete family with improved

6 7, 7 . . .
—(12D°cie] + gg? C%ijl)ig)““%cﬁs valuep = 1.5, which is better than the previously-known

D = 1,3 allowsR(x ) to be factored intdRy (x) andR,(x)  Previously-known smallest records pfvalues and our

with deg( R = @(K). improved p-values fork = 5,8,12,16,20,24 with the
WhenD = 3, if we takeRy (x) for r(x), where types of the families in Table 1.

Ry(x) = 9clx4+3603cox3 (9c3¢2 + 18c,C3 — 54c3c3 (Note) We denote our improved-values and previously
—9¢%)x? — 18c2clco+180201+36c2c1c0 12c5¢1 known bestp-values with variable discriminants @gew
— 36c1C3 — 18c1Co — 6C1 )X+ (9¢5 — 9c5¢3 — 18c3¢o andprecord, respectively.
+9c§—18c2c5+12czc0+6cz+9cg+9cg+6c0+1),

then

U1 (%, 3) MockRy (X) Example 2For embedding degrée= 5,

_ t(x,D) = (31238 + 875D2x* + 175Dx? + 14),

1 3 3 3 X, D) = 1562D*x8 + 312538 + 25(D2x* + 1,
~ (81510856303 — 1443 4503—360,5) {(546¢] +360,¢3 —186)x r(x.D) =

q(x D) = 45(976562D°x12 + 54687510
+185937D*x8 43937538 + 5512D2x*
+792Dx + 196).
Let D be a square-free positive integer not dividing
2.5.7-11- 4430894490089 Then (t(x,D),r(x,D),q(x,D))
- 135521(:0 N 1333 - 54‘:2%92) — 162c3c0 + 540%(;8(:3_ 72‘3%020 parameterizes a complete family of curves with
300 + 3605+ 54caCo + 45200 + 1562 — 1865 + 120 Pnew = 1.50, Whereprecorg = 1.50 for the sparse family
—21co - 3)} andprecorg = 1.75 for the complete family.

+ (54c3¢2 + 162£3¢3¢o + 108c,C3¢o + 54coC2

—54c2co +1262)x? + (81c3cy — 135c3¢y + 1083¢1Co

— 1623y + 162c5¢:¢4 — 72¢3¢1 + 1080,¢1 €3 + 108c,C1Co
+45C,C1 — 54c1 €5 + 24¢1Co — 21¢1 )X+ (81c3¢p — 27¢3

The coefficient of the highest degreewafx) which is Proof. By substituting Dx*> with z, we obtain the
written as bold types has factoes, (c; +1) and(c; — 1), irreducible polynomiaf(z) =1562%* + 31253 + 2502 + 1.
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Since the discriminant of(z) is 5'°-11? , by Lemma 3,
when D does not divides?®- 112, r(x,D) is irreducible.
Moreover, since §(z) =;5,(976562%° + 546875@° +
185937%* + 39375@° + 5512%° + 792% + 196) s
irreducible, andy(x,D) is also irreducible ifD does not
divide 22.5%.72.11°.4430894490089. Since D is
square-free, it is sufficient to take that does not divide
2.5.7-11-4430894490089Thus (t(x,D),r(x,D),q(x,D))
parameterizes a complete family of curves with
embedding degree 5 and discriminddtthat does not
divide2-5-7-11-4430894490089.

Example 3For embedding degrde= 8,

t(x,D) = £(32D3x8 +40D?x* + 32Dx? + 7),

r(x,D) = 64D*x8 +64D3x8 +32D?x* — 8Dx% + 1,

q(x,D) = 3,(102D°x!2 + 256510 + 364D

+300D°3x8 4 1584D%x* + 592D + 49).

Let D be a square-free positive integer not dividing
2-3.5-7-151-112237. Then (t(x,D),r(x,D),q(x,D))
parameterizes a complete family of curves with
Pnew= 1.50, wherepecorg = 1.75.

Proof. By substituting Dx? with z, we obtain the
irreducible polynomialf(z) =6472* + 642° 4 3222 — 8z + 1.
Since the discriminant of(z) =22¢.3? | by Lemma 3,
when D does not divide2®*. 32, r(x,D) is irreducible.
Moreover, sinceq(z) =q3;(10245 + 2560° + 3648/ +
30082 + 158472 + 5922+ 49) is irreducible,q(x,D) is also
irreducible if D ¥ 272.35.5.72.151. 112237 SinceD is
square-free, it is sufficient to take that does not divide
2-3-.5.7-151-112237 Thus (t(x,D),r(x,D),q(x,D))
parameterizes a complete family of curves wits 8 and
discriminantD {2-3-5-7-151. 112237

Example 4For embedding degrde= 12,

t(x,D) = {5(2D3x® + 13D2x* 4 31Dx? + 11),

r(x,D) = D*® 4 6D3x8 + 11D?x* — 6Dx? 4 1,

q(X,D) = z55(4D®x*2 4 52D5x10 -+ 293D*x8 4 851D3X°

+124D%x* 4 782Dx2 + 121).

Let D be a square-free positive integer not dividing
2-3-5-11-17-31-9181 Then (t(x,D),r(x,D),q(x,D))
parameterizes a complete family of curves
withpnew= 1.50, whereoecorg = 1.75.

Proof. By substituting Dx> with z we obtain the
irreducible polynomiaf(z) =z*+ 62% + 1122 — 6z+ 1. Since
the discriminant of(z) =28.32.5% , by Lemma 3, when
D does not divides2® - 3?.52, r(x,D) is irreducible.
Moreover, sinceq(z) = 5,(42° + 522> + 293 + 8502 +
124772 + 782 + 121)is irreducible, q(x,D) is also
irreducible if D  21°.56.112.172.31.9181 SinceD is
square-free, it is sufficient to take that does not divide
2-3.5-11-17-31-9181 Thus (t(x,D),r(x,D),q(x,D))
parameterizes a complete family of curves with
embedding degree 12 and discriminant wilh {
2-3.5-11-17-31-9181

Example 5For embedding degrde= 16,
t(x,D) = 15555(492D"xM + 4044D5x12 4 1468D5x10
+3095D*x8 + 430303x8 4 1199D2x*
+9485®x% + 15970,
r(x,D) =D8x'6 1 8D"x!4 4-28Dx!2 + 56D°x10
+72D*x8 + 168D2X* — 48Dx2 + 4,
= garrois0d 24206D14%?8 1+ 397920®13x%6
+3080200812x24 4 14921779D11x22
+50832009D10x20 + 126897670Rx18
+241253750D8x16 + 37997965207 x4
+550963134B6x12 + 7374408776°x10
+929761982B*x8 4 365008742B3x8
+938112852B2x* 4 326593994Bx2
+ 255040900.
Let D be a square-free positive integer not dividing
2.3.5.17-23-41-109- 113 1597- 565604969 Then
(t(x,D),r(x,D),q(x,D)) parameterizes a complete family
of curves with withppew= 1.750, wheredrecorg = 1.875

Proof. By substituting Dx> with z we obtain the
irreducible polynomiaf(z) = 2+ 82" + 288 + 562> + 722*

+ 1682 — 48 + 4. Since the discriminant off(z) =
2%8.17. 112, by Lemma 3, wherD does not divide
250174 . 112, r(x,D) is irreducible. Moreover, since
0(2) = gqz761004 24206414 + 397929612 +- 30802008'2 + 14
9217792 + 508320097 + 1268976702 + 241253702 +
3799796528/ +5509631348° + 7374408778 + 9297619824
7'+ 3650087424 4 938112852# + 3265939944+ 2550409

00) is irreducible,q(x,D) is also irreducible whenever
Dt 2%2.317.52.17%4.23.4115.109- 113" . 1597 .
565604969 Note that we do not consider the factors of
disqq(z)) that are larger than 1B Since D is
square-free, it is sufficient to tak® that does not divide
2.3.5-17-23-41-109- 113- 1597 565604969 Thus
(t(x,D),r(x,D),q(x,D)) parameterizes a complete family
of curves with embedding degree 8 and
discriminant D { 2-.3.5-17-23-41-109-113- 1597
565604969

Example 6 For embedding degrde= 20,

t(X, D) =3165174 304487 x4+ 308999B°0x12
+1294887M°x10 + 263530648
+1827016D3x8 — 1761877D%x* + 3511804Dx2
+3039654,

r(x,D) =D8x6 4 10D"x!4 4 41D6x'2 4 80D5x0
+46D*x8 — 70D3x8 4+ 116D%x* — 20Dx2 + 1,

A(X, D) = 4o17a7557827369270807040D14x28
+188168213728D13x26 + 1743340061524912x24
+960717965603aDM %22 4 34166059374345310x20
+ 78466500107340°x18 4 10801415759974@8 x16
+ 7255431141078 x4 + 3334444299421 385 x12
+ 1285860383086 7P x10 + 17538545727148%F8" x8
—11264040528954 T8 X8 + 11261671126557@F x*
+223537101108542x? + 9239496439716

Let D be a square-free positive integer not dividig-
511.29.37-101.- 173-239- 541- 506609 6811303 17244169
Then (t(x,D),r(x,D),q(x,D)) parameterizes a complete
family of curves with ppew = 1.750 where
Precord= 1.875

q(x,D)
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Proof. By substituting Dx?* with z, we obtain the
irreducible polynomial 7(z) =2 + 10" 4 4128 + 802> +
462 — 702 + 11622 — 20z + 1. Since the discriminant of
T(z) = 216.56.29?.101%2- 5412 , by Lemma 3, wheiD does
not divide 216.55.2¢9?. 1012 . 5412, r(x,D) is irreducible.
And G 92708070408 + 1
881682137283%7175%8325%06152492 +960717965603081
4 3416605937434580 + 784665001073404 + 10801415759
974078 + 7255431141078%4 -+ 333444429942138 + 12858
603830867724 + 17538545727148%3 — 1126404052895418
Z +1126167112655708 4 223537101108544- 9239496439
716) is irreducible, q(x,D) is also irreducible if
D 12107.36.515.1115. 2914 . 37. 10114 . 17315 . 239. 54114 .

50660% - 6811303 17244169 Note that we do not consider

the factors of dis(z)) that are larger than 8. SinceD
is square-free, it is sufficient to takethat does not divide
2-3-5-11-29-37-101-173- 239- 541- 506609 6811303
17244169 Thus (t(x,D),r(x,D),q(x,D)) parameterizes a

complete family of curves with embedding degree 20 and

discriminant D {2-3-511-29-37-101- 173- 239- 541-
506609 6811303 17244169

Example 7For embedding degrde= 24,
t(X,D) = 359700(2450D"x14 4 19857612
+ 65820510 4 154293 D48 + 280047 3x8
+182152D?x* 4 548540Dx? + 402966,
r(x,D) = D864 8D"x'*+ 26D6x!? + 60D°x°
+107D*x8 + 60D3x8 + 206D2x* — 28Dx% + 1,
A(X,D) = s1685516000660039700014x28
+973136645013x26 1 7168792684B12x24
+3370181980301x%2 + 118324621569710x20
+3232596936062°x18 4 70594301083498 x16
+13238008748048" x4 + 208446628791315x12
+ 27659895033862° x10 -+ 35284865408533* x8
+ 2224053339263B°x8 + 3155763522252 x*
+457507268280Dx? + 162381597156.
Let D be a square-free positive integer not dividing-
5.7-11-17-19-47-61-107- 229- 367- 56531 69846486007
209843489291
Then (t(x,D),r(x,D),q(x,D)) parameterizes a
complete family of curves withopew = 1.750 where
Precord = 1.875

Proof. By substituting Dx?* with z, we obtain the
irreducible polynomiaf(z) = 28+ 82" + 2625 + 602> + 1072
+602° + 206722 — 282+ 1. Since the discriminant af(z) =
232.38.54.72.112. 172, by Lemma 3, wherD does not
divide 2%2.38.5%.72.112. 172, r(x,D) is irreducible.
Moreover, Sinc&(z) = srsss150006600397008™ + 973136
6450713  + 716879268432 4+ 3370181980381 +
1183246215692 + 3232596936062 + 7059430108348 +
13238008748048 + 2084466287913F + 276598950338
6222 + 35284865408538 + 22240533392638 +
31557635222572 + 4575072682800+ 162381597156 is
irreducible, q(x,D) is also irreducible if D ¢
256.326.528.714.1114.1714.19.47.612 . 10725. 229'5. 3672 .
56531 69846486007 209843489291 Note that we do not

Table 1: Comparison of the recordeaivalues and the improved
p-values of families of elliptic curves having variatide

oK) | kK | pec  Family Typgec  degr(X)rec

Prew  Family Typgew degr (X)new
2 4 1.000 sparse 2
- complete -
1.000 sparse 2
1.500 complete 4
6 1.000 sparse 2
- complete -
1.006 sparse 2
1.500 complete 4
4 5 1.500 sparse 8
1.750 complete 8
1.500 sparse 4
1.500 complete 8
8 1.750 sparse 4
1.500 complete 8
10 | 1.000 sparse 4
- complete -
1.006G sparse 4
1.500 complete 8
12 | 1.750 complete 8
1.500 complete 8
8 16 | 1.875 sparse 8
1.750 complete 16
20 | 1.875 sparse 8
1.750 complete 16
24 | 1.875 sparse 8
1.750 complete 16

(Note) (UBy setting Dy(x)2 as Cou + C1X+ g in Step 1 of

the Algorithm 5, we can also produce the sparse families. We
describe thep-values marked with for the comparison.
(&The entries in bold indicate our improved results.

consider the factors of diég(z)) that are larger than 18,
SinceD is square-free, it is sufficient to tak® that does
not divide 2-3.5-7-11-17-19-47-61-107- 229- 367
56531 69846486007209843489291

Therefore, (t(x,D),r(x,D),q(x,D)) parameterizes a
complete family of curves with embedding degree 24 and
discriminantD  2-3-5-7-11-17-19-47-61- 107- 229- 367-
56531:69846486007209843489291

We have summarized the-values, the family types
and the degrees ofr(x) from the new modified
Dupont-Enge-Morain method accordingg@dk) and have
compared them with the previously reported best records
including both complete families and sparse families in
Table 1. The compared previous works in Table 1 are
contained in4], [9], [12], [20] and [21].

5 Conclusion

In this paper, we propose a new algorithm for
constructing complete families of pairing friendly eliipt
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curves having various(x) andD for arbitrary embedding

degrees by extending and modifying the original the
Dupont-Enge-Morain method. The Dupont-Enge-Morain

[11] D. Freeman. Constructing pairing-friendly ellipticiroes
with embedding degree 10n Algorithmic Number Theory
Symposium — ANTS-VYNolume 4076 of Lecture Notes in

method is known to have constant curve parameters Computer Sciencepp.452-465. Springer, 2006.

(t,r,q) and the weakness pf~ 2. In our modification, by
choosing a special form of the input polynomial
parameter y(x), families of elliptic curves can be
constructed by  polynomial curve
(t(x),r(x),q(x)) having p < 2 with variable CM
discriminantsD. Moreover, fork = 5,8,12,16,20 and 24,
the family types and thp-values have been improved.
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