
Appl. Math. Inf. Sci.10, No. 2, 527-536 (2016) 527

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100214

Computational Method for Singularly Perturbed
Delay Differential Equations with Layer or Oscillatory
Behaviour
G. BSL Soujanya 1,∗ and Y. N. Reddy2

1 Department of Mathematics, Kakatiya University, Warangal, 506009, India
2 Department of Mathematics, National Institute of Technology, Warangal, 506004, India

Received: 14 Aug. 2015, Revised: 1 Nov. 2015, Accepted: 2 Nov. 2015
Published online: 1 Mar. 2016

Abstract: In this paper, we describe a computational method for singularly perturbed delay differential equations with layer or
oscillatory behaviour. In general, the numerical solutionof a second order boundary value problem will be more difficult than the
numerical solution of the first order differential equation. Hence, it is preferable to convert the second order probleminto first order
problems. In this method, we first convert the second order singularly perturbed delay differential equation to first order neutral type
delay differential equation and employ the Simpson rule. Then, we use the linear interpolation to get tridiagonal system which is solved
easily by discrete invariant imbedding algorithm. Severalmodel examples for various values of the delay parameter andperturbation
parameter are solved and the computational results are presented. We also discuss the convergence of the method.
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1 Introduction

A singularly perturbed delay differential equation is an
ordinary differential equation in which the highest
derivative is multiplied by a small parameter and
containing delay term. In these problems, typically there
are thin transition layers where the solution varies rapidly
or jumps abruptly, while away from the layers the
solution behaves regularly and varies slowly. In the recent
years, there has been a growing interest in the numerical
treatment of such differential equations. This is due to the
versatility of such type of differential equations in the
mathematical modeling of processes in various
application fields, for e.g., the first exit time problem in
the modeling of the activation of neuronal variability [11],
in the study of bistable devices [2], and variational
problems in control theory [8] where they provide the
best and in many cases the only realistic simulation of the
observed.

In [5], the authors Gabil M. Amiraliyev, Erkan Cimen
had given an exponentially fitted difference scheme on a
uniform mesh for singularly perturbed boundary value
problem for a linear second order delay differential

equation with a large delay in the reaction term.
Gemechis File and Y. N. Reddy [6] presented a numerical
integration of a class of singularly perturbed delay
differential equations with small shift, where delay is in
differentiated term. In [8], the authors Jugal Mohapatra,
Srinivasan Natesan constructed a numerical method for a
class of singularly perturbed differential-difference
equations with small delay. The numerical method
comprises of upwind finite difference operator on an
adaptive grid, which is formed by equidistributing the
arc-length monitor function. Kadalbajoo and Sharma [10]
presented a numerical approach to solve singularly
perturbed differential-difference equation, which contains
negative shift in the function but not in the derivative
term. Lange and Miura [11]-[12] gave an asymptotic
approach for a class of boundary-value problems for
linear second-order singularly perturbed
differential-difference equations. In [13], the authors
Pramod Chakravarthy and Rao presented a finite
difference method for singularly perturbed linear second
order differential-difference equation of the
convection-diffusion type with small delay parameter.
Taylor series is used to tackle the delay term. The
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exponentially fitted technique is employed to solve the
problem.

In this paper, we extend the method given in [6] for
the numerical solution of singularly perturbed delay
differential equations with layer or oscillatory behaviour.
Here, the delay term is not present in the differentiated
term. In this method, we first convert the second order
singularly perturbed delay differential equation to first
order neutral type delay differential equation and employ
the Simpson rule. Then, linear interpolation is used to get
three term recurrence relation which is solved easily by
discrete invariant imbedding algorithm. Several model
examples for various values of the delay parameter and
perturbation parameter are solved and computational
results are presented. We also discuss the convergence of
the method.

2 Numerical Method

Consider singularly perturbed delay differential equation
of the form

Ly ≡ εy′′(x)+a(x)y(x−δ )+b(x)y(x) = f (x), 0< x < 1,
(1)

with boundary conditions

y(0) = φ(x) , -δ ≤ x ≤ 0 and y(1) = β (2)

whereε is small parameter, 0< ε << 1 andδ is also
small shifting parameter, 0< δ < 1; a(x), b(x), f(x) and
φ(x)are bounded continuous functions in (0, 1) andβ is
finite constant. Forδ= 0, the solution of the boundary
value problem (1), (2)exhibits layer or oscillatory
behaviour depending on the sign of(a(x)+ b(x)). If
(a(x)+ b(x)) ≤ −M < 0, whereMis a positive constant,
the solution of the problem (1), (2) exhibits layer
behaviour and if (a(x)+ b(x)) ≥ M > 0, it exhibits
oscillatory behaviour. The boundary value problem
considered here is of the reaction-diffusion type, so there
will be twin boundary layers which will be at both the end
points i.e., atx = 0 andx = 1. In this paper, we present
both the cases, i.e., when the solution of the problem
exhibits layer at both ends as well as oscillatory
behaviour and show the effect of the delay on the layer
and oscillatory behaviour.

We divide the interval [0, 1] intoN equal parts with
mesh sizeh. Let 0= x0,x1, ...,xN = 1 be the mesh points.
Then we havexi = ih for i = 0,1, . . .,N. Since the
problem exhibits two boundary layers or oscillatory
behaviour across the interval, we divide the interval [0, 1]

into two sub intervals
[

0, 1
2

]

and
[

1
2, 1

]

. We choosen

such thatxn =
1
2. In the interval

[

0, 1
2

]

the boundary layer

will be in the left hand side i.e., atx = 0 and in the

interval
[

1
2, 1

]

the boundary layer will be in the right

hand side i.e.,x = 1. Hence, we derive the numerical

method for both left-end layer and right-end layer cases.

In the interval
[

0, 1
2

]

, using Taylor series expansion to

approximatey′ (x− ε), we get

y′ (x− ε)≈ y′(x)− εy′′(x) (3)

using this approximation, equation (1) is replaced by the
following approximate first order differential equation
with a small deviating argument:

y′(x) = y′(x− ε)− a(x)y(x− δ )− b(x)y(x)+ f (x) (4)

This replacement is significant from the computational
point of view [4]. Integrating (4) with respect tox
fromxi to xi+1, we get

yi+1− yi =

xi+1
∫

xi

y′(x− ε)dx−

xi+1
∫

xi

a(x)y(x− δ )dx

+

xi+1
∫

xi

b(x)ydx−

xi+1
∫

xi

f (x)dx

yi+1− yi = y(xi+1− ε)− y(xi− ε)+
xi+1
∫

xi

a(x)y(x− δ )dx

−

xi+1
∫

xi

b(x)ydx+

xi+1
∫

xi

f (x)dx

By using Simpson’s rule to evaluate the integrals in the
above equation, we get

yi+1− yi = y(xi+1− ε)− y(xi− ε)− h
6 (a(xi)y(xi − δ ))

− h
6

(

4a(xi+1/2)y(xi+1/2− δ )+ a(xi+1)y(xi+1− δ )
)

− h
6

(

b(xi)yi +4b(xi+1/2)yi+1/2+ b(xi+1)yi+1
)

− h
6

(

f (xi+1)+ f (xi)+4 f (xi+1/2)
)

(5)

Again, by using Taylor series expansion and using
linear interpolation, we get

y(xi − δ )≈
(

1−
δ
h

)

yi +
δ
h

yi−1 (6)

y(xi+1− δ )≈
(

1−
δ
h

)

yi+1+
δ
h

yi (7)

y(xi+1/2− δ )≈ y(xi+1/2)− δ y′(xi+1/2)

= yi+1/2− δ
(

yi+1− yi

h

)

(8)
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By making use of the above equations (6), (7) and (8) in
(5), rearranging the terms we get

ε
h
(yi+1−2yi+ yi−1) =
(

2
3

δai+1/2−
h
6

ai+1(1−
δ
h
)−

h
6

bi+1

)

yi+1

+

(

−
2
3

δai+1/2−
δ
6

ai+1−
h
6

ai(1−
δ
h
)−

h
6

bi

)

yi

−

(

δ
6

ai

)

yi−1 +

(

−
2
3

hai+1/2−
2
3

hai+1/2

)

yi+1/2

+
h
6
( fi +4 fi+1/2+ fi+1) (9)

Approximating yi+1/2 using Hermite interpolation, we
have

yi+1/2 ≈
yi + yi+1

2
+

h
8

(

y′i − y′i+1

)

+O
(

h4) (10)

In view of (4), the above (10) becomes

yi+1/2 =
yi + yi+1

2

+
h
8

(

y′(xi − ε)− aiy(xi − δ )− biy(xi)+ f (xi)
)

−
h
8

(

y′(xi+1− ε)− ai+1y(xi+1− δ )
)

−
h
8
(bi+1y(xi+1)+ f (xi+1)) (11)

Using (11) in (9), we get











ε
h −

2
3δai+1/2+

h
6bi+1+

h
6ai+1

(

1− d
h

)

+

(

ai+1/2+ bi+1/2
)

(

h
3 +

h2

12bi+1

)











yi+1

+











− 2ε
h + h

6ai
(

1− d
h

)

+ 2
3δai+1/2+

δ
6 ai+1

+ h
6bi +

(

ai+1/2+ bi+1/2
)

(

h
3 −

h2

12bi+1

)











yi

+
[

ε
h +

δ
6 ai

]

yi−1 =
h
6

[

fi +4 fi+1/2+ fi+1
]

+ h2

12 ( fi+1− fi)
(

ai+1/2+ bi+1/2
)

− 2h
3

(

ai+1/2+ bi+1/2
)[

h
8y′ (xi − ε)− h

8y′ (xi+1− ε)
]

− 2h
3

(

ai+1/2+ bi+1/2
)

h
8











ai+1

(

(

1− d
h

)

yi+1+
δ
h yi

)

−ai

(

(

1− d
h

)

yi +
δ
h yi−1

)











(12)

y′ (xi+1− ε)−y′ (xi − ε)=
(y(xi+1− ε)−2y(xi − ε)+y(xi−1− ε))

h
(13)

Again by Taylor series and linear interpolation, we have

y(xi − ε)≈
(

1−
ε
h

)

yi +
ε
h

yi−1 (14)

y(xi+1− ε)≈
(

1−
ε
h

)

yi+1+
ε
h

yi (15)

y(xi−1− ε)≈
(

1+
ε
h

)

yi−1−
ε
h

yi (16)

Substituting (13) - (16) in (12), we get the following
tridiagonal system

Eiyi−1−Fiyi +Giyi+1 = Hi, for i = 1,2, . . .,n−1. (17)

where

Ei =
ε
h
+

δ
6

ai −
h
12

(

ai+1/2+ bi+1/2
)

(

δai +
(

1−
ε
h

))

Fi =
2ε
h − (h−δ )

6 ai −
2
3δai+1/2−

δ
6 ai+1−

h
6bi

− h
3

(

ai+1/2+ bi+1/2
)

(

3
2 +

δ
4 ai+1−

h
4bi −

(h−δ)
4 ai +

ε
2h

)

Gi =
ε
h +

(h−δ)
6 ai −

2
3δai+1/2+

h
6bi

+ h
3

(

ai+1/2+ bi+1/2
)

(

3
4 +

h
4bi+1+

(h−δ )
4 ai+1+

ε
4h

)

Hi =
h
6

[

fi +4 fi+1/2+ fi+1
]

+
h2

12
( fi+1− fi)

(

ai+1/2+ bi+1/2
)

Now in the interval
[

1
2, 1

]

, we use Taylor series expansion

to approximatey′ (x+ ε), we get

y′ (x+ ε)≈ y′(x)+ εy′′(x) (18)

and consequently, equation (2) is replaced by the following
approximate first order differential equation:

y′(x) = y′(x+ ε)+ a(x)y(x− δ )+ b(x)y− f (x), (19)

Integrating (21) with respect tox from xi−1 to xi, we get

yi − yi−1 =
xi
∫

xi−1

y′(x+ ε)dx+
xi
∫

xi−1

a(x)y(x− δ )dx

+
xi
∫

xi−1

b(x)ydx−
xi
∫

xi−1

f (x)dx

yi − yi−1 = y(xi + ε)− y(xi−1+ ε)+
xi
∫

xi−1

a(x)y(x− δ )dx

+
xi
∫

xi−1

b(x)ydx−
xi
∫

xi−1

f (x)dx
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By using Simpson’s rule to evaluate the integral, we get

yi − yi−1 = y(xi + ε)− y(xi−1+ ε)

+ h
6

(

a(xi)y(xi − δ )+4a(xi−1/2)y(xi−1/2− δ )

+a(xi−1)y(xi−1− δ )

)

+ h
6

(

b(xi)yi +4b(xi−1/2)yi−1/2+ b(xi−1)yi−1

− f (xi−1)−4 f (xi−1/2)− f (xi)

)

(20)

Again, by means of Taylor series expansion and then by
approximatingy′(x)by linear interpolation, we get

y(xi − δ )≈ y(xi)− δy′(xi) = yi − δ
(

yi+1−yi
h

)

=
(

1+ δ
h

)

yi −
δ
h yi+1

(21)

y(xi−1− δ )≈ y(xi−1)− δ y′(xi−1) = yi−1− δ
(

yi−yi−1
h

)

=
(

1+ δ
h

)

yi−1−
δ
h yi

(22)

y(xi−1/2− δ )≈ y(xi−1/2)− δy′(xi−1/2)

= yi−1/2− δ
(

yi−yi−1
h

) (23)

By making use of the above equations in (2) and
rearranging the terms, we get

ε
h (yi+1−2yi+ yi−1) =

(2
3δai−1/2+

h
6ai−1(1+ δ

h )+
h
6bi+1)yi−1

+
(

− 2
3δai−1/2−

δ
6ai−1+

h
6ai(1+ δ

h )+
h
6bi

)

yi- δ
6 aiyi+1

+
(2

3hai−1/2+
2
3hbi−1/2

)

yi−1/2−
h
6( fi +4 fi−1/2+ fi−1)

(24)
By using Hermite interpolation, we have

yi−1/2 =
yi + yi−1

2
+

h
8

(

y′i−1− y′i
)

+O
(

h4) (25)

In view of (4), the above equation (25) becomes

yi−1/2 =
yi + yi−1

2

+
h
8

(

y′(xi−1+ ε)+ ai−1y(xi−1− δ )+ bi−1y(xi−1)− f (xi−1)
)

−
h
8

(

y′(xi + ε)+ aiy(xi − δ )
)

−
h
8
(biy(xi)+ f (xi)) (26)

Using equation (28) in equation (26), w get





ε
h +

2
3δai−1/2+

h
6bi−1+

h
6ai−1

(

1+ d
h

)

+
(

ai−1/2+ bi−1/2
)

(

h
3 +

h2

12bi−1+
h2

12ai−1
(

1+ d
h

)

)



yi−1

+











− 2ε
h + h

6ai
(

1+ d
h

)

− 2
3δai−1/2−

δ
6 ai−1

+ h
6bi +

(

ai−1/2+ bi−1/2
)





h
3 −

δh2

12 ai−1

− h2

12ai
(

1+ d
h

)

− h
8bi















yi

+
[

ε
h −

δ
6 ai +

h
12δ

(

ai−1/2+ bi−1/2
)

]

yi+1

= h
6

[

fi +4 fi−1/2+ fi−1
]

+ h2

12 ( fi − fi−1)
(

ai−1/2+ bi−1/2
)

− 2h
3

(

ai−1/2+ bi−1/2
)[

h
8y′ (xi + ε)− h

8y′ (xi+1+ ε)
]

(27)
using the finite difference approximations, we have

y′(xi−1+ ε)−y′(xi + ε)=
(−y(xi+1+ ε)+2y(xi + ε)−y(xi−1+ ε))

h
(28)

Again by Taylor series, we have

y(xi + ε)≈
(

1+
ε
h

)

yi −
ε
h

yi−1 (29)

y(xi+1+ ε)≈
(

1+
ε
h

)

yi+1−
ε
h

yi (30)

y(xi−1− ε)≈
(

1−
ε
h

)

yi−1+
ε
h

yi (31)

Substituting (28)-(31) in equation (27), we get the three
term recurrence relation

Eiyi−1−Fiyi+Giyi+1 =Hi, f or i = n+1,n+2, . . .,N−1.
(32)

where

Ei =
ε
h +

(h+δ)
6 ai−1+

2
3δai−1/2+

h
6bi−1

+ h
3

(

ai−1/2+ bi−1/2
)

(

3
4 +

h
4bi−1+

(h+δ )
4 ai−1−

ε
4h

)

Fi =
2ε
h − (h+δ )

6 ai +
2
3δai−1/2+

δ
6 ai−1−

h
6bi

− h
3

(

ai−1/2+ bi−1/2
)

(

3
2 −

δ
4 ai−1−

h
4bi −

(h+δ)
4 ai +

ε
2h

)

Gi =
ε
h
−

δ
6

ai +
h
12

(

ai−1/2+ bi−1/2
)

(

δai −
(

1+
ε
h

))

Hi =
h
6

[

fi +4 fi−1/2+ fi−1
]

−
h2

12
( fi − fi−1)

(

ai−1/2+ bi−1/2
)

Now we have, from (17) in
[

0,12

]

for i= 1, 2, . . . ,n-1; and

(32) in
[

1
2,1
]

for i = n+1, n+2, . . . ,N-1; a system of (N-2)

equations with (N+1) unknowns. From the given boundary
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conditions (2) we get two equations. We need one more
equation to solve for the unknownsy0,y1, .....yn. To get
this equation we consider the reduced problem of equation
(1) by settingε = 0 i.e.,

a(x)y(x− δ )+ b(x)y(x) = f (x) (33)

which does not satisfy both the boundary conditions. At
x = xn =

1
2, equation (33) becomes

a(xn)y(xn − δ )+ b(xn)y(xn) = f (xn) (34)

Using Taylor series expansion, we have

y(xn − δ )≈ y(xn)− δy′(xn) = yn − δ
(

yn+1− yn−1

2h

)

Substituting this in (34) and by simplification, we get

an δ
2h

yn−1− (−an − bn)yn −
an δ
2h

yn+1 = fn (35)

With this equation, we now have (N+1) equations to solve
for the (N+1) unknowns y0,y1, ...,yn. We solve this
tridiagonal algebraic system by using an efficient and
stable method of invariant imbedding [1].

3 Error analysis

Writing the tridiagonal system (17) in matrix-vector form,
we get

AY =C (36)

in which A = (mi j) , 1 ≤ i, j ≤ n-1 is a tridiagonal
matrix of orderN-1, with

mi i+1 =
ε
h −

2δai+1/2
3 + h

6bi+1+
(

h−δ
6

)

ai+1

+ h
3

(

ai+1/2+ bi+1/2
)

(

3
4 +

h
4bi+1+

(

h−δ
4

)

ai+1+
ε
4h

)

,

mi i =− 2ε
h +

2δai+1/2
3 + h

6bi +
(

h−δ
6

)

ai +
δ
6 ai+1

+ h
3

(

ai+1/2+ bi+1/2
)

(

3
2 −

h
4bi +

δai+1
4 −

(

h−δ
4

)

ai −
ε
2h

)

,

mi i−1 =
ε
h +

δ
6 ai −

h
12

(

ai+1/2+ bi+1/2
)(

δai +(1− ε
h )
)

,

andC = (di) is a column vector with

di =
h
6

(

fi +4 fi+1/2+ fi+1
)

+
h2

12
( fi+1− fi)

(

ai+1/2+ bi+1/2
)

,wherei = 1 (1) n-1

(37)

with local truncation error

Ti(hi) = h2
[

1
12

((ε +2δ )ai+ εbi)y′′i −
ε
2

y′′′i

]

+0(h3)

(38)

Writing the tridiagonal system (32) in matrix-vector form,
we get

AY =C (39)

in which A = (mi j) , n+ 1 ≤ i, j ≤ N-1 is a tridiagonal
matrix of orderN-1 , with

mi i+1 =
ε
h −

δ
6ai +

h
12

(

ai−1/2+ bi−1/2
)(

δai − (1+ ε
h )
)

mi i =− 2ε
h −

2δ ai−1/2
3 + h

6bi +
(

h+δ
6

)

ai −
δ
6 ai−1

+ h
3

(

ai−1/2+ bi−1/2
)

(

3
2 −

h
4bi −

δ ai−1
4 −

(

h+δ
4

)

ai +
ε
2h

)

,

mi i-1 = ε
h +

2δ ai−1/2
3 + h

6bi−1+
(

h+δ
6

)

ai+1

+ h
3

(

ai−1/2+ bi−1/2
)

(

3
4 +

h
4bi−1+

(

h+δ
4

)

ai−1−
ε
4h

)

andC = (di) is a column vector with

di =
h
6

(

fi +4 fi−1/2+ fi−1
)

−
h2

12
( fi − fi−1)

(

ai−1/2+ bi−1/2
)

(40)

wherei = n+1 (1) N −1 with local truncation error

Ti(hi) = h2
[

1
12

((ε +2δ )ai+ εbi)y′′i −
ε
2

y′′′i

]

+0(h3)

(41)
andY = (y0,y1,y2, ...yN)

t We also have

AY −T(h) =C (42)

whereY = (y0,y1,y2, ...,yN)
t denotes the actual solution

and T (h) = (T0(h0),T1(h1), ......,TN(hN))
t is the local

truncation error.

From (42) and (39), we get

A
(

Y −Y
)

= T (h) (43)

Thus the error equation is

AE = T (h) (44)

whereE = Y −Y = (e0,e1,e2, ..............eN)
t .
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Clearly, we have

Si =
N−1
∑
j=1

mi j

= h
[

1
6 (ai + bi+ ai+1+ bi+1)+

2
3

(

ai+1/2+ bi+1/2
)]

+0(h2)
= h B′

i , i = 1 (1) n−1

where B′
i =

[

1
6 (ai + bi+ ai+1+ bi+1)+

2
3

(

ai+1/2+ bi+1/2
)]

Si = h (an + bn) = hB′′
i , i = n whereB′′

i = (an + bn)

Si =
N−1
∑
j=1

mi j

= h
[ 1

6 (ai + bi+ ai−1+ bi−1)+
2
3

(

ai−1/2+ bi−1/2
)]

+0(h2)

= h B′′′
i i = n+1 (1) N−1

whereB′′′
i =

[1
6 (ai + bi+ ai−1+ bi−1)+

2
3

(

ai−1/2+ bi−1/2
)]

We can chooseh sufficiently small so that the matrixA is
irreducible and monotone. It follows thatA−1 exists and
its elements are non negative.

Hence from (44), we get

E = A−1T (h) (45)

Also from the theory of matrices we have

N−1

∑
i=1

mk,i Si = 1 , k = 1 (1)N −1 (46)

wheremk,i is (k,i) element of the matrixA-1. Therefore,

N-1
∑
i=1

mk,i ≤
1

min
1≤ i ≤N−1

Si
=

1
hiBio

≤
1

hi |Bio |
(47)

for somei0 between 1 andN-1. and

Bi0 =















B′
i, i = 1(1)n−1

B′′
i , i = n

B′′′
i , i = n+1(1)N−1

From (38), (45),(46) and (47), we get

e j =
N−1

∑
i=1

mk,i Ti(h), j = 1 (1) N −1

which implies

e j ≤
khi

|Bi0|
, j = 1 (1) N −1 (48)

wherek is a constant independent ofh.
Therefore,

‖Ei‖= 0(h)

i.e., our method reduces to a first order convergent for
uniform mesh.

4 Numerical Experiments

To demonstrate the proposed method, we consider four
numerical experiments, two with boundary layers and two
with oscillatory behaviour. We have plotted the graphs of
the computed solution of the problem for different values
of ε and for different values ofδ of o(ε) , which are
represented by solid and dotted lines respectively. The
maximum absolute errors for the examples are calculated
using the double mesh principle [3],
EN = max

0≤i≤N

∣

∣yN
i − y2N

2i

∣

∣.

Example 1. Consider an example of singularly
perturbed delay differential equation with layer behaviour
[10]

ε2y′′(x)−2y(x− δ )− y(x) = 1

with boundary conditionsy(0) = 1, -δ ≤ x ≤ 0 and y(1) =
0.

The maximum absolute errors are presented in Table1
and Table 2 for different values ofε and for different
values of δ . We also plot the graphs of the computed
solution of the problem forε= 0.1, 0.01 and for different
values ofδ as shown in Figs. 1 and 2 respectively.

Example 2. Consider singularly perturbed delay
differential equation with layer behaviour [10]

ε2y′′(x)+0.25y(x− δ )− y(x)= 1

with boundary conditionsy(0) = 1,−δ ≤ x ≤ 0,y(1) = 0.
The maximum absolute errors are presented in Table 1 and
Table 2 for different values ofε and for different values
of δ . We plot the graphs of the computed solution of the
problem forε= 0.01 and for different values ofδ in Figs.
3 and 4 respectively.

Example 3. Consider a singularly perturbed delay
differential equation with oscillatory behaviour [10]

ε2y′′(x)+0.25y(x− δ )+ y(x)= 1

with boundary conditionsy(0) = 1,−δ ≤ x ≤ 0,y(1) = 0.
The maximum absolute errors are presented in Table 1 for
different values ofε and for different values ofδ . The
graphs of the computed solution of the problem forε= 0.01
and for different values ofδ are presented in Fig. 5.

Example 4. Consider the singularly perturbed delay
differential equation with oscillatory behaviour [10]

ε2y′′(x)+ y(x− δ )+2y(x) = 1

with boundary conditionsy(0) = 1,−δ ≤ x ≤ 0,y(1) = 0
The maximum absolute errors are presented in Table 1

for ε= 0.1 and for different values ofδ . We plot the graphs
of the computed solution of the problem forε= 0.01 for
different values ofδ as shown in Figs. 6 and 7 respectively.
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Fig. 1: The numerical solution of Ex. 1 withε = 0.1

5 Discussions and Conclusion

We have presented a computational method to solve
singularly perturbed delay differential equations with
layer or oscillatory behaviour. In general numerical
solution of second order differential equation will be
more difficult than numerical solution of first order
differential equation. Hence, in this method, we have
reduced the second order singularly perturbed delay
differential equation to first order neutral type delay
differential equation and employed the Simpson rule of
numerical integration. Then, linear interpolation is usedto
get three term recurrence relation which is solved easily
by method of invariant imbedding algorithm. The method
is demonstrated by implementing several model examples
by taking various values for the delay parameter and
perturbation parameter.

This method is very easy to implement. To show the
effect of delay on the boundary layer or oscillatory
behaviour of the solution, several numerical examples are
carried out in section 4. To demonstrate the effect on the
layer behaviour, we consider examples 1 and 2. We
observe that when the order of the coefficient of the delay
term is of o(1), the delay affects the boundary layer
solution but maintains the layer behaviour. From the
Figures 1 and 2, we observe that when the delay iso(ε),
the solution maintains layer behaviour although the
coefficient of the delay term in the equation is ofO(1) and
as the delay increases, the thickness of the left boundary
layer decreases while that of the right boundary layer
increases.

To demonstrate the effect on the oscillatory behaviour,
we consider the examples 3 and 4 when the solution of the
problem exhibits oscillatory behaviour for delay equal to
zero. We observe that if the coefficient of the delay term is
of o(1), the amplitude of the oscillations increases slowly
as the delay increases provided the delay is ofo(ε). (Figure
5)
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Fig. 2: The numerical solution of Ex. 1 withε = 0.01
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Fig. 3: The numerical solution of Ex.2 withε = 0.01,δ = 0.7ε
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Fig. 4: The numerical solution of Ex. 2 withε = 0.01,δ = ε
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Table 1: The maximum absolute error of the examples for different values of δ with ε = 0.1

N 100 200 300 400 500

δ Example 1

0.03 3.2676e-003 1.6475e-003 1.1015e-003 8.2735e-004 6.6245e-004

0.05 3.2657e-003 1.6526e-003 1.1062e-003 8.3136e-004 6.6593e-004

0.09 3.5460e-003 1.7987e-003 1.2051e-003 9.0609e-004 7.2594e-004

Example 2

0.03 2.1226e-003 1.0639e-003 7.0985e-004 5.3259e-004 4.2617e-004

0.05 2.1099e-003 1.0574e-003 7.0543e-004 5.2928e-004 4.2351e-004

0.09 2.0816e-003 1.0426e-003 6.9547e-004 5.2178e-004 4.1750e-004

Example 3

0.03 2.4582e-003 1.2196e-003 8.1096e-004 6.0742e-004 4.8554e-004

0.05 2.5127e-003 1.2472e-003 8.2948e-004 6.2134e-004 4.9669e-004

0.09 2.6198e-003 1.3016e-003 8.6589e-004 6.4872e-004 5.1863e-004

Example 4

0.03 1.8682e-002 9.0640e-003 5.9795e-003 4.4608e-003 3.5572e-003

0.05 1.4987e-002 7.2328e-003 4.7631e-003 3.5505e-003 2.8299e-003

0.09 2.1346e-002 1.0306e-002 6.7863e-003 5.0577e-003 4.0307e-003

Table 2: The maximum absolute error of the examples for different values of ε for δ = 0.03

N 100 200 300 400 500

ε Example 1

2−1 9.2363e-004 4.6407e-004 3.0991e-004 2.3263e-004 1.8619e-004

2−2 1.6390e-003 8.2516e-004 5.5141e-004 4.1404e-004 3.3146e-004

2−3 2.7044e-003 1.3653e-003 9.1315e-004 6.8602e-004 5.4937e-004

2−4 4.1751e-003 2.1168e-003 1.4178e-003 1.0658e-003 8.5380e-004

2−5 6.2518e-003 3.1866e-003 2.1382e-003 1.6088e-003 1.2895e-003

Example 2

2−1 5.0597e-004 2.5321e-004 1.6886e-004 1.2667e-004 1.0134e-0 04

2−2 9.6556e-004 4.8357e-004 3.2250e-004 2.4194e-004 1.9357e-004

2−3 1.7698e-003 8.8657e-004 5.9149e-004 4.4377e-004 3.5508e-004

2−4 3.0307e-003 1.5201e-003 1.0145e-003 7.6132e-004 6.0926e-004

2−5 4.7379e-003 2.3810e-003 1.5901e-003 1.1937e-003 9.5544e-004
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Fig. 5: The numerical solution of Ex.3 withε = 0.01
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Fig. 6: The numerical solution of Ex. 4 withε = 0.01,δ = 0
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Fig. 7: The numerical solution of Ex. 4 withε = 0.01,δ = 0.3
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