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Abstract: In this paper, we describe a computational method for sarfulperturbed delay differential equations with layer or
oscillatory behaviour. In general, the numerical solutagdra second order boundary value problem will be more diffithén the
numerical solution of the first order differential equatiéfence, it is preferable to convert the second order prolifganfirst order
problems. In this method, we first convert the second ordeyusarly perturbed delay differential equation to first@rdeutral type
delay differential equation and employ the Simpson rulernhve use the linear interpolation to get tridiagonal sysiich is solved
easily by discrete invariant imbedding algorithm. Sevenablel examples for various values of the delay parametepartdrbation
parameter are solved and the computational results areriegs We also discuss the convergence of the method.
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1 Introduction equation with a large delay in the reaction term.
Gemechis File and Y. N. Reddg][presented a numerical
integration of a class of singularly perturbed delay
differential equations with small shift, where delay is in
differentiated term. In§], the authors Jugal Mohapatra,
Srinivasan Natesan constructed a numerical method for a
class of singularly perturbed differential-difference

A singularly perturbed delay differential equation is an
ordinary differential equation in which the highest
derivative is multiplied by a small parameter and
containing delay term. In these problems, typically there

are thin transition layers where the solution varies rapidl equations with small delay. The numerical method

or jumps abruptly, while away from the layers the omprises of upwind finite difference operator on an
solution behaves regularly and varies slowly. In the recent P! ot upwind operator
qdaptwe grid, which is formed by equidistributing the

years, there has been a growing interest in the numerical ~ - ; : )
treatment of such differential equations. This is due to the?'© length monitor function. Kadalbajoo and Sharrb@ [

o ; . : : presented a numerical approach to solve singularly
\r/rfa:tsr? etlrlggtiggfu%?ozjyeﬁ% QOf ((jjlffferpernot::ael Sig:atlicr:ns \I/r;ritgj Sperturbed differential-difference equation, which camsa

application fields, for e.g., the first exit time problem in negative shift in the function but not in the derivative

the modeling of the activation of neuronal variabilityl], term. Lange and Miurafll-[12 gave an asymptotic
in the study of bistable device?][ and variational gpproach for a class of boun_dary-value problems for
problems in control theory8] where they provide the linear second-order singularly perturbed

best and in many cases the only realistic simulation of thegfferer:jual—(:]lﬁl((arenceh equatéons. In1§, the guthorg .
observed. ramod Chakravarthy and Rao presented a finite

. - . difference method for singularly perturbed linear second
In [5], the authors Gabil M. Amiraliyev, Erkan Cimen order differential-difference  equation  of  the

hapi given an expongntially fitted difference scheme on %onvection-diffusion type with small delay parameter.
uniform mesh fo.r singularly perturbed boundé‘fy Val.ueTaonr series is used to tackle the delay term. The
problem for a linear second order delay differential
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exponentially fitted technique is employed to solve themethod for both left-end layer and right-end layer cases.

problem. _ In the interva[o, %} using Taylor series expansion to
In this paper, we extend the method given @ for .
the numerical solution of singularly perturbed delay @PProximate/ (x—g), we get

differential equations with layer or oscillatory behaviou o) o

Here, the delay term is not present in the differentiated y(x—&)=y(X)-&/'¥ 3)
term. In this method, we first convert the second orderysing this approximation, equatioft)(is replaced by the
singularly perturbed delay differential equation to first following approximate first order differential equation
order neutral type delay differential equation and employwith a small deviating argument:

the Simpson rule. Then, linear interpolation is used to get

three term recurrence relation which is solved easily by Y (x) =Y (x—¢) —a(X)y(x— 8) —b(x)y(x) + f(x) (4)
discrete invariant imbedding algorithm. Several model_ . L i
examples for various values of the delay parameter and NS replacement is significant from the computational
perturbation parameter are solved and computationaP®int of view []. Integrating @) with respect tox
results are presented. We also discuss the convergence BPMi 1011, we get

the method. X1 Xit1
yir—yi= [ Y- [ axyix-s)dx

2 Numerical Method ) L |

i+1 Xi+1
Consider singularly perturbed delay differential equatio T / b(x)ydx — / f{(x)dx
of the form % %i
Ly = ey’ (X) +a(X)y(x— ) + b(x)y(x) = f(x), 0 < x < i. Xi11
with boundary conditions . Virr =¥ =Y — &) YN —€) + / a(x)y(x— o)dx

X
YO =px),-0<x<0 and y1)=B (2 it
— [ bxydx+ / f(x)dx

where € is small parameter, & € << 1 and?d is also
small shifting parameter, & 6 < 1; a(x), b(x), f(x) and
¢(x)are bounded continuous functions in (0, 1) ghds By using Simpson’s rule to evaluate the integrals in the
finite constant. Fod= 0, the solution of the boundary above equation, we get

value problem 1), (2)exhibits layer or oscillatory

behaviour depending on the sign 6&(x)+b(x)). If Vi1 —Yi = Y(%i11— €)=Y —€) — g (ax)y(x — 3))

(a(x) +b(x)) < —M < 0, whereMis a positive constant,

the solution of the problem1lf, (2) exhibits layer — % (4a(>q+l/2)y(>q+l/2— ) +a(Xi+1)y(Xi+1—9))
behaviour and if (a(x)+b(x)) > M > 0, it exhibits

oscillatory behaviour. The boundary value problem  — 1 (b(x)yi +4b(X11/2)¥i:1/2+b(X+1)Yi+1)

considered here is of the reaction-diffusion type, so there

will be twin boundary layers which will be at boththeend — _ % (f(%iv2) + F(%) _|_4f(xi+l/2))

points i.e., ax = 0 andx = 1. In this paper, we present (5)
both the cases, i.e., when the solution of the problem

exhibits layer at both ends as well as oscillatory

behaviour and show the effect of the delay on the layer  again, by using Taylor series expansion and using

and oscillatory behaviour. _ _linear interpolation, we get
We divide the interval [0, 1] intdN equal parts with

mesh sizeh. Let 0= xg, Xy, ...,Xn = 1 be the mesh points. N o 1e)

Then we havex; = ih for i = 0,1,...,N. Since the y(i —0) = 1_H Yi+ﬁyi*1 (6)
problem exhibits two boundary layers or oscillatory

behaviour across the interval, we divide the interval [0, 1]

into two sub intervals[o, %}and[%, 1}. We choosen Y(Xiy1—0) ~ (1_E>Yi+l+ By (7)
such thak, = % In the interval|0, % the boundary layer
will be in the left hand side i.e., at = 0 and in the Y(Xiy1/2—0) R Y(Xiy1/2) — O Y (Xiy1/2)
interval [l, 1} the boundary layer will be in the right . Yit1—Yi

L2 . : =VYit1/2— 0 h (8)
hand side i.e.x = 1. Hence, we derive the numerical
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By making use of the above equatio®, ((7) and @) in
(5), rearranging the terms we get

(Yier—2¥i+VYi-1) =

=)

2 h o, h
<§5a1'+1/2— éai+1(1— E) - ébi+1) Yi+1
2 o h 0, h
+ <_§5ai+1/2— s+~ éai(l— ﬁ) - ébi) Yi
o 2 2
— &)Yt _éhaiJrl/Z_ éhai+1/2 Yi+1/2
h
+gfitafiaz+tfiva) (9

Approximating y; 1/, using Hermite interpolation, we

(YXir1—€)—2y(x —€)+y(X-1—€))

(13)
Again by Taylor series and linear interpolation, we have

Y (Xii1—€&) -y (x—&)=

y(Xi — €)= (1— %) yi +EYi—1 (14)
y(Xiy1— &)~ (1_%)Yi+1+%)ﬁ (15)
y(Xi1—€)~ (1+%)Yi—1— %yi (16)

Substituting 13) -
tridiagonal system

(16) in (12, we get the following

have Eiyi-1—FYi+Giyiqa=Hi, fori=12...n-1 (17)
+ h where
Yo I L 2~y +O(h)  (10)
E=54+% -2 (a1pbia) (a4 (1-E
In view of (4), the above10) becomes ' ﬁ+§a‘ B 1—2(a,+1/2+ +1/2) ( & +( B ﬁ))
Yi+r/2= ¥ +2yi+1 R=5- 5 6 & - —6a,+1/2 21— by
h
+g(>/(>q—€>—aey(xi—5)—biy(m>+f(m)) $@uantbiae) ($+fan -t 5)
h
—= 11— &) —a if1—0 _
8()/(X.+1 i) ai11y(Xi+1—9)) Gt 8a 255 4
— 5 (biray(Xiy1) + f(Xxi2))  (11)
8 g(ai+1/2+bl+l/2)( +4b'+1+ 3 0 2ai1 +4h)
Using A1) in (9), we get
h2
f— 50812+ gbi+ gaira (1-f) + =5 i+ 4fi 2+ figa) +15(firn— i) (8ir1/2+bisay2)
(ai+1/2+bi+1/2) (g 4 ?_22bi+1) Yit1 Now in the interval %, 1} , we use Taylor series expansion
to approximate/ (x+ €), we get
(% +8a(1-f) + 308,12+ §ain Y (x+€) =Y (X) + &y’ (x) (18)
+ h h_ h? yi and consequentl ti laced by the followi
hp . b h_ Pp q y, equatia?) {s replaced by the following
80+ (812 bivaye) (3 12 '+1) approximate first order differential equation:
g 2] ya = B h ayo ] Y(¥) =Y (x+8) +a()y(x—8) +b(x)y— f(x), (19)
s Integrating 21) with respect tox from x;_1 to x;, we get
+05 (fiia— ) (8i12+ biray) y
i Vi—Yi1= f Y0t e)dxr | alyix—3)dx
— A (a1 12+ bii1j2) [BY (5 —€) — BY (Xip1—€)] L x5t
+ f b(x)ydx — f f(x)dx
ai+l(( _%) Vied+ hYl) Xi-1 Xi—1
2h h %
—5 (@412t biv1/2) 3 i—Yii1=Y(X+ &) —yX_1+&)+ [ aX)y(x—)dx
3 (ai+1/2+bi12) g (- v+ i) %= Yor =Y+ ) =y0xate) + [ aby(x—3)
% %
+ [ b(x)ydx— [ f(x)dx
(12 J poyex= [
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By using Simpson’s rule to evaluate the integral, we get

Vi —Yic1 =YX+ &) —y(Xi-1+€)

b < a(xi)y(xi — ) +4a(x_1/2)y(%-1/2— 0) )
®\+at 1)y(s-1-9) (20)
h < b(xi)yi +4b(X—1/2)¥i—1/2 +b(Xi-1)Yi-1 )
N\ F(ximn) — 4 (%_1/2) — F(x)

Again, by means of Taylor series expansion and then by

approximatingy (x)by linear interpolation, we get

Y= 8) ~y(x) = &Y (x) = i~ & (L2
(21)
= (1+ %) Vi — %Yi+1
Y04-1= 8) ~ Y1) = 8Y (x-1) = yi-1— 8 (42 )
= (1+ %) Yi1— Ry
(22)
Y(Xi—1/2— 0) ~ Y(Xi_1/2) — Y (Xi_1/2)
(23)

=VYi12—90 (y'f—ﬁ/"l)

By making use of the above equations i) (and
rearranging the terms, we get

EVir1—2i+Yi-1) =
(30ai_12+ fai—1(1+£) + Bbir1)yi1

+ (—%5&71/2— Qa1+ Da(1+2) + %bi) yi-2ayii1

+ (4hai_1/2+ 3hbi_1/2) Vio1/2— B(fi +4fi_1/p+ fi_1)
(24)
By using Hermite interpolation, we have
X _|_ i h
Vi =S L -y) o) @)

In view of (4), the above equatior2f) becomes
Vii1j2 = Vi 2Y| 1

0061+ €)1y~ 8) +biay(xo1) — F0x-1)

n Y (% +€) +ay(x —9))

5 (
(oo +1(x) (26)

Using equationZ8) in equation 26), w get

FJF 50312+ ghi1+ a1 (1+§)

Yi-1
+ (&-1/2+bi_1/2) (% + 2—22bi—1+ r11_226“—1 (1+ %)) ]
[—2 4+ g (1+8) — 308 12— 281
) Yi
—%bi

2
P

+2bi+ (_1/2+bi_1/2) (
~Ha(1+4)

+ % —%ai+ 150 (12t bi—l/z)] Vi1
- % [f| +4fi71/2+ fi,]_}

+r11—2(f'—f| 1) (&-1/2+bi-1/2)

-3 (31 12+ Db 1/2) [ Y (%+¢€)— g)/(xi+1+8)]

(27)
using the finite difference approximations, we have
V(% 148) Y (X +8) = (—y(>q+1+£)+2y(>;:+£)—y(xi71+e))

(28)
Again by Taylor series, we have

€ €
y(Xi+¢&)~ (1+ ﬁ) Yi— Vit (29)
£ €
y(Xit1+€) = (1+ H)Yi+1— Y (30)
£ €
y(Xi—1—€) ~ (1—5)%—14— Y (31)

Substituting 28)-(31) in equation 27), we get the three
term recurrence relation

N-—1

Eiyi-1—FRYi+Gyisi=Hi, for i=n+1n+2,...,
(32)

where

E'Z%—I—( )a{ 1+ 35 581 12+ 5 bl 1
(

+5 (a2 +bi 1/2)(4+4b. + 00 )
H:%_(h+6)a*+25a1 1/2+ %ai_1— b
-3 (a- /2“0'71/2)(3 3ai 1——b| (h+5)a++2h)
e 0 h €
G = H - 6 '+—2(ai—1/2+bi_1/2) (58@ — (1+H))

h h?

Hi = & [fi+4fi_1o+fia] - I (fi—fii1) (a_12+bi_12)

Now we have, from17) in { ,2} fori=1,2,...,n-1;and

(32 in [%,1} fori =n+1,n+2,...N-1; a system ofN{-2)
equations withil+1) unknowns. From the given boundary
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conditions @) we get two equations. We need one more
equation to solve for the unknownsg,ys,.....yn. TO get

Writing the tridiagonal systen8@) in matrix-vector form,
we get

this equation we consider the reduced problem of equation

(1) by settinge =0 i.e.,
a(x)y(x—9) +b(x)y(x) = f(x)

which does not satisfy both the boundary conditions. At
X=X, = 3, equation 83) becomes

a(Xn)y(%a — ) + b(Xn)y(%n) = f(Xn)

Using Taylor series expansion, we have

oy s Ynt1 Y1
=¥ 6( 2h )

Substituting this in34) and by simplification, we get

(33)

(34)

Y(Xn — 8) = y(Xn) — Y (Xn)

an o

WYn—l— (—an—bn)yn (35)

an 0
“ o Y
With this equation, we now havé¢1) equations to solve
for the (N+1) unknownsyp,VYi,...,Yn. We solve this
tridiagonal algebraic system by using an efficient and
stable method of invariant imbeddingj [

3 Error analysis

Writing the tridiagonal systenil{) in matrix-vector form,
we get
AY =C (36)

in which A= (mj),1<1i,j <nlis a tridiagonal

matrix of ordeN-1, with

AY =C

(39)

in whichA=(m;),n+1<i,j <N-1 is a tridiagonal
matrix of ordeN-1 , with

Mi1=E—2a+45(a_1/2+bi_1/2) (6a — (1+§))

25 ai—l/z

b|+(“+5)a
By —

I'ni:_h -
+ 8 (a12+bie 1/2)(

3

andC = (d;) is a column vector with

h
di = 5 (fi+4fi_1)2+fi1)

h2

v

fii1) (&_12+bi_1/2) (40)

wherei =n+ 1 (1) N — 1 with local truncation error

_ R2 ey 3
. 256‘_“/2 b Ti(hi) =h 12((£+25)a+£b. VY )/:|+0h)
myit1= h~ — 3 bl+1+ ( )ai+1 (41)
+8 (@12 +bijago) ( bt (B2 )aa+£) . andY = (¥o.ysYz..yn)' We also have
25 -
myj =24 28z b.+( %) ai+Zain AY—T(h)=C (42)
+ 3 (@12 + b|+1/2) ( My + 22t (hTa) a — %) ;
whereY = (Yo,Y1,Yz, ....VN)! denotes thet actual solution
Mi—1= £+ 3a— % (a,12+biy12) (B8 +(1-§)), and T(h) = (To(ho), Ta(ha), ..., Tn(hw))" is the local
. . truncation error.
andC = (d;) is a column vector with
From @2) and @9), we get
h
di = 3 (fi+4fi12+ fira) _
h2 A(Y-Y)=T(h) (43)
1 (fiya— fi) (8112 + bis1)2) ,where = 1 (1) n-1
(37)  Thus the error equation is
with local truncation error
AE =T(h) (44)
T (hi) =h? 15 ((e+20)a +eby) y — —y’/} +0(h3)
(38) whereE=Y—Y = (e,€1,60, .ccvcve...... en)!
(@© 2016 NSP
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Clearly, we have 4 Numerical Experiments

S= 2 rm' To demonstrate the proposed method, we consider four
_ 2 2, humerical experiments, two with boundary layers and two
_h [B’ (ai1 N E' zrl)a‘rT?L 0i1) 45 (Bea/2 +01a/2) | +0(0) oscillatory behaviour. We have plotted the graphs of
i the computed solution of the problem for different values

of € and for different values o® of o(e), which are

where Bl = [ (ai +bi+ai1+biy1) + 5 (1172 biy1/2)] represented by solid and dotted lines respectively. The
maximum absolute errors for the examples are calculated

S =h(an+bn) =hB!, i=n whereB! = (a,+ bn) using the double mesh principle  3][
N-1 EN = max |yN —y2M.
S= 3 mj 0<i<N

=h[(a+b+a_1+b_1)+2 +b +0(h2 Example 1. Consider an example of singularly
[6( ' 1+b-) 3(a1 Y2 1/2)] () perturbed delay differential equation with layer behaviou

—hBi=n+1(1)N-1 (10
/11 1 2 Zy’/ —2y(x—9)-y(x) =1
whereB” = [3(ai+bi+ai_1+bi1)+ 5 (a_1/2+bi_1/2)]

We can choosh sufficiently small so that the matrikis ~ With boundary conditiong(0) = 1, 0 <x <0 and y(1) =
irreducible and monotone. It follows that ! exists and

its elements are non negative. The maximum absolute errors are presented in Tablel
Hence from 44), we get and Table 2 for different values of and for different
. values of 6. We also plot the graphs of the computed
E=A""T(h) (45)  solution of the problem foe= 0.1, 0.01 and for different
Also from the theory of matrices we have values ofd as shown in Figs. 1 and 2 respectively.
N1 ' Example 2. 'Cons'ider singularly perturbed delay
Zi MmiS§=1,k=1(1)N-1 (46) differential equation with layer behaviout(]

£2y'(x) 4+ 0.25y(x — 8) —y(X) = 1

N-1 with boundary conditiong(0) =1,-5 <x<0,y(1) =0
M < 1 1 _ 1 (a7) The maximum absolute errors are presented in Table 1 and
= min § hi Bi, — hi|Bi,] Table 2 for different values of and for different values

wheremy; is (k,i) elementofthe matrid L. Therefore,

= 1=isN-1 of 5. We plot the graphs of the computed solution of the
for someig between 1 anéll-1. and problem fore= 0.01 and for different values @ in Figs.
B, i—1(1)n—1 3 and 4 respectively. _ .
Example 3. Consider a singularly perturbed delay
5 B i=n differential equation with oscillatory behaviouk(]
i0 =
B/, i=n+1(N-1 £%y'(X) +0.25y(x— 8) +y(x) =

with boundary conditiong(0) = 1,—0 < x < 0,y(1) =

The maximum absolute errors are presented in Table 1 for
different values ofe and for different values ofd. The
graphs of the computed solution of the problemss10.01

From 38), (45),(46) and @7), we get

e = Zi miTi(h), Jj=1(1)N-1 and for different values of are presented in Fig. 5.
1= Example 4. Consider the singularly perturbed delay
which implies differential equation with oscillatory behaviouk(]
kh
& < 1Bl " J=1()N-1 (48) %Y (X) +y(x—8) +2y(x) =
i0
wherek is a constant independentof with boundary conditiong(0) = 1, -8 < x < 0,y(1) =
Therefore, The maximum absolute errors are presented in Table 1
|Eil| =0(h) for e= 0.1 and for different values od. We plot the graphs
i.e., our method reduces to a first order convergent forof the computed solution of the problem fex 0.01 for
uniform mesh. differentvalues od as shown in Figs. 6 and 7 respectively.
(@© 2016 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 2, 527-536 (2016)www.naturalspublishing.com/Journals.asp NS = 533

T
delat=0.001
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X

y-numerical solution
y = numerical solution

Fig. 1: The numerical solution of Ex. 1 with= 0.1 Fig. 2: The numerical solution of Ex. 1 with= 0.01

5 Discussions and Conclusion

We have presented a computational method to solve
singularly perturbed delay differential equations with
layer or oscillatory behaviour. In general numerical
solution of second order differential equation will be
more difficult than numerical solution of first order
differential equation. Hence, in this method, we have
reduced the second order singularly perturbed delay
differential equation to first order neutral type delay
differential equation and employed the Simpson rule of
numerical integration. Then, linear interpolation is used
get three term recurrence relation which is solved easily rjg 3: The numerical solution of Ex.2 with= 0.01, 5 = 0.7¢
by method of invariant imbedding algorithm. The method

is demonstrated by implementing several model examples

by taking various values for the delay parameter and

y - numerical solution

perturbation parameter. 1
This method is very easy to implement. To show the
effect of delay on the boundary layer or oscillatory 05

behaviour of the solution, several numerical examples are
carried out in section 4. To demonstrate the effect on the
layer behaviour, we consider examples 1 and 2. We
observe that when the order of the coefficient of the delay
term is of o(1), the delay affects the boundary layer
solution but maintains the layer behaviour. From the
Figures 1 and 2, we observe that when the delay(§3,

the solution maintains layer behaviour although the
coefficient of the delay term in the equation is@(L) and L5 02 04 06 08 1
as the delay increases, the thickness of the left boundan *

layer decreases while that of the right boundary layer
increases.

To demonstrate the effect on the oscillatory behaviour,
we consider the examples 3 and 4 when the solution of the
problem exhibits oscillatory behaviour for delay equal to
zero. We observe that if the coefficient of the delay term is
of o(1), the amplitude of the oscillations increases slowly
as the delay increases provided the delay & f. (Figure
5)

y = numerical solution

Fig. 4: The numerical solution of Ex. 2 with=0.01,0 = ¢
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Table 1: The maximum absolute error of the examples for differenieslof 5 with € =0.1

N 100 200 300 400 500

o) Example 1

0.03 3.2676e-003 1.6475e-003 1.1015e-003 8.2735e-004%e6004
0.05 3.2657e-003 1.6526e-003 1.1062e-003 8.3136e-0(EDHE004
0.09 3.5460e-003 1.7987e-003 1.2051e-003 9.0609e-0EB4e2004

Example 2
0.03 2.1226e-003 1.0639e-003 7.0985e-004 5.3259e-00Bl Ze2004
0.05 2.1099e-003 1.0574e-003 7.0543e-004 5.2928e-0BbXe2004
0.09 2.0816e-003 1.0426e-003 6.9547e-004 5.2178e-0046C1004

Example 3
0.03 2.4582e-003 1.2196e-003 8.1096e-004 6.0742e-00E64e8004
0.05 2.5127e-003 1.2472e-003 8.2948e-004 6.2134e-0086%004
0.09 2.6198e-003 1.3016e-003 8.6589e-004 6.4872e-0B63e1004

Example 4
0.03 1.8682e-002 9.0640e-003 5.9795e-003 4.4608e-0037 35003

0.05 1.4987e-002 7.2328e-003 4.7631e-003 3.5505e-00328003
0.09 2.1346e-002 1.0306e-002 6.7863e-003 5.0577e-00&)A003

Table 2: The maximum absolute error of the examples for differenieslof € for 4 = 0.03

N 100 200 300 400 500

€ Example 1

271 9.2363e-004 4.6407e-004 3.0991e-004 2.3263e-004 1.8BM0e
272 1.6390e-003 8.2516e-004 5.5141e-004 4.1404e-004 3.3M0%6e
273 2.7044e-003 1.3653e-003 9.1315e-004 6.8602e-004 5.4UBVe
274 4.1751e-003 2.1168e-003 1.4178e-003 1.0658e-003 8.5BBOe
275 6.2518e-003 3.1866e-003 2.1382e-003 1.6088e-003 1.2BWSe

Example 2
21 5.0597e-004 2.5321e-004 1.6886e-004 1.2667e-004 1.0084e
272 9.6556e-004 4.8357e-004 3.2250e-004 2.4194e-004 1.98%7e
273 1.7698e-003 8.8657e-004 5.9149e-004 4.4377e-004 3.5EDBe
274 3.0307e-003 1.5201e-003 1.0145e-003 7.6132e-004 6.0URBe
275 4.7379e-003 2.3810e-003 1.5901e-003 1.1937e-003 9.5WUle
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y - numerical solution

Fig. 5: The numerical solution of Ex.3 with = 0.01

y - numerical solution
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Fig. 6: The numerical solution of Ex. 4 with=0.01,6 =0
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Fig. 7: The numerical solution of Ex. 4 with= 0.01,6 = 0.3

I |

o 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
x

L L L L
0 0.2 0.4 0.6 0.8 1

References

[1] E. Angel and R. Bellman, Dynamic Programming and Partial
differential equations, Academic Press, New York, 1972.

[2] M.W.Derstine, F.A.H.H.M.Gibbs and D.L.Kaplan, Phye\R
A 26, 3720-3722 (1982).

[3] E. P. Doolan, J. J. H. Miller, W. H. A. Schilders, Uniform
Numerical Methods for problems with Initial and Boundary
Layers, Boole Press, Dublin, 1980.

[4] L. E. El'sgol'ts, S.B. Norkin, Introduction to the Thepr
and Applications of Differential Equations with Deviating
Arguments, Academic Press, New York 1973.

[5] Gabil M. Amiraliyev, Erkan Cimen, Applied Mathematics
and Computatior216, 2351-2359 (2010).

[6] Gemechis File, Y. N. Reddy, Journal of Differential
Equations33, 782-797 (2012).

[7]1 V.Y. Glizer, J.0Optim.Theory Appl117, 295-325 (2003).

[8] Jugal Mohapatra, Srinivasan Natesan, Internationatrid
for Numerical Methods in Biomedical Engineeri@g, 1427-
1445 (2011).

[9] M.K. Kadalbajoo, Y.N. Reddy, Journal of Optimization
Theory and Application§5, 256-269 (1986).

[10] M.K.Kadalbajoo, K.K. Sharma, Computational & Applied
Mathematics24, 151-172 (2005).

[11] C.G. Lange, R.M. Miura, SIAM J.Appl. Matthd, 249-272
(1994).

[12] C.G. Lange, R.M. Miura, SIAM J.Appl. Matth4, 273-283
(1994).

[13] P. Pramod Chakravarthy, R. Nageshwar Rao, Applied
Mathematical Modelling37, 5743-5755 (2013).

G. B. S L. Soujanya
received the PhD
degree in Mathematics for
numerical solution of singular
perturbation problems
from National Institute of
Technology, Warangal, India.
She is working as Assistant
Professor in Mathematics,
Kakatiya University,
Warangal, India. Her research interests are in the areas of
numerical methods for singular perturbation and
singularly perturbed differential difference equatioBhe
has published ten research articles in reputed interredtion
journals of mathematical sciences.

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

536 NS G. BSL Soujanya, Y. N. Reddy: Computational method for SPBBREh...

Y. N. Reddy is Professor
of Mathematics at National
Institute  of  Technology,
Warangal, India. His research
interests are in the area of
numerical analysis, numerical
methods for singular
perturbation, singularly
perturbed differential
difference  equations. He
guided 9 research scholars under his supervision. He
published 104 research articles in various international
journals.

(@© 2016 NSP
Natural Sciences Publishing Cor.



	Introduction
	Numerical Method
	Error analysis
	Numerical Experiments
	Discussions and Conclusion

