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Abstract: This paper discusses the stochastic analysis of a two-unit cold standby system, taking into account that the operative and the
standby units are exchanged at random time intervals. Failure, repair and exchanging time are following general distributions. Using
semi-Markov process and regenerative point technique in Markov renewal process, we develop the explicit expressions for the mean
time to system failure, MTSF and steady-state availability, A(∞) for the system. Some special cases have been studied numerically
and graphically to explain the effect of the system parameters on system performance. We also compute the sensitivity and relative
sensitivity analysis for the MTSF and A(∞) along with changes in specific values of the system parameters.
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1 Introduction

The theory reliability plays an active role in our life
because of the high development of devices in many
fields. Nowadays, it touches technological, economic,
structural, industrial, and other similar subjects. Several
authors [1,2,3,4] have studied a two dissimilar unit
standby system with constant failure rate.[5] discussed
reliability measures of three models with three types of
failures and attended by one repairman. The model 1 is
under preventive maintenance before failure, while model
2 and model 3 are analyzed without preventive
maintenance.

A repairable K-out-of-(M+W) retrial system with M
identical primary components, W standby components
and one repair facility investigated by [6]. [7] studied the
reliability measures of a repairable system with M
operating units, W warm standby units, and R repairmen
in which there are switching failures and reboot delay. [8]
has considered the reliability and sensitivity analysis ofa
system with M operating machines, S warm standbys, and
a repairable service station.

The reliability and sensitivity analysis of a repairable
system with imperfect coverage under service pressure
condition studied by [9]. [10] provided a two-unit cold
standby system with hardware, human error failures.

They added time preventive maintenance for the system.
[11] analyzed profit analysis of a reliability model for a
single-unit system with preventive maintenance subject to
maximum operation time. [12] considered reliability and
MTTF of complex systems, with different types of
failures and one type of repair.

The main contributions of this paper are: study a
two-unit cold standby system with random change
between the units and all time distribution of the system
are arbitrary. Various reliability characteristics of interest
are evaluated by using semi-Markov process and
regenerative point technique. The effect of the different
parameters on mean time to system failure and
steady-state availability are shown tabular and
graphically. Finally, the sensitivity analysis and the
relative sensitivity analysis for the mean time to system
failure and steady-state availability are discussed.

The organization of the paper is as follows. In section
2, 3 we given a detailed description for system consist of
two non-identical units. Transition probabilities and
sojourn times are presented in section 4. Some reliability
characteristics of the system are derived in sections 5 and
6 respectively. The results of our numerical simulations
and sensitive analysis and relative sensitivity analysis of
the reliability characteristics are discussed in section 7.
Finally, we make a concluding remark in section 8.
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2 Assumptions

1- A redundant system comprises from two non-identical
units. Initially, one unit is operative and the other is cold
standby.

2- The switch is perfect and instantaneous.
3- After a random amount of time t, the operative unit

becomes standby and the standby unit becomes operative
if the standby is available.

4- The distributions of all times are arbitrary.
5- There is a single repair facility is available for repair.
6- Service discipline is FCFS.
7- After the repair, the unit is as good as new.

3 Nomenclature

Fi(t) Cumulative distribution function of failure time from
normal mode to complete failure, i = 1,2.

K(t) Cumulative distribution function of repair time
of a failed unit.

Gi(t) Cumulative distribution function of times after
which operative unit changes, i = 1,2.

E0 State of the system at t = 0.
E Set of regenerative states.

qi j(t), Qi j(t) Probability density function and
cumulative distribution function of transition time from
regenerative stateSi to S j.

qk
i j(t), Qk

i j(t) Probability density function and
cumulative distribution function of time for the system
transits from regenerative stateSi to S j via the
non-regenerative stateSk ∈ E.

(Π)i(t) Cumulative distribution function of time to
system failure starting from stateSk ∈ E.

mi j Contribution to mean sojourn time in stateSi,
when system transits direct toS j.

µi
∫

P[system sojourn in stateSi for at least time t]dt.
Mi(t) P[system up initially in stateSi ∈ E is up at time

t without going to any other regenerative state or returning
to itself through one or more states∈ E].

Avi(t) P[starting fromSi ∈ E, the system is up at time
t].

s Dummy variable in Lapace transform (LT).
∗ Symbol for Laplace transform, i.e.q∗i j(t) =

∫
exp

(-st) qi j(t) dt.
c© Symbol for ordinary convolution, i.e.A(t) c© B(t)

=
∫ t

0 A(t-x) B(x) dx.

3.1 Symbols for states of the system

O : normal unit when it is operative, CS : normal unit when
it is cold standby,Ou : old normal operative unit,Ouc3 :
old normal operative unit when it is continued from state
S3 , Ouc4 : old normal operative unit when it is continued
from stateS4 , Fr :failed unit under repair,wr :failed unit

waiting for the repair,FR :repair of failed unit is continued
from earlier state.

With these symbols, the possible states of the system
model under study are:

Up states:
S0 = (O, CS),S1 = (CS, O),S2 = (Ou, CS),
S3 = (Fr, O), Sc3 = (CS,Ouc3 ),
S4 = (Ou, Fr), Sc4 = (Ouc4, CS),S7 = (CS,Ou).
Down states:
S5 = (FR, wr), andS6 = (wr, FR).

Fig. 1: Possible states and transitions between them

4 Transition probabilities and sojourn times

It is evident that the epochs of entry into any one of the
statesS0, S1, S2, S3, S4 andS7 are regeneration points and
is the set of these states. LetT0, T1, T2,... denote the
epochs at which the system enters any stateSi ∈ E and let
Xn denote the state visited at epochT+

n , i.e. just after the
transition at Tn. Then (Xn, Tn) is a Markov renewal
process with state space E andQi j(t) = P (Xn+1 = j, Tn+1 -
Tn ≤ t | Xn = i) is the semi-Markov kernel over E. The
transition probability matrix of embedded Markov-chain
is P≡ (Pi j(t)) ≡ (Qi j(∞) = Q(∞)) with non-zero elements
Pi j as follows:

P01 = P27 =
∫

F1(t) dG1(t), P03 = P23 =
∫

G1(t) dF1(t),
P12 =

∫
F2(t) dG2(t), P14 =

∫
G2(t) dF2(t),

PC3
32 =

∫
F2(t) K(t) dG2(t), P5

34 =
∫

F2(t) dK(t),

P6
43 =

∫
F1(t) dK(t), PC4

47 =
∫

F1(t) K(t) dG1(t),
P72 =

∫
F2(t) dG2(t), P74 =

∫
G2(t) dF2(t),

P3C3 =
∫

F2(t) dK(t), P4C4 =
∫

F1(t) dK(t),
P35 =

∫
K(t) dF2(t), P46 =

∫
K(t) dF1(t),

PC3
34 =

∫
G2(t) K(t) dF2(t) +

∫ ∫ t
0 G2(x) dK(x) dF2(t),

PC4
43 =

∫
G1(t) K(t) dF1(t) +

∫ ∫ t
0 G1(x) dK(x) dF1(t).

Evidently,
P01 + P03 = P12 + P14 = P27 + P23 = P3C3 + P35 = P4C4 +

P46 = 1,
PC3

32 + PC3
34 + P5

34 = PC4
43 + PC4

47 + P6
43 = 1.

Mean sojourn timesµi in stateSi are:
µ0 = µ2 =

∫
F1(t) G1(t) dt, µ1 = µ7 =

∫
F2(t) G2(t) dt,

µ3 =
∫

F2(t) K(t) dt, µ4 =
∫

F1(t) K(t) dt.
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5 Mean time to system failure

According to the arguments of theory of regenerative
processes, we obtain the following equation:

Π0(t) = F1(t)G1(t)+ q01(t) c©Π1(t)+ q03(t) c©Π3(t),
(1)

Π1(t) = F2(t)G2(t)+ q12(t) c©Π2(t)+ q14(t) c©Π4(t),
(2)

Π2(t) = F1(t)G1(t)+ q23(t) c©Π3(t)+ q27(t) c©Π7(t),
(3)

Π3(t) = F2(t)K(t)+qC3
32(t) c©Π2(t)+qC3

34(t) c©Π4(t), (4)

Π4(t) = F1(t)K(t)+qC4
43(t) c©Π3(t)+qC4

47(t) c©Π7(t), (5)

Π7(t) = F2(t)G2(t)+q72(t) c©Π2(t)+q74(t) c©Π4(t) (6)

Taking the Laplace transform of these relations and
solving for Π0(s) considering s = 0, we have the time to
system failures MTSF as follows:

MT SF = E(T ) =
N1

D1
(7)

where,
D1 = 1 - P23 {PC3

32 (1-PC4
47 P74) + PC3

34 PC4
47 P72} - P27 {P72

(1- PC3
34 PC4

43 ) + PC3
32 PC4

43 P74} - PC3
34 PC4

43 - PC4
47 P74,

N1 = {µ0 + P01 µ1} {(PC3
34 PC4

43 - 1) (1 - P27 P72) - P74

(P27 PC3
32 PC4

43 + PC4
47 ) + P23 (PC3

32 ( PC4
47 + P74 - 1) - PC3

34 PC4
47

P72)} + µ0 {P03 (PC3
34 PC4

47 P72 + PC3
32 (PC4

47 P74 - 1)) (P12 P74

- P14 P72) - P03 (P27 P72 + P74 PC1
47 - 1)} + {µ0 + ω3 + ω4}

{P03 (PC3
34 ( 1 - P27 P72) + P27 PC3

32 P74) + P01 (P14 (PC3
32 PC4

43

+ PC4
47 P72) - P12 (PC3

34 PC4
43 + PC4

47 P74 - 1))} {µ1 + ω1 + ω2}

{P01 ( P14 P23 + P14 PC4
43 ) + P01 (P27 PC4

43 - P23 PC4
47 ) + P01

(P14 (1 - P23 PC3
32 - P27 P72) + P12 (P23 PC3

34 + P27 P74))} + µ1

{P27 (P03 PC3
32 + P01 (P12 + (P14 PC3

32 - P12 PC3
34 ) PC4

43 )) - PC4
47

(P01 P14 (P23 PC3
32 - 1) - (P03 + P01 P12 P23) PC3

34 )},

ω1 =
∫

F2(t) G2(t) K(t) dt,
ω2 =

∫
F2(t)

∫ t
0 G2(x) dK(x) dx,

ω3 =
∫

F1(t) G1(t) K(t) dt,
ω4 =

∫
F1(t)

∫ t
0 G1(x) dK(x) dx.

6 System Availability

From the theory of regenerative processes, the pointwise
availabilities Avi(t) of the system starting from a given
regenerative point are seen to satisfy the following
recursion relations:

Av0(t) = M0(t)+ q01(t) c©Av1(t)+ q03(t) c©Av3(t), (8)

Av1(t) = M1(t)+ q12(t) c©Av2(t)+ q14(t) c©Av4(t), (9)

Av2(t) = M2(t)+ q23(t) c©Av3(t)+ q27(t) c©Av7(t), (10)

Av3(t)=M3(t)+qC3
32(t) c©Av2(t)+(qC3

34(t)+q5
34(t)) c©Av4(t),

(11)

Av4(t)=M4(t)+(qC4
43(t)+q6

43(t)) c©Av3(t)+qC4
47(t) c©Av7(t),

(12)

Av7(t) = M7(t)+ q72(t) c©Av2(t)+ q74(t) c©Av4(t). (13)

where,
M0(t) = M2(t) = F1(t) G1(t),
M1(t) = M7(t) = F2(t) G2(t),
M3(t) = F2(t) K(t) + F2(t) K(t) G2(t) + F2(t)

∫ t
0 G2(x)

dK(x),
M4(t) = F1(t) K(t) + F1(t) K(t) G1(t) + F1(t)

∫ t
0 G1(x)

dK(x).
Taking the Laplace transform of equations (8)-(13) and

solving forAv∗0(t), then we get the steady state availability
of the systemAv0(t) in the form,

Av0 = lim
s→0

sAv∗0(s) =
N2

D2
, (14)

where,
N2 = {µ0 + P01 µ0} {(1-PC4

47 P01)(1-PC3
32 P23) - (1- P27

P72)(P6
43 + PC4

43 )(PC3
34 + P5

34) - P23 PC4
47 P72 (PC3

34 + P5
34) - PC3

32

P27 P74 (P6
43 + PC4

43 ) - P27 P72}+ µ2 {P01 P12 (1-PC4
47 P74 -

(P6
43 + PC4

43 ) (PC3
34 + P5

34)) + P03 (PC3
32 (1- PC4

47 P74) + PC4
47 P72

(P5
34 + PC3

34 )) + P01 P14 (PC3
32 (P6

43) + PC4
43 ) + PC4

47 P72)} + {µ3

+ ω1 + ω2} {P01 P12 ( P23 (1-P74 PC4
47 ) + P27 P74 (P6

43 +

PC4
43 )) + P03 (1- P27 P72 - PC4

47 P74) + P01 P14 ((1-P27 P72)(P6
43

+ PC4
43 ) + P23 P72 PC4

47 )} + {µ4 + ω3 + ω4 } { P01 P12 (P27

P74 + P23 (PC3
34 + P5

34)) + P03 ((1-P27 P72)(P5
34 ) + PC3

34 ) + P27

P74 PC3
32 ) + P01 P14 (1- PC3

32 P23 - P27 P72 ) + µ5 {P01 P12 (

P27 (1 - (P6
43 + PC4

43 ) (P5
34 + PC3

34 )) + P23 PC4
47 (P5

34 + PC3
34 )) +

P03 ( P27 PC3
32 + PC4

47 ( P5
34 + PC3

34 )) + P01 P14 (1 - PC3
32 P23 -

P27 P72 )},
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Table 1: Effect of λ2,α1,α2,µ on MTSF when λ1 ∈
{0.1, · · · ,0.5}.

λ1 MTSF
A B C

0.1 672.16 366.594 118.65
0.2 315.205 160.945 40.6057
0.3 186.98 95.253 23.3281
0.4 126.401 65.5772 16.7451
0.5 93.0855 49.4803 13.395

D2 = m2 (PC3
32 + PC4

47 P72 - PC3
32 PC4

47 ) + m3 (P23 + P27

P74 P6
43 + PC4

43 P27 P74 - P23 P74 PC4
47 ) + m4 (P23 P72 P5

34 +

PC3
34 P23 P72 + P74 - P23 P74 PC3

32 ) + m7 (PC4
47 + PC3

32 P27 - PC3
32

PC4
47 ),

m2 = m23 + m27 , m3 = mC3
32 + mC3

34 + m5
34, m4 = mC4

43 +

mC4
47 + m6

43, m7 = m72 + m74.

7 Numerical analysis and discussion

In this section, some of the results are obtained from above
sections and are illustrated with a numerical example, we
assume that

fi(t) = λ 2
i t e−λit , λi > 0;

k(t) = µ2 t e−µt , µ > 0;
gi(t) = α2

i t e−αit , αi > 0; for all i = 1,2.
The result shown in Table 1 presents the mean time to

system failure of the system computed by varying its
failure rate (λ1) from 0.1 to 0.5 and change other
parameters asλ2 = 0.4,0.5,0.7.α1 = 1.2,0.8,0.5.α2 =
0.9,0.6, 0.3 andµ = 1.1,0.9,0.3 the mean time to system
failure of the system decrease with increasing ofλ1 and
λ2. The mean time to system failure of the system
increase with increasing ofα1, α2 , µ . These results are
shown in Fig 2. The steady-state availability of the system
has been calculated by varying the failure rate (λ1) from
0.1 to 0.5 and change other parameters asλ2 = 0.4,0.5,0.7.
α1 = 1.2,0.8,0.5.α2 = 0.9,0.6, 0.3 andµ = 1.1,0.9,0.3.
The results are shown in Table 2 and Fig 3. . It seems that
the steady-state availability of the system decrease with
increasing ofλ1 and λ2. The steady-state availability of
the system increase with increasing ofα1, α2 , µ .

whereA = {α1 = 1.2,α2 = 0.9,λ2 = 0.4,µ = 1.1},
B = {α1 = 0.8,α2 = 0.6,λ2 = 0.5,µ = 0.9},
C = {α1 = 0.5,α2 = 0.3,λ2 = 0.7,µ = 0.3}.

whereA = {α1 = 1.2,α2 = 0.9,λ2 = 0.4,µ = 1.1},
B = {α1 = 0.8,α2 = 0.6,λ2 = 0.5,µ = 0.9},
C = {α1 = 0.5,α2 = 0.3,λ2 = 0.7,µ = 0.3}.

7.1 Sensitivity analysis and relative sensitivity
analysis

In this subsection, we calculate the sensitivity analysis
and relative sensitivity analysis of MTSF and steady-state

Table 2: Effect of λ2,α1,α2,µ on Av(∞) when λ1 ∈
{0.1, · · · ,0.5}.

λ1 Av(∞)
A B C

0.1 0.999134 0.990773 0.983274
0.2 0.998012 0.986145 0.949213
0.3 0.996468 0.981892 0.911351
0.4 0.994614 0.977581 0.875892
0.5 0.992545 0.97319 0.844388

Table 3: Sensitivity and relative sensitivity of MTSF with respect
to λ1,λ2,α1,α2 andµ

φλ1
φλ2

φα1 φα2 φµ
-835.84 -685.288 -1.31441 47.6518 269.616

σλ1
σλ2

σα1 σα2 σµ
-1.3411 -1.46601 -0.00844 0.229364 1.58614

availability with respect to one of system parametersκ
whereκ = α1 , α2, λ1, λ2 andµ

7.1.1 Sensitivity analysis and relative sensitivity analysis
for MTSF

Defined (7) with respect toκ , we obtain.

φκ =
∂MT SF

∂κ
, (15)

whereκ = α1 , α2, λ1, λ2 andµ . The relative sensitivity
analysis of MTSF is defined as the percentage change that
resulting from the percentage change in one of system
parametersκ .

σκ = φκ(
κ

MT SF
), (16)

We first perform the sensitivity and the relative sensitivity
analysis of MTSF with respect to different system
parametersα1 , α2, λ1, λ2 and µ . respectively. We will
see how effect on MTSF about system parameters.
Numerical results of the sensitivity and the relative
sensitivity analysis of MTSF are shown in Table 3 when
λ1 = 0.3,λ2 = 0.4,α1 = 1.2,α2 = 0.9, andµ = 1.1. The
order of magnitude of the effect on MTSF about system
parameters can be determined by the absolute value in
Table 3. Therefore, the order of magnitude of the
sensitivity to the MTSF isλ1 > λ2 > µ > α2 > α1.
Moreover, the order of magnitude of the relative
sensitivity to the MTSF isλ1 > λ2 > µ > α2 > α1 when
λ1 = 0.3,λ2 = 0.4,α1 = 1.2,α2 = 0.9 andµ = 1.1.

7.1.2 Sensitivity analysis and relative sensitivity analysis
for steady-state availability

We perform the sensitivity analysis of changes in steady-
state availability with respect to one of system parameters

c© 2016 NSP
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Table 4: Sensitivity and relative sensitivity of Av(∞) with respect
to λ1,λ2,α1,α2 andµ

πλ1
πλ2

πα1 πα2 πµ
-0.0172 -0.00397 0.015141 0.022354 -0.02869

ψλ1
ψλ2

ψα1 ψα2 ψµ
-0.0052 -0.00159 0.01824 0.02019 -0.03167

κ whereκ = α1 , α2, λ1, λ2 and µ . Differentiating (14)
with respect toκ , we obtain

Πκ =
∂Av(∞)

∂κ
, (17)

The relative sensitivity of steady-state availability is
defined as the percentage change that resulting from the
percentage changes in one of system parametersκ .

ψκ = Πκ(
κ

Av(∞)
), (18)

Numerical results are provided to illustrate the
sensitivity of steady-state availability with respect to
system parameters. Table 4 show that sensitivity and
relative sensitivity of steady-state availability for thebase
case with respect to one of system parametersκ whereκ
whereκ = α1 , α2, λ1, λ2 andµ . whenλ1 = 0.3,λ2 = 0.4,
α1 = 1.2,α2 = 0.9, andµ = 1.1, respectively. Therefore,
the order of magnitude of the sensitivity to the
steady-state availability isµ > α2 > λ1 > α1 > λ2
Moreover, the order of magnitude of the relative
sensitivity to the steady-state availability isµ > α2 > α1
> λ1 > λ2 whenλ1 = 0.3,λ2 = 0.4,α1 = 1.2,α2 = 0.9,
andµ = 1.1

Fig. 2: Effect of λ2,α1,α2,µ on MTSF

8 Conclusions

In this paper, A regenerative point technique is used to
derive the mean time to system failure, MTSF, and
steady-state availability, Av(∞), of a system consisting of

Fig. 3: Effect of λ2,α1,α2,µ on Availability

two non-identical units and repairman. The effect of the
system parametersλ1, λ2, α1, α2, and µ has been
discussed. It has been found that the failure rate shows a
strong effect on the system than that of the other
parameters with respect to mean time to system failure.
While the repair rate shows a strong effect on the system
than that of the other parameters with respect to
steady-state availability. We have the same results, using
the sensitivity analysis and relative sensitivity analysis in
specific values of the system parameters.
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