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Abstract: In this paper, we consider a new system of extended genetativaal inequalities involving six nonlinear operatdusing
projection operator technique, we show that system of el igeneral variational inequalities is equivalent to aesyof fixed point
problems. Using this alternative equivalent formulatisome Gauss-Seidel type algorithms for solving a systemteheled general
variational inequalities are suggested and investig&edvergence of these new methods is considered under siatdegonditions.
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1 Introduction like to emphasize that new algorithms are quite different
from the algorithms of Yang et aB[J]. To implement the
Variational inequality theory, which was introduced and algorithms of Yang et al0], one has to find the inverse
considered by Stampacchi@d, provides us with a of the operator, which is itself a difficult problem. To
unified, innovative and general framework to StUdyaWideovercome this drawback, we Suggegt and ana|yze some
class of problems, which arise in finance, economicspew algorithms, which do not involve the inverse of
network analysis, transportation, elasticity, optimi@at  operators. Convergence analysis of these new algorithms
and applied sciences. Variational inequalities have beefs considered under some suitable conditions. We have
generalized and extended in several directions using theewritten the equivalent formulation in a more convenient
novel and new techniques. For the applications and otheform using a suitable substitution. These equivalent
techniques for solving variational inequalities, seeformulations are used to suggest a wide class of new
[1—31] and references therein. algorithms for solving a system of extended general
Motivated by recent advances in this area, Weyariational inequalities. It is shown that these new
introduce and consider a new system of extended genergerative methods include several known and new methods
variational inequalities with six nonlinear operatorsisit  for solving system of variational inequalities. Our result
shown that nonconvex minimax problems can be studiedepresent a refinement and improvement of the recent
via this system of extended general variationalresults of B0]. Our algorithms are much easier in
inequalities, see Example This class of systems include jmplementation than algorithms in 3] and
many new and known systems of variational inequalitiescomputationa| workload is also less than those 3f].[
as special cases. Using the projection technique, we havene interested readers are encouraged to find new, novel
shown that the new system of extended generahnd innovative applications of variational inequalitiesla
variational inequalities is equivalent to fixed point gptimization problem in pure and applied sciences. The
problems. This alternative equivalent formulation is usedimplementation of new proposed methods in this paper is
to propose and investigate some new algorithms forgnother direction for further research.
solving a systems of variational inequalities. We would
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2 Preliminaries and Basic Results

Let 2# be a real Hilbert space, whose norm and inner

product are denoted bjy|| and(-,-), respectively. Lef2;,
Q5 be two closed and convex setsiff.

For given nonlinear operators
T1,T2,01,02,h1,hp © 7 — 2#, consider a problem of
findingx,y € 5 : hy (y) € Q1,h2(X) € Qy such that

(T1ix, 01 (V) —hy (y)) >0, We #:g1(v) € Q, } o
(T2y,92(v) —h2(x)) >0, Ve :gz2(v) € Q.

The system(1) is called a system of extended general
variational inequalities with six operators.

We now list some special cases of the system of

extended general variational inequalit{&s.

I.If 01 =02=0, h1=h2=hand.Ql=Qz=Q, a
closed convex set i, then problem(1) reduces to
findx,y € 7 h(y) € Q, h(x) € Q such that

b @

(ix,g(v) —h(y)) =0, WeZ:g(v)€Q,

(Tay,g(v) —h(x)) >0, We s :g(v)e Q.

The problem of type(2) is called a system of
extended general variational inequalities with four
nonlinear operators.

f glzhlzg, 92=h2=handQ1=Q2=Q, aclosed
convex set insZ, then problem(1) collapse to find
X,y €2 :9(y),h(x) € Q such that

(Tix,g(V) —g(y)) >0, We #Z:g(v)€Q, } 3)
(Tay,h(v) —h(x)) >0, YWe . #Z:h(v)eQ,

is a system of general variational inequalities with four
nonlinear operators.

If T, =T, =T, then problem(2) reduces to findi €

A :h(u) € Q such that

(Tu,g(v)—h(u)) >0, We £ :g(v) € Q, 4)

which is called extended general variational inequality,
introduced and studied by Noad21].

It is well known that the projection operaté, is
nonexpansive, that is,

([P [u] = Po [V][| < [lu— V||, V.2 (6)
Definition 1.A nonlinear operator T. .2 — 77 is said to
be:
(i)strongly monotone, if there exists a constant> O,
such that

(Tu—Tvu—V) > allu—Vv|?, Yuve . 7.
(ii)Lipschitz continuous if there exists a constgnt- O,

such that

[Tu—Tv|| <Bllu—v|, Yuve 7.

Note that, ifT satisfiegi) and(ii), thena < 3.
Lemma2[29 If {d},_, IS @ nonnegative sequence
satisfying the following inequality:

Oni1 < (1—Apn)On+ oy foralin >0,

An = o, and o, = 0(Ap), then

With 0 < Ay <1, 5
n=0

lim &,=0.
N—co
Using the auxiliary principle technique of Glowinski et
al [7], as developed by Noo2D,21], one can easily show
that problem(1) is equivalent to that of finding,y € .7 :
h1 (y) € Q1, ha (X) € Q2 such that
(PrTix+hy (y) =91 (%), 02 (V) —ha (y)) > 0, } @
(P2T2y+h2 (X) =G2(y),92(V) —h2 (X)) = 0, |~
wherevv e 57,091 (V) € Q1,02 (V) € Q2,01 >0andpz >0
are constants.
We use this equivalent formulation to develop some

new iterative methods for solving the system of extended
general variational inequalities and its variant forms.

3 Applications

In this section, it is shown that the optimality conditions

For suitable and appropriate choice of operators angyf nonconvex minimax problem can be studied via system

spaces, one can obtain several new and known classes
variational inequalities. For recent applications, exise
theory, iterative methods, sensitivity analysis and
different aspects of problen4), see P0,21,22] and
references therein.

8f extended general variational inequalitidg. For this
purpose, we recall the following concepts.

Definition 2.[21] Let Q be any set in”. The setQ is
said to be hg-convey, if there exist functions g7 — 7

We now summarize some basic properties and relateguch that

definitions which are essential in the following
discussions.

Lemma 1let Q be a closed and convex set.i#. Then
for a given zc 27, u € Q satisfies

(U—zv—u)>0, WeQ,
if and only if,
u=Pqol[7,

where B is the projection of7Z onto a closed and convex
setQ in J7.

()

h(u)+t(g(v)—h(u)) € Q,
Yu,ve s :h(u),g(v) € Q,t€]0,1].

Clearly every convex set ishg-convex, but the
converse is not true, se8|[ hg-convex sets are also called

nonconvex sets. For the properties and other aspects of

hg-convex sets, see Cristescu and Lupss pnd
references therein. i = g, then thehg-convex setQ is
called theg-convex set, which was introduced by Noor
[18 in 1988 implicitly. For other properties of the
g-convex set, see Younes3]] .
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Definition 3.[21] The function F: Q — 7 is said to be 4 Main Results
hg-convex, if there exist two functionghsuch that n thi i first show that ) ¢ extended
n this section, we first show that system of extende
F(h(u)+t(g(v) —h(w)) < (1-HF (h(u)) +F(g(v)), general variational inequalitie§7) is equivalent to a
. system of fixed point problems. This alternative
vuve#:h(u),g(v) €, te(0,1]. equivalent formulation is used to suggest algorithms for

Clearly every convex function ieg-convex, but the  solving problem(7), using the technique of Noor and
converse is not true, sed(20]. In generalhg-convex  Noor [24].
functions are nonconvex functions. For basic properties o
hg-convex (nonconvex) functions, se€0[21,22]. For
g = h, Definition3 is due to Youness3[l].

It is known that R1] the minimum of a differentiable
hg-convex function on thég-convex setQ in 2# can be
characterized by the extended general variationa
inequality(4). For the sake of completeness, we include it hy (y) = Po, [91 (X) — p1T1X], (10)

without proof. ha (X) = P, [02(Y) — p2T2y] , (11)

Lemma3][21] Let F : Q — 2 be a differentiable wherep; > 0andp, > 0 are constants.
nonconvex function. Then @ 4 : h(u) € Q is the
minimum of nonconvex function F dp, if and only if,
ue 7 :h(u) € Q satisfies the inequality

ﬁ_emma 4The system of extended general variational
inequalities (7) has a solution,
Xy €  : (y) € Q C qu(H),h () and
ha(X) € Q2 C Q2(s2),ha(o), if and only if,
KY€ A 1 h(y) € Q1,hx(x) € Q2 satisfies the relations

Lemma4 implies that the syster{i7) is equivalent to
the fixed point problems$10) and (11). This alternative
equivalent formulation is very useful from numerical and

(F'(h(u)),g(v)=h(u)) >0, WeZ:g(v) € Q, theoretical point of view. Using the fixed point
where F (-) is the differential of F at fu) € Q. formulations(10) and(11), we suggest and analyze some
o ) iterative algorithms.
Lemma 3 implies that hg-convex programming We can rewrite (10) and (11) in the following

problem can be studied via extended general variationabquivalent forms:
inequality (4) with Tu= F’(h(u)). In a similar way, one B
can show that the extended general variational inequality — (1= Ba)y+Bn{y—hu(y) +Po, [01 (09 — 1 TX] }(12)
(4) is the Fritz-John condition of the inequality x= (1— an)X+ an{X—h2(X)+ Po,[g2(y) — p2T2y] {(13)
constrained optimization problem. where 0< ap, B, < 1 foralln > 0.
o This alternative formulation is used to suggest the

We now show that the nonconvex minimax problem fo|jowing algorithms for solving system of extended
can be characterized by a system of extended generglaneral variational inequaliti€¥) and its variant forms.
variational inequalities of the typgél). This is the main

motivation of the next example. Algorithm 1 For given %.Y¥o € 7 : hi(yo) € Q1 and
hy (x0) € Q2, find %11 and ¥ 1 by the iterative schemes

Yn+1

Example 1Consider the following nonconvex minimax

problem as = (1= Bn) Y+ B {¥n— D1 (Yn) +Poy [01 (Xa) — P1TaXn] },
Xnt1
i f(h h 8 —a- . _
XE%:@'&GQZ {ye#ml%ele (h2(X), (Y))} ; (8) h(l gn)<xn+an{xn<h1<>;n)+lvflzlz [gzgng) P2ToYnial} (14)
wheref is twice differentiable in7 x 7. The solution " 0"~ In, P < orain =% _
of (8) is equivalent to the saddle point 6fh, (x),hy (y)), Algorithm 1 can be viewed as a Gauss-Seidel method
that is, a pointx*,y* € JZ : hy(y*) € Q1,h(X*) € Q; for solying a system of extended general variational
satisfies inequalities(7).
f(h2(x7), he(y)) < f(h2(x7), he(y")) < f(h2(x),he(y")), We now discuss some special cases of Algorithm
forall x,y € 5 : hy(y) € Q1,h2(X) € Qa. If g1 =g2=0 hy=hy=handQ, = Q, = Q, then
Using the technique of Bazaraa et 2], [one can show Algorithm 1 reduces to following projection algorithm
thatx*,y* is a saddle point of (hz (x),hs (y)), if and only for solving the systen(2).
If, it satisfies Algorithm 2 For given s, Yo € 7 : h(xo) ,h(yo) € ©, find
(PaOxf (x*,¥%),01(X) —h1 (y*)) >0, } (9) 1andy. by the iterative schemes
(P20yf (X", y*) g2 (X) —hz (X)) >0, Yoi1
wherevx e 7,01 (X) € Q1,02 (X) € Q2, p1 > 0andpz >0 = (1= Bn)Yn+ Bn{yn—h(yn) +Po [g (%) — p1Taxn] } »
are constants. Xoi1
N

Clearly problem(9) is a special case ofl) with
Oxf (X", y") = TaxandOy f (X5, y*) = Toy. = (1= an)Xn+ an{Xn —h(Xn) + Po [g(Yn+1) — P2ToYns1]}
where0 < o, B < 1foralln > 0.
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II.If h = g, then Algorithm2 reduces to the following ProofLetx,y € 57 : hi(y) € Q1,hy(X) € Q2 be a solution
algorithm for solving system of extended general of (7). Then from(13) and(14), we have
variational inequalities.

(%01 —X|
Algorithm 3 For given %,Yo € 7 : g(Xo) ,ﬁ (Yo) € Q, — 1| (L= &) X+ G X — o (%)
ggrr]r;?#;e; sequence$xn} and {y,} by the iterative P, [62(Yns1) — paTavsa] )
Yn+1 —(1—an)x—an {X —h2(x) +Po, [92(y) — PZTZY]} I

(1 _ _ < (1= an) [[%n = X|| + 0 [[%n — X = (h2 (Xa) — h2 (X)) |
= (1= Fo)¥nt o 1 =9 (0) + Pa 9 0) — prTool} +0n||Pa, (92 (Ynr1) — P2T2yn+1] — Po, (G2 (Y) — p2T2y||

Xn+1
<(1— _ X _
= (1= an) %o+ an {Xa— 9 (%) + Pa g 0ne1) — paToynyal}, = (1o Mo =X+ anlba == (e (o) =P GO

where0 < amﬁn < 1foralln > 0. +0n ||yn+l -y- (gZ (yn+l) —02 (y))”
+an|lYnr1—Y—p2(Toynr1 — T2y) |- (15)

For suitable and appropriate choice of operators andé. toT> is st | N d Lipschit
spaces, one can obtain several new and known iterativ Ince operatori IS strongly monotone and Lipschitz
continuous with constantsay, > 0 and fBr, > O,

methods for solving system of extended general tivelv. Then it foll that
variational inequalities and related problems. It has beed ESPECUVElY. Then it follows tha
shown R3] that the problem(1) has a solution under (Vi1 — Y — P2(Toyne1 — Toy)||2

some suitable conditions.
= |lyns1—YII* — 202 (Toynt1— ToY.Yni1 —Y)

We now investigate the convergence analysis of + | TaYne1 — Tay|?
Algorithm 1. This is the main motivation of our next _ (1- 2001 +P223T2) Va1 — V|2 (16)
< > .

result. o
In a similar way, we have
Theorem 4Let operators 1,T2,01,092,hy,hp : 7 — 2

2
be strongly monotone with constaras, > 0, as, > 0, [0 =% = (2 (Xn) =2 (X))

ag, >0, ag, >0, ap, > 0, an, > 0 and Lipschitz < (1_20h2+3t122) (%2 — X||?, (17)
continuous with constantfy, > 0, Br, > 0, By, > 0,

By, > 0, Bn, > 0, Bn, > O respectively. If following and )
conditions hold: [Yn+2 =Y = (92(Yn+1) — G2 (¥)) |
2
()6r, = \/1—2pam +pZBE < 1. < (1-2ag,+ Bg,) ynr2 = YII*, (18)
. Yy where we have used the strongly monotonicity and
(if) Or, = \/1_ 2pzarm, + P3P, < 1. Lipschitz continuity of operators);, h, with constants
(i0< an,Bn < 1foralln >0, ag, >0, an, > 0andfy, > 0, B, > 0, respectively.
Combining(15) — (18), we obtain
Qan (1_6h2) —Bn (egl+9T1) 2 0 ( ) ( )
B(1— ) > 0 (X1 —X|
- >
e < (1 an) %o = X| + Ay /1~ 2an, + B [[%0 — |
Qn (692 + 6r2) 0,
such that 1= 205, + B, o1 =V
ZO (an (1= 6hy) — B (Bgy + 61,)) = o +Un\/1— 2poQr, +.D223T22 (Y1 =Yl
" - = (1= an (1= 6)) % —X|
ZDBn (1—6n) = +0hn (6g, + 6r,) Y1 = V|- (19)
n= Similarly, using strongly monotonicity and Lipschitz
- . continuity of operators Ty,91,h1  with  constants
n;a“(GQZJF Or,) = = ar, > 0,0g, > 0,an, >0 andBr, > 0,0y > 0,6, >0,
where respectively. Fronf12) and(14), we have

[Yn+1—Yll

1—2aq, + B2, 6, = /120, + B3,

m , = o, 55 — (2= Bn) Yn+ Bn {¥n — ha (yn)
+Po, [91 (%) — p1Taxn] }

\/1 20n, + B, 6hy = /1~ 20m, + B2, — (1= Bn)y—Bn{y—h1(y)+Pao, [01(X) — p1T1X} ||

then sequences{x,} and {y,} obtained from < (1=PBn) Yo=Y+ Ballyn—y—(hi(yn) —he(y)
Algorithm1 converge to x and y respectively. +Bn ||Po, [91 (%) — P1TaXa] — Po, [92 (X) — p1TaX ||
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[Yni2 =Y Algorithm 5 For given %, Yo € 22 - h1 (Yo) € Q1,h2 (Xo) €

< (1= Bn) In =Yl + Bn lyn —y — (ha (Yn) — hs ()| Q5 find %11 and y,, 1 by the iterative schemes
o %0 —x— (91 0n) — G ()| Yni1 = (1_Bn)Yn+Bn{Yn—hl(Yn)+P91 [Zn]} (26)
< aB_n |)3Xr)] in:;)i‘_ f]bXna: ]])_/X)! yH Xnr1 = (1 — an) Xn+ Qn {Xn — h2 (Xn) + P_Qz [Wn]} (27)
B X1 + B, o x| o — o) il e
' ' Wn = 02 (Yn+1) — P2TaYn+1, (29)

= (1= B (1=6h,)) Iyn =Yl +Bn (6, +6n,) X2 —X| -

Adding (19) and(20), we have
X1 =X+ Ynt2 = VIl

< (1=an (1= 6h,)) 10— x|+ an (6, +6r,) [Yn1 Y
+(1=Bn (1= 6n,)) lvn VIl

(20)
where0 < o, B < 1foralln > 0.

For appropriate and suitable choice of operators and
spaces, one can obtain several new and known iterative
methods for solving system of extended general
variational inequalities and related optimization

+n (B, +6r,) [a |
= (1—an(1—6h,) +Bn (6g +6m)) 1% — X
+an (B, + 6r,) [[Yn+1 =Yl + (1= Bn (1 6h,)) lyn VIl
From which, we have
X1 = X[+ (1= an (6g, + 6r,)) Y1 -V
= (1_ On (1_ 9h2) + Bn (g, + eTl)) % — ]
+ (1_ Bn (1_ ehl)) lyn =yl
which implies that
2= x4V Y2 = Y]
< max(vy, Vz) (% — X| + [lyn — I
= O ([ —x][+[lyn—Vl),
where

(21)

6 = max(vy, Vo)

v1 = 1—(an(1—6n,) — Bn(6g +6r,))
Vo =1—(Bn(1—6hy))
V=1-0an(6g,+6r,).

From assumptiofii ), we havef < 1. Thus, using Lemma
2, it follows from (21) that

lim (12 =X+ v [y —YI] = 0.

This implies that

lim (X2 =] = 0and im [lyn1—yi| = 0.
This is the desired result.

Using Lemma4, one can easily show thaty € 77 :
hy (y) € Q1,h2(X) € Q2 is a solution of(7) if and only if,
X,y € hy(y) € Q1,h2(X) € Q5 satisfies

hy (Y) = PQl [Z] (22)
h2 (X) = PQz [W] (23)
Z=01(x) — p1Tix (24)
W= g2(y) — p2T2y. (25)

problems.

We now consider the convergence analysis of

Algorithm 5, using the technique of Theore#n For the

sake of completeness and to convey an idea, we include

all the details.

Theorem 6Let operators T, T2,01,02,hy,ho : 77 — #
be strongly monotone with constaras, > 0, at, > O,
ag, > 0, ag, >0, an, > 0, a,, > 0 and Lipschitz
continuous with constant§r, > 0, By, > 0, By, > O,
By, > 0, Bn, > 0, Bn, > O respectively. If following
conditions hold:
(i)6r, = \/1— 2p1a7, + p2PE < 1.
(i) B, = \/1— 20207, + P3PE < 1.
(i0< ap,Bn < 1foralln>0,
an (1_ ehz) - Bn (egl + eTl)
Bn (1 - ehl)
o (B, + 6, )

Y

vV

0
0
0

vV

)

such that

[ee]

> (an (1) BB +61,) =
iﬁn (1-6y) = o

Zoan (egz + eTz) = 0o,

n=

where
Oy, = \/1—20g, + B . 6, = \/1— 20, + B .
and

ehl = \/ 1_20h1+thl7 ehz = \/ 1_20h2+ﬁﬁ27

This alternative formulation can be used to suggest and

analyze the following iterative methods for solving the

system(7).

then sequences{x,} and {y,} obtained from
Algorithm5 converge to x and y respectively.
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ProoflLetx,y € 57 : hy (y) € Q1,h2 (X) € Q2 be a solution
of (7). Then from(17),(23) and(27), we have
[[Xn1 = X|
< (1= an) [[% = X|| + an [[%0 —x= (h2 (0) — h2 (X)) |
+0n HP92 [Wn] — Pa, \W H
< (1= an) [[X0 = X[ + Anbh, [[X0 — X[| + an [[Wn — w|
= (1= an (1= 6n,)) [1% — X|| + otn [[wn — ]| (30)
Similarly, from(20), (22) and(26), we have

[yn+1 =yl
< (1=Bn) Iyn =Yl + Bnllyn =y = (M1 (Yn) —ha (y)) |
+Bn || P-Ql [Zn] - P-Ql [Z] H
< (1= Bn) [Iyn =Yl + Bnbhy [[Yn =Yl + Ballza — 2|
= (1=Bn(1—=6h)) IYn =Yl ++Bnllzn— 2. (31)
From(16),(18),(25) and(29), we have
[[Wn — w|
= 192 (Yn+1) — P2ToYn+1— G2 (Y) + p2T2Y||
< Ynr1 =Y~ (G2 (Ynr1) —G2(W) |l
+Yni1 =Y —P2(T2Yni1— Toy)||
< (6g, + 6r,) Y1 — V|- (32)

Similarly, from(20), (24) and(28), we have
2z —2|
= [91 (Xn) — P1T1Xn — 91 (X) + P2 Tax||
< [%0 =X = (91 () = 91 ()| + [[¥n = X = 1 (Taxn — Tax) |
< (991+9T1)||Xn_x||~ (33)
Combining(30),(32) and(31),(33), we have
(X2 = X|
< (1—an(1—6h,)) 1% —X||+ an (Bg, + B1,) [lyn+1 ()
and

[Yn+1 = VIl
< (1= Bn(1—6h)) lyn— VIl -+ Bn (g, + Or,) X0 — XB5)
Adding (34) and(35), we have
X2 = X[+ [[Yns+2 = Y|
< (1—0an (1~ 6h,)) (1% — X[ + 0 (Bg, + Or,) [lyn+1 — V]
+ (1= Bn (1~ 6h)) lyn—YIl -+ B (g, + 61, %0 — X
= (1_ On (1_ 9h2) +Bn(691 + eTl)) HX" - X”
+0n (692 + 9T2) Hyn+1 _YH
+(1=Ba (1= 6hy)) lyn—yll-
From which, we have
[Xn+2 = X[+ (1= an (6, + 6r,)) Y1 — VIl
= (1_ On (1_ ehz) + Bn (69, + 91'1)) (% — x|
+(1=Bn (1= 6h)) lyn— VI,

which implies that

%41 —XI 4+ V [[Ynsz =Yl
< max(vy, V) ([1% = X[+ [[yn = ¥I)
= 6 ([ = X[+ [lyn = VI, (36)

where

6 = max(vy, Vo)
vi=1—(an(1—6h,) — Bn (g +6r,))
Vo = 1—Bn(1_ ehl)
V=1-0n(6g,+6r,).

From assumptiofiii ), we havef < 1. Thus, using Lemma
2, it follows from (36) that

lim ([ = X[+ V [[ynra = y[] = 0.
This implies that

i, [prsa = x| =0,

and

lim o2~ y]| =0.

This is the required result.

5 Conclusion

In this paper, we have considered a new system of
extended general variational inequalities. It is showrt tha
the optimality conditions of the differentiable nonconvex
minimax problem on the nonconvex sets can be
characterized by a new system of extended general
variational inequalities. We have proved that the system
of extended general variational inequalities is equivialen
to systems of fixed point problems. This equivalent
formulation has been used to propose and analyze several
Gauss-Seidel type algorithms for solving system of
extended general variational inequalities. Convergeifice o
these new Gauss-Seidel type algorithms is investigated
under some suitable conditions. Several special cases are
also discussed. The implementation of these algorithms
and their comparison with other techniques need further
research. The idea and technique of this paper may
motivate for further research in this area.
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