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1 Introduction

Variational inequality theory, which was introduced and
considered by Stampacchia [28], provides us with a
unified, innovative and general framework to study a wide
class of problems, which arise in finance, economics,
network analysis, transportation, elasticity, optimization
and applied sciences. Variational inequalities have been
generalized and extended in several directions using the
novel and new techniques. For the applications and other
techniques for solving variational inequalities, see
[1−31] and references therein.

Motivated by recent advances in this area, we
introduce and consider a new system of extended general
variational inequalities with six nonlinear operators. Itis
shown that nonconvex minimax problems can be studied
via this system of extended general variational
inequalities, see Example1. This class of systems include
many new and known systems of variational inequalities
as special cases. Using the projection technique, we have
shown that the new system of extended general
variational inequalities is equivalent to fixed point
problems. This alternative equivalent formulation is used
to propose and investigate some new algorithms for
solving a systems of variational inequalities. We would

like to emphasize that new algorithms are quite different
from the algorithms of Yang et al [30]. To implement the
algorithms of Yang et al [30], one has to find the inverse
of the operator, which is itself a difficult problem. To
overcome this drawback, we suggest and analyze some
new algorithms, which do not involve the inverse of
operators. Convergence analysis of these new algorithms
is considered under some suitable conditions. We have
rewritten the equivalent formulation in a more convenient
form using a suitable substitution. These equivalent
formulations are used to suggest a wide class of new
algorithms for solving a system of extended general
variational inequalities. It is shown that these new
iterative methods include several known and new methods
for solving system of variational inequalities. Our results
represent a refinement and improvement of the recent
results of [30]. Our algorithms are much easier in
implementation than algorithms in [30] and
computational workload is also less than those of [30].
The interested readers are encouraged to find new, novel
and innovative applications of variational inequalities and
optimization problem in pure and applied sciences. The
implementation of new proposed methods in this paper is
another direction for further research.
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2 Preliminaries and Basic Results

Let H be a real Hilbert space, whose norm and inner
product are denoted by‖·‖ and〈·, ·〉, respectively. LetΩ1,

Ω2 be two closed and convex sets inH .

For given nonlinear operators
T1,T2,g1,g2,h1,h2 : H → H , consider a problem of
findingx,y∈ H : h1 (y) ∈ Ω1,h2 (x) ∈ Ω2 such that

〈T1x,g1 (v)−h1(y)〉 ≥ 0, ∀v∈ H : g1(v) ∈ Ω1,

〈T2y,g2 (v)−h2(x)〉 ≥ 0, ∀v∈ H : g2 (v) ∈ Ω2.

}

(1)

The system(1) is called a system of extended general
variational inequalities with six operators.

We now list some special cases of the system of
extended general variational inequalities(1).

I. If g1 = g2 = g, h1 = h2 = h and Ω1 = Ω2 = Ω , a
closed convex set inH , then problem(1) reduces to
find x,y∈ H : h(y) ∈ Ω , h(x) ∈ Ω such that

〈T1x,g(v)−h(y)〉 ≥ 0, ∀v∈ H : g(v) ∈ Ω ,

〈T2y,g(v)−h(x)〉 ≥ 0, ∀v∈ H : g(v) ∈ Ω .

}

(2)

The problem of type(2) is called a system of
extended general variational inequalities with four
nonlinear operators.

II. If g1 = h1 = g, g2 = h2 = h andΩ1 =Ω2 =Ω , a closed
convex set inH , then problem(1) collapse to find
x,y∈ H : g(y) ,h(x) ∈ Ω such that

〈T1x,g(v)−g(y)〉 ≥ 0, ∀v∈ H : g(v) ∈ Ω ,

〈T2y,h(v)−h(x)〉 ≥ 0, ∀v∈ H : h(v) ∈ Ω ,

}

(3)

is a system of general variational inequalities with four
nonlinear operators.

III. If T1 = T2 = T, then problem(2) reduces to findu ∈
H : h(u) ∈ Ω such that

〈Tu,g(v)−h(u)〉 ≥ 0, ∀v∈ H : g(v) ∈ Ω , (4)

which is called extended general variational inequality,
introduced and studied by Noor [21].

For suitable and appropriate choice of operators and
spaces, one can obtain several new and known classes of
variational inequalities. For recent applications, existence
theory, iterative methods, sensitivity analysis and
different aspects of problem(4) , see [20,21,22] and
references therein.

We now summarize some basic properties and related
definitions which are essential in the following
discussions.

Lemma 1.Let Ω be a closed and convex set inH . Then
for a given z∈ H , u∈ Ω satisfies

〈u− z,v−u〉 ≥ 0, ∀v∈ Ω , (5)

if and only if,

u= PΩ [z] ,

where PΩ is the projection ofH onto a closed and convex
setΩ in H .

It is well known that the projection operatorPΩ is
nonexpansive, that is,

‖PΩ [u]−PΩ [v]‖ ≤ ‖u− v‖ , ∀H . (6)

Definition 1.A nonlinear operator T: H → H is said to
be:

(i)strongly monotone, if there exists a constantα > 0,
such that

〈Tu−Tv,u− v〉 ≥ α ‖u− v‖2
, ∀u,v∈ H .

(ii)Lipschitz continuous if there exists a constantβ > 0,
such that

‖Tu−Tv‖ ≤ β ‖u− v‖ , ∀u,v∈ H .

Note that, ifT satisfies(i) and(ii), thenα ≤ β .

Lemma 2.[29] If {δn}
∞
n=0 is a nonnegative sequence

satisfying the following inequality:

δn+1 ≤ (1−λn)δn+σn f oralln ≥ 0,

with 0 ≤ λn ≤ 1,
∞
∑

n=0
λn = ∞, and σn = o(λn), then

lim
n→∞

δn = 0.

Using the auxiliary principle technique of Glowinski et
al [7], as developed by Noor [20,21], one can easily show
that problem(1) is equivalent to that of findingx,y∈ H :
h1(y) ∈ Ω1, h2 (x) ∈ Ω2 such that

〈ρ1T1x+h1 (y)−g1 (x) ,g1 (v)−h1 (y)〉 ≥ 0,
〈ρ2T2y+h2 (x)−g2 (y) ,g2 (v)−h2 (x)〉 ≥ 0,

}

. (7)

where∀v∈H ,g1 (v)∈Ω1,g2 (v)∈Ω2, ρ1 > 0 andρ2 > 0
are constants.

We use this equivalent formulation to develop some
new iterative methods for solving the system of extended
general variational inequalities and its variant forms.

3 Applications

In this section, it is shown that the optimality conditions
of nonconvex minimax problem can be studied via system
of extended general variational inequalities(1). For this
purpose, we recall the following concepts.

Definition 2.[21] Let Ω be any set inH . The setΩ is
said to be hg-convex, if there exist functions g,h : H →H

such that

h(u)+ t (g(v)−h(u)) ∈ Ω ,

∀u,v∈ H : h(u) ,g(v) ∈ Ω , t ∈ [0,1] .

Clearly every convex set ishg-convex, but the
converse is not true, see [5]. hg-convex sets are also called
nonconvex sets. For the properties and other aspects of
hg-convex sets, see Cristescu and Lupsa [5] and
references therein. Ifh = g, then thehg-convex setΩ is
called theg-convex set, which was introduced by Noor
[18] in 1988 implicitly. For other properties of the
g-convex set, see Youness [31] .
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Definition 3.[21] The function F: Ω → H is said to be
hg-convex, if there exist two functions h,g such that

F (h(u)+ t (g(v)−h(u)))≤ (1− t)F (h(u))+F (g(v)) ,

∀u,v∈ H : h(u) ,g(v) ∈ Ω , t ∈ [0,1] .

Clearly every convex function ishg-convex, but the
converse is not true, see [10,20]. In generalhg-convex
functions are nonconvex functions. For basic properties of
hg-convex (nonconvex) functions, see [20,21,22]. For
g= h, Definition3 is due to Youness [31].

It is known that [21] the minimum of a differentiable
hg-convex function on thehg-convex setΩ in H can be
characterized by the extended general variational
inequality(4). For the sake of completeness, we include it
without proof.

Lemma 3.[21] Let F : Ω → H be a differentiable
nonconvex function. Then u∈ H : h(u) ∈ Ω is the
minimum of nonconvex function F onΩ , if and only if,
u∈ H : h(u) ∈ Ω satisfies the inequality
〈

F ′ (h(u)) ,g(v)−h(u)
〉

≥ 0, ∀v∈ H : g(v) ∈ Ω ,

where F′ (·) is the differential of F at h(u) ∈ Ω .

Lemma 3 implies that hg-convex programming
problem can be studied via extended general variational
inequality(4) with Tu= F ′(h(u)). In a similar way, one
can show that the extended general variational inequality
(4) is the Fritz-John condition of the inequality
constrained optimization problem.

We now show that the nonconvex minimax problem
can be characterized by a system of extended general
variational inequalities of the type(1). This is the main
motivation of the next example.

Example 1.Consider the following nonconvex minimax
problem as

min
x∈H :h2(x)∈Ω2

{

max
y∈H :h1(y)∈Ω1

f (h2(x) ,h1 (y))

}

, (8)

where f is twice differentiable inH ×H . The solution
of (8) is equivalent to the saddle point off (h2 (x) ,h1 (y)),
that is, a pointx∗,y∗ ∈ H : h1(y∗) ∈ Ω1,h2 (x∗) ∈ Ω2
satisfies

f (h2 (x
∗) ,h1 (y))≤ f (h2 (x

∗) ,h1 (y
∗))≤ f (h2 (x) ,h1 (y

∗)) ,

for all x,y∈ H : h1(y) ∈ Ω1,h2 (x) ∈ Ω2.

Using the technique of Bazaraa et al [2], one can show
thatx∗,y∗ is a saddle point off (h2 (x) ,h1 (y)) , if and only
if, it satisfies

〈ρ1∇x f (x∗,y∗) ,g1 (x)−h1(y∗)〉 ≥ 0,
〈

ρ2∇y f (x∗,y∗) ,g2 (x)−h2(x∗)
〉

≥ 0,

}

(9)

where∀x∈H ,g1 (x)∈ Ω1,g2 (x)∈Ω2, ρ1 > 0 andρ2 > 0
are constants.

Clearly problem(9) is a special case of(1) with
∇x f (x∗,y∗) = T1x and∇y f (x∗,y∗) = T2y.

4 Main Results

In this section, we first show that system of extended
general variational inequalities(7) is equivalent to a
system of fixed point problems. This alternative
equivalent formulation is used to suggest algorithms for
solving problem(7), using the technique of Noor and
Noor [24].

Lemma 4.The system of extended general variational
inequalities (7) has a solution,
x,y ∈ H : h1 (y) ∈ Ω1 ⊂ g1(H ) ,h1 (H ) and
h2(x) ∈ Ω2 ⊂ g2 (H ) ,h2 (H ), if and only if,
x,y∈ H : h1 (y) ∈ Ω1,h2 (x) ∈ Ω2 satisfies the relations

h1 (y) = PΩ1 [g1(x)−ρ1T1x] , (10)

h2(x) = PΩ2 [g2(y)−ρ2T2y] , (11)

whereρ1 > 0 andρ2 > 0 are constants.

Lemma4 implies that the system(7) is equivalent to
the fixed point problems(10) and (11). This alternative
equivalent formulation is very useful from numerical and
theoretical point of view. Using the fixed point
formulations(10) and(11), we suggest and analyze some
iterative algorithms.

We can rewrite (10) and (11) in the following
equivalent forms:

y = (1−βn)y+βn
{

y−h1(y)+PΩ1 [g1 (x)−ρ1T1x]
}

,(12)

x = (1−αn)x+αn
{

x−h2(x)+PΩ2 [g2(y)−ρ2T2y]
}

,(13)

where 0≤ αn,βn ≤ 1 for all n≥ 0.
This alternative formulation is used to suggest the

following algorithms for solving system of extended
general variational inequalities(7) and its variant forms.

Algorithm 1 For given x0,y0 ∈ H : h1 (y0) ∈ Ω1 and
h2(x0) ∈ Ω2, find xn+1 and yn+1 by the iterative schemes

yn+1

= (1−βn)yn+βn
{

yn−h1 (yn)+PΩ1 [g1 (xn)−ρ1T1xn]
}

,

xn+1

= (1−αn)xn+αn
{

xn−h2 (xn)+PΩ2 [g2 (yn+1)−ρ2T2yn+1]
}

, (14)

where0≤ αn,βn ≤ 1 for all n ≥ 0.

Algorithm 1 can be viewed as a Gauss-Seidel method
for solving a system of extended general variational
inequalities(7).

We now discuss some special cases of Algorithm1.

I. If g1 = g2 = g, h1 = h2 = h andΩ1 = Ω2 = Ω , then
Algorithm 1 reduces to following projection algorithm
for solving the system(2).

Algorithm 2 For given x0,y0 ∈H : h(x0) ,h(y0)∈ Ω , find
xn+1 and yn+1 by the iterative schemes

yn+1

= (1−βn)yn+βn{yn−h(yn)+PΩ [g(xn)−ρ1T1xn]} ,

xn+1

= (1−αn)xn+αn{xn−h(xn)+PΩ [g(yn+1)−ρ2T2yn+1]} ,

where0≤ αn,βn ≤ 1 for all n ≥ 0.
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II. If h = g, then Algorithm2 reduces to the following
algorithm for solving system of extended general
variational inequalities.

Algorithm 3 For given x0,y0 ∈ H : g(x0) ,g(y0) ∈ Ω ,
compute sequences{xn} and {yn} by the iterative
schemes

yn+1

= (1−βn)yn+βn{yn−g(yn)+PΩ [g(xn)−ρ1T1xn]} ,

xn+1

= (1−αn)xn+αn{xn−g(xn)+PΩ [g(yn+1)−ρ2T2yn+1]} ,

where0≤ αn,βn ≤ 1 for all n ≥ 0.

For suitable and appropriate choice of operators and
spaces, one can obtain several new and known iterative
methods for solving system of extended general
variational inequalities and related problems. It has been
shown [23] that the problem(1) has a solution under
some suitable conditions.

We now investigate the convergence analysis of
Algorithm 1. This is the main motivation of our next
result.

Theorem 4.Let operators T1,T2,g1,g2,h1,h2 : H → H

be strongly monotone with constantsαT1 > 0, αT2 > 0,
αg1 > 0, αg2 > 0, αh1 > 0, αh2 > 0 and Lipschitz
continuous with constantsβT1 > 0, βT2 > 0, βg1 > 0,
βg2 > 0, βh1 > 0, βh2 > 0 respectively. If following
conditions hold:

(i)θT1 =
√

1−2ρ1αT1 +ρ2
1β 2

T1
< 1.

(ii)θT2 =
√

1−2ρ2αT2 +ρ2
2β 2

T2
< 1.

(iii) 0≤ αn,βn ≤ 1 for all n ≥ 0,

αn
(

1−θh2

)

−βn

(

θg1
+θT1

)

≥ 0

βn
(

1−θh1

)

≥ 0

αn

(

θg2
+θT2

)

≥ 0,

such that
∞

∑
n=0

(

αn
(

1−θh2

)

−βn(θg1 +θT1)
)

= ∞

∞

∑
n=0

βn
(

1−θh1

)

= ∞

∞

∑
n=0

αn (θg2 +θT2) = ∞,

where

θg1
=
√

1−2αg1
+β 2

g1
, θg2

=
√

1−2αg2
+β 2

g2
,

and

θh1 =
√

1−2αh1 +β 2
h1
, θh2 =

√

1−2αh2 +β 2
h2
,

then sequences{xn} and {yn} obtained from
Algorithm1 converge to x and y respectively.

Proof.Let x,y∈ H : h1(y) ∈ Ω1,h2 (x) ∈ Ω2 be a solution
of (7). Then from(13) and(14), we have

‖xn+1− x‖

= ‖(1−αn)xn+αn{xn−h2(xn)

+PΩ2 [g2(yn+1)−ρ2T2yn+1]
}

−(1−αn)x−αn
{

x−h2(x)+PΩ2 [g2(y)−ρ2T2y]
}

‖

≤ (1−αn)‖xn− x‖+αn‖xn− x− (h2(xn)−h2(x))‖

+αn
∥

∥PΩ2 [g2 (yn+1)−ρ2T2yn+1]−PΩ2 [g2 (y)−ρ2T2y]
∥

∥

≤ (1−αn)‖xn− x‖+αn‖xn− x− (h2(xn)−h2(x))‖

+αn‖yn+1− y− (g2 (yn+1)−g2(y))‖

+αn‖yn+1− y−ρ2(T2yn+1−T2y)‖ . (15)

Since operatorT2 is strongly monotone and Lipschitz
continuous with constantsαT2 > 0 and βT2 > 0,
respectively. Then it follows that

‖yn+1− y−ρ2(T2yn+1−T2y)‖2

= ‖yn+1− y‖2−2ρ2〈T2yn+1−T2y,yn+1− y〉

+‖T2yn+1−T2y‖2

≤
(

1−2ρ2αT2 +ρ2
2β 2

T2

)

‖yn+1− y‖2
. (16)

In a similar way, we have

‖xn− x− (h2 (xn)−h2(x))‖
2

≤
(

1−2αh2 +β 2
h2

)

‖xn− x‖2
, (17)

and

‖yn+1− y− (g2 (yn+1)−g2(y))‖
2

≤
(

1−2αg2 +β 2
g2

)

‖yn+1− y‖2
, (18)

where we have used the strongly monotonicity and
Lipschitz continuity of operatorsg2, h2 with constants
αg2 > 0, αh2 > 0 andβg2 > 0, βh2 > 0, respectively.

Combining(15)− (18), we obtain

‖xn+1− x‖

≤ (1−αn)‖xn− x‖+αn

√

1−2αh2 +β 2
h2
‖xn− x‖

+αn

√

1−2αg2 +β 2
g2
‖yn+1− y‖

+αn

√

1−2ρ2αT2 +ρ2
2β 2

T2
‖yn+1− y‖

=
(

1−αn
(

1−θh2

))

‖xn− x‖

+αn (θg2 +θT2)‖yn+1− y‖ . (19)

Similarly, using strongly monotonicity and Lipschitz
continuity of operators T1,g1,h1 with constants
αT1 > 0,αg1 > 0,αh1 > 0 andβT1 > 0,βg1 > 0,βh1 > 0,
respectively. From(12) and(14), we have

‖yn+1− y‖

= ‖(1−βn)yn+βn{yn−h1(yn)

+PΩ1 [g1 (xn)−ρ1T1xn]
}

−(1−βn)y−βn
{

y−h1(y)+PΩ1 [g1(x)−ρ1T1x]
}

‖

≤ (1−βn)‖yn− y‖+βn‖yn− y− (h1 (yn)−h1(y))‖

+βn
∥

∥PΩ1 [g1(xn)−ρ1T1xn]−PΩ1 [g1 (x)−ρ1T1x]
∥

∥
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‖yn+1−y‖

≤ (1−βn)‖yn−y‖+βn‖yn−y− (h1 (yn)−h1 (y))‖

+βn‖xn−x− (g1 (xn)−g1 (x))‖

+βn‖xn−x−ρ1 (T1xn−T1x)‖

≤ (1−βn)‖yn−y‖+βnθh1 ‖yn−y‖

+βnθg1 ‖xn−x‖+βnθT1 ‖xn−x‖

=
(

1−βn
(

1−θh1

))

‖yn−y‖+βn
(

θg1 +θT1

)

‖xn−x‖ . (20)

Adding (19) and(20), we have
‖xn+1− x‖+ ‖yn+1− y‖

≤
(

1−αn
(

1−θh2

))

‖xn−x‖+αn
(

θg2 +θT2

)

‖yn+1−y‖

+
(

1−βn
(

1−θh1

))

‖yn−y‖

+βn
(

θg1 +θT1

)

‖xn−x‖

=
(

1−αn
(

1−θh2

)

+βn
(

θg1 +θT1

))

‖xn−x‖

+αn
(

θg2 +θT2

)

‖yn+1−y‖+
(

1−βn
(

1−θh1

))

‖yn−y‖ .

From which, we have
‖xn+1− x‖+(1−αn(θg2 +θT2))‖yn+1− y‖

≤
(

1−αn
(

1−θh2

)

+βn(θg1 +θT1)
)

‖xn− x‖

+
(

1−βn
(

1−θh1

))

‖yn− y‖ ,

which implies that

‖xn+1− x‖+ν ‖yn+1− y‖

≤ max(ν1,ν2) (‖xn− x‖+ ‖yn− y‖)

= θ (‖xn− x‖+ ‖yn− y‖) , (21)

where

θ = max(ν1,ν2)

ν1 = 1−
(

αn
(

1−θh2

)

−βn(θg1 +θT1)
)

ν2 = 1−
(

βn
(

1−θh1

))

ν = 1−αn(θg2 +θT2) .

From assumption(iii ), we haveθ < 1. Thus, using Lemma
2, it follows from (21) that

lim
n→∞

[‖xn+1− x‖+ν ‖yn+1− y‖] = 0.

This implies that

lim
n→∞

‖xn+1− x‖= 0 and lim
n→∞

‖yn+1− y‖= 0.

This is the desired result.

Using Lemma4, one can easily show thatx,y ∈ H :
h1 (y) ∈ Ω1,h2 (x) ∈ Ω2 is a solution of(7) if and only if,
x,y∈ H : h1 (y) ∈ Ω1,h2 (x) ∈ Ω2 satisfies

h1 (y) = PΩ1 [z] (22)

h2 (x) = PΩ2 [w] (23)

z= g1 (x)−ρ1T1x (24)

w = g2 (y)−ρ2T2y. (25)

This alternative formulation can be used to suggest and
analyze the following iterative methods for solving the
system(7).

Algorithm 5 For given x0,y0 ∈H : h1 (y0) ∈ Ω1,h2 (x0) ∈
Ω2 find xn+1 and yn+1 by the iterative schemes

yn+1 = (1−βn)yn+βn
{

yn−h1(yn)+PΩ1 [zn]
}

(26)

xn+1 = (1−αn)xn+αn
{

xn−h2(xn)+PΩ2 [wn]
}

(27)

zn = g1 (xn)−ρ1T1xn (28)

wn = g2 (yn+1)−ρ2T2yn+1, (29)

where0≤ αn,βn ≤ 1 for all n ≥ 0.

For appropriate and suitable choice of operators and
spaces, one can obtain several new and known iterative
methods for solving system of extended general
variational inequalities and related optimization
problems.

We now consider the convergence analysis of
Algorithm 5, using the technique of Theorem4. For the
sake of completeness and to convey an idea, we include
all the details.

Theorem 6.Let operators T1,T2,g1,g2,h1,h2 : H → H

be strongly monotone with constantsαT1 > 0, αT2 > 0,
αg1 > 0, αg2 > 0, αh1 > 0, αh2 > 0 and Lipschitz
continuous with constantsβT1 > 0, βT2 > 0, βg1 > 0,
βg2 > 0, βh1 > 0, βh2 > 0 respectively. If following
conditions hold:

(i)θT1 =
√

1−2ρ1αT1 +ρ2
1β 2

T1
< 1.

(ii)θT2 =
√

1−2ρ2αT2 +ρ2
2β 2

T2
< 1.

(iii) 0≤ αn,βn ≤ 1 for all n ≥ 0,

αn
(

1−θh2

)

−βn

(

θg1
+θT1

)

≥ 0

βn
(

1−θh1

)

≥ 0

αn

(

θg2
+θT2

)

≥ 0,

such that
∞

∑
n=0

(

αn
(

1−θh2

)

−βn(θg1 +θT1)
)

= ∞

∞

∑
n=0

βn
(

1−θh1

)

= ∞

∞

∑
n=0

αn (θg2 +θT2) = ∞,

where

θg1
=
√

1−2αg1
+β 2

g1
, θg2

=
√

1−2αg2
+β 2

g2
,

and

θh1 =
√

1−2αh1 +β 2
h1
, θh2 =

√

1−2αh2 +β 2
h2
,

then sequences{xn} and {yn} obtained from
Algorithm5 converge to x and y respectively.
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Proof.Let x,y∈ H : h1 (y) ∈ Ω1,h2 (x) ∈ Ω2 be a solution
of (7). Then from(17) ,(23) and(27), we have

‖xn+1− x‖

≤ (1−αn)‖xn− x‖+αn‖xn− x− (h2 (xn)−h2(x))‖

+αn
∥

∥PΩ2 [wn]−PΩ2 [w]
∥

∥

≤ (1−αn)‖xn− x‖+αnθh2 ‖xn− x‖+αn‖wn−w‖

=
(

1−αn
(

1−θh2

))

‖xn− x‖+αn‖wn−w‖ . (30)

Similarly, from(20) ,(22) and(26), we have

‖yn+1− y‖

≤ (1−βn)‖yn− y‖+βn‖yn− y− (h1 (yn)−h1(y))‖

+βn
∥

∥PΩ1 [zn]−PΩ1 [z]
∥

∥

≤ (1−βn)‖yn− y‖+βnθh1 ‖yn− y‖+βn‖zn− z‖

=
(

1−βn
(

1−θh1

))

‖yn− y‖++βn‖zn− z‖ . (31)

From(16) ,(18) ,(25) and(29), we have

‖wn−w‖

= ‖g2 (yn+1)−ρ2T2yn+1−g2(y)+ρ2T2y‖

≤ ‖yn+1− y− (g2(yn+1)−g2(y))‖

+‖yn+1− y−ρ2(T2yn+1−T2y)‖

≤ (θg2 +θT2)‖yn+1− y‖ . (32)

Similarly, from(20) ,(24) and(28), we have

‖zn− z‖

= ‖g1(xn)−ρ1T1xn−g1(x)+ρ1T1x‖

≤ ‖xn− x− (g1 (xn)−g1(x))‖+ ‖xn− x−ρ1(T1xn−T1x)‖

≤ (θg1 +θT1)‖xn− x‖ . (33)

Combining(30) ,(32) and(31) ,(33), we have

‖xn+1− x‖

≤
(

1−αn
(

1−θh2

))

‖xn− x‖+αn(θg2 +θT2)‖yn+1− y‖ ,(34)

and

‖yn+1− y‖

≤
(

1−βn
(

1−θh1

))

‖yn− y‖+βn(θg1 +θT1)‖xn− x‖ .(35)

Adding (34) and(35), we have
‖xn+1− x‖+ ‖yn+1− y‖

≤
(

1−αn
(

1−θh2

))

‖xn− x‖+αn (θg2 +θT2)‖yn+1− y‖

+
(

1−βn
(

1−θh1

))

‖yn− y‖+βn(θg1 +θT1)‖xn− x‖

=
(

1−αn
(

1−θh2

)

+βn(θg1 +θT1)
)

‖xn− x‖

+αn (θg2 +θT2)‖yn+1− y‖

+
(

1−βn
(

1−θh1

))

‖yn− y‖ .

From which, we have
‖xn+1− x‖+(1−αn(θg2 +θT2))‖yn+1− y‖

≤
(

1−αn
(

1−θh2

)

+βn(θg1 +θT1)
)

‖xn− x‖

+
(

1−βn
(

1−θh1

))

‖yn− y‖ ,

which implies that

‖xn+1− x‖+ν ‖yn+1− y‖

≤ max(ν1,ν2)(‖xn− x‖+ ‖yn− y‖)

= θ (‖xn− x‖+ ‖yn− y‖) , (36)

where

θ = max(ν1,ν2)

ν1 = 1−
(

αn
(

1−θh2

)

−βn(θg1 +θT1)
)

ν2 = 1−βn
(

1−θh1

)

ν = 1−αn(θg2 +θT2) .

From assumption(iii ), we haveθ < 1. Thus, using Lemma
2, it follows from (36) that

lim
n→∞

[‖xn+1− x‖+ν ‖yn+1− y‖] = 0.

This implies that

lim
n→∞

‖xn+1− x‖= 0,

and

lim
n→∞

‖yn+1− y‖= 0.

This is the required result.

5 Conclusion

In this paper, we have considered a new system of
extended general variational inequalities. It is shown that
the optimality conditions of the differentiable nonconvex
minimax problem on the nonconvex sets can be
characterized by a new system of extended general
variational inequalities. We have proved that the system
of extended general variational inequalities is equivalent
to systems of fixed point problems. This equivalent
formulation has been used to propose and analyze several
Gauss-Seidel type algorithms for solving system of
extended general variational inequalities. Convergence of
these new Gauss-Seidel type algorithms is investigated
under some suitable conditions. Several special cases are
also discussed. The implementation of these algorithms
and their comparison with other techniques need further
research. The idea and technique of this paper may
motivate for further research in this area.
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