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Abstract: Artificial Bee Colony (ABC) algorithm is a swarm intelligence based recent optimization technique that mimics from real
bee colonies. After the initial proposal of ABC, several variants of original algorithm have been proposed like as otheroptimization
algorithms. Although performances of well-known ABC algorithms are known and comparison works exist on benchmark test
functions, the real performance of these algorithms are notknown on engineering problems. In this paper, several ABC algorithms
are reviewed and compared on three different engineering optimization problems using default parameter settings and tuned parameter
settings. Moreover, the best ABC variants obtained from experimental results are compared with contemporary algorithms in literature.
The results have shown that ABC algorithms are also competitive with recent state-of-the-art algorithms on engineering problems.
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1 Introduction

Swarm intelligence (SI) [1] is the joint behavior of the
self-organized and decentralized systems. SI systems
consist of simple agents which interact with each other
and with their environments. Some examples of SI
systems can be seen in nature such as ant and bee
colonies, flocks of birds, and schools of fish. In recent
years, researchers have invited new artificial swarm
algorithms inspired by real swarm systems and their
problem solving behavior. Particle swarm optimization
(PSO) inspired by the behaviors of blocks of birds or
schools of fish [2], ant colony optimization (ACO)
inspired by the foraging behaviors of ant colonies [3],
cuckoo search (CS) inspired by the brooding behaviors of
cuckoo species [4], Cat Swarm Optimization (CSO) based
on the behavior of cats [5] are some of the examples of SI
algorithms. Comparison of such SI methods on
engineering problems can be found in literature [7].

Artificial Bee Colony (ABC) algorithm [6] is another
recent SI algorithm which is inspired by foraging
behavior of honey bees. ABC algorithm is firstly designed
for tackling numerical function optimization problems.
Due to the presence of small number of control
parameters, ease to implementation, its simplicity and

efficiency, ABC has widely used to solve many
optimization problems [8,9,10].

Even though the original ABC algorithm achieved
succesful results for the multimodal and multidimensional
basic problems, it was found to be less successful in
comparison with state-of-the-art algorithms for composite
and non-separable function as well as having slow
convergence rate [11]. Therefore, several improvements
of the original ABC algorithm were introduced over the
years. Unfortunately, experimental tests of the each
variant have been made under different conditions.
Moreover, we can’t see painstaking effort on the
fine-tuning of the algorithm parameters. Although some
indications on the performance of the different variants
may be obtained from the available results, they are not
fully conclusive (i) for what concerns the relative
performance of the variants and (ii) for what concerns the
relative importance of the introduced modifications. To
tackle this problem, in our previous comparison work, we
have studied on the performance of the well-known ABC
algorithms on a comprehensive set of benchmark
functions [12]. However, the performances obtained from
a set of benchmark functions may not guarantee a similar
performance on engineering optimization problems [13].
In addition to this, there is no enough study to show the
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performances of these ABC variants on engineering
optimization problems.

Aim of this study is to analyze the performance of
recent ABC variants, and to compare fairly them with
each other and state-of-the-art algorithms. In
experimental study, we have used three engineering
problems: parameter estimation for frequency-modulated
(FM) sound waves problem, spread spectrum radar poly
phase code design problem and economic power dispatch
problem. At first, we compared ABC algorithms by using
default parameter values suggested by the authors. Then
the comparison has done with the tuned parameter values
found by Iterated F-race, the automatic parameter
configuration tool [14,15]. Finally, we compared the
results of ABC variants with state-of-the-art algorithms to
see the real position of ABC algorithms in the literature.

2 Artificial Bee Colony (ABC) Algorithm

The ABC algorithm, was proposed by [6], is a SI-based
optimization algorithm inspired by foraging behaviors of
honeybees. There are three types of honeybees in the
ABC algorithm: employed, onlooker and scout bees.
Employed bees are responsible to calculate nectar
amounts of the food sources and the number of employed
bees is equal to the number of the food sources at the
foraging area. Onlooker bees are responsible to choose
the food sources which have good nectar amounts and the
number of onlooker bees is equal to the number of
employed bees. Scout bees are responsible to discover
new food sources. Employed bee becomes a scout, when
its food source has been abandoned and this food source
is replaced with the new one found by the scout bee.

Possible solution of an optimization problem is
represented by the position of a food source. The higher
of the nectar amount of the food sources the better
solution of the optimization problem. So the quality of the
solution is represented by the nectar amount and its name
is fitness value in the ABC algorithm. First, an initial
population which contains SN (number of food sources)
solutions is generated randomly according to following
equation:

xi, j = xmin
j +ϕi, j(x

max
j − xmin

j ) (1)

whereϕi, j is a uniform random number in [0, 1] for
dimensionj and food sourcei, xmin

j is the minimum value
of the search range,xmax

j is the maximum limit of the
search range on dimensionj. At this time,limit parameter
is also initialized for each food source. It is used for when
a food source should be abandoned. Each solutionxi
(i = 1,2,3, . . . ,SN) is an n-dimensional vector and has
fitness value. In the ABC algorithm, the fitness value
( f itnessi) is calculated by the following equation:

f itnessi =

{ 1
1+ fi

, fi≥0,

1+abs( fi), fi<0 (2)

where fi is the objective value of food sourcei. After
the initialization of the population, employed bees take
place and visit the food sources. They search better food
sources according to the equation:

vi, j = xi, j +ϕi, j(xi, j − xk, j), i 6= k (3)

wherek andi can take values of (1,2,3, . . . ,SN), j is a
randomly selected dimension (j = 1,2,3, . . . ,D), ϕi, j is a
uniform random number in [-1, 1],xi, j and xk, j are the
position of the reference food sourcei and a randomly
selected food sourcek in dimensionj, respectively. If the
new food source is better than the old one, it is replaced
with the old one. After the employed bees stage, onlooker
bees take place to evaluate the food sources which are
found by the employed bees. They visit a food source and
if the food source has a higher nectar amount, it is
selected by the onlooker bees according to the selection
probability which is determined by any food sourcei as
follows:

pi =
f itnessi

∑SN
n=1 f itnessn

(4)

According to the behaviors of the employed and
onlooker bees, it can be seen that they search for good
food sources and focus to the good solutions area to carry
out the exploitation. To escape local optimums, algorithm
must explore new solutions. If employer and onlooker
bees cannot improve the location of a food source atlimit
times, this food source has been exhausted. This means
that food source is not good enough to explore new
solutions. At this time, scout bees take place and try to
find a new food source instead of exhausted food source
according to the equation 1. Therefore, scout bees are
responsible to explore the whole search space for
avoiding local optimums.

3 Considered Variants of Artificial Bee
Colony Algortitmh

Exploration and exploitation are the two important
concepts in the evolutionary based algorithms.
Exploration is the ability to search whole search space to
find good new solutions [16]. Exploitation is the ability to
find the optimum solution and focus to the search space
which includes the optimum solution. These two concepts
must be balanced for good convergence speed and to
avoid local optimums. In ABC algorithm, employed and
onlooker bees ensure exploitation, scout bees ensure
exploration. In order to improve the convergence
characteristics and to avoid to get stuck on the local
optimums, some new variants of the original ABC
algorithm have been proposed by several researchers [17].
In the following sub-sections, brief explanations of most
recent ABC algorithms are given.
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3.1 Gbest-guided Artificial Bee Colony
(GbABC) Algorithm

The starting point of the GbABC [18,19] is, the solution
search equation of the original ABC algorithm is good at
exploration but poor at exploitation. Therefore, in order to
improve the exploitation of the original ABC, the search
of the new candidate solutions is guided by using the
information of the global best solution. The solution
search equation described by equation (3) of the original
ABC is modified as follows:

vi, j = xi, j +ϕi, j(xi, j −xk, j)+ψi j (xgbest, j −xk, j), i 6= k (5)

where xgbest, j is the jth element of the global best
solution. ψi, j is a uniform random number in [0, C],
where C is a nonnegative constant which is used for
balancing the exploration and exploitation of the
candidate solution search. IfC takes 0, the equation
returns to the original equation. Exploitation of the
solution search equation (5) can be increased by
increasing the value ofC. But, very big values of theC
can decrease the exploration. Consequently, very big
values of theC parameter are not used for balancing the
exploitation and exploration.

3.2 Gbest Distance-guided Artificial Bee
Colony (GbdABC) Algorithm

Diwold et al. have proposed two different versions for the
ABC algorithm [19]. The first one was aforementioned
GbABC and the second one was GbdABC algorithm.
GbdABC uses the same search equation in equation (5)
but the neighbor food source in mutation function,xk, is
not selected randomly. That means each neighbor has not
the same selection probability. Instead, each neighbour
food source has a probability to select related to the
selected reference food source as follows:

pk =
(1/dist(loci, lock))

∑SN
n=1,n6=i(1/dist(loci, loc j))

(6)

wherepk is the probability of neighborxk, locx is the
location of a food source and distance between two food
source locations, locx and locy, is denoted by
dist(locx, locy). The underlying idea of this modification
is to prefer nearer neighbors because it is probable to find
better locations by searching between two good solutions
which are probably close to each other in many type of
optimization functions [19].

3.3 Best-so-far Selection Artificial Bee Colony
(BABC) Algorithm

In BABC, three major changes were proposed to improve
the exploitation and exploration of the original ABC

algorithm. These changes are; best-so-far method,
adjustable search radius and an objective-value-based
comparison method. In order to enhance the exploitation,
efficiency of the onlooker bees is improved by using
best-so-far method. So, convergence speed of the
best-so-far ABC is accelerated [20]. The solution search
equation of the original ABC is modified as shown in
following equation:

vi,d = xi, j + fb(ϕi, j(xi j − xgbest, j)) (7)

where j is a randomly selected dimension,ϕi, j is a
uniform random number [-1, 1],fb is the fitness value of
the best-so-far solution,xgbest, j is the best-so-far food
solution in selected dimensionj. The important change is
that the values in all dimensions of each food source are
updated at each iteration.

To avoid local optimums, global search ability is
introduced for the scout bees. If the solution gets stuck on
the local optimum, the scout bee will generate a new food
source by using:

vi, j = xi, j +ϕi, j(wmax− (itrcurrent/itrmax)(wmax−wmin))
(8)

wherevi, j is a new feasible solution of a scout bee that is
modified from the current position of an abandoned food
source,xi, j , wmax and wmin are the control parameters
which define the minimum and maximum percentage of
scout bee position adjustment, respectively.itrcurrent
presents the current iteration executed so far, anditrmax is
for maximum iteration number for the algorithm [20].
According to the equation (8), founded food sources by
the scout bee are far from optimal solution in early
iterations but in later iterations it will converge to the
optimal solution closely.

Third change is objective value comparison. In the
original ABC, greedy selection is used by using the
fitness values of the solutions. In the BABC, greedy
selection is applied by using directly objective values of
the solutions.

3.4 Modified Artificial Bee Colony (MABC)
Algorithm

The idea behind the modified ABC algorithm is that the
convergence speed of the original ABC algorithm is good
at basic functions but poor at hybrid functions. In order to
improve convergence speed, two major changes have
been applied to the original ABC algorithm [16]. The first
one is the modification rate (MR) parameter that
determines how many parameters to be modified in search
equation (3). The second change is scaling factor (SF)
parameter that controls step size of the perturbation
adaptively. In the solution search equation of the original
ABC (3), the value of the random numberϕi, j is between
[-1,1] but in the modified ABC its value is between [−SF,
SF]. Bigger values ofSF can increase the convergence
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speed but decrease the exploitation. For this reason its
value can be determined adaptively according to the
Rechenberg’s 1/5 mutation rule in the modified ABC
algorithm.

3.5 Improved Artificial Bee Colony (IABC)
Algorithm

In Improved ABC [21], new initialization approach and a
novel search mechanism have been introduced to improve
the convergence speed of the original ABC algorithm.
The first change is initialization of the ABC algorithm
which affects directly the convergence speed and also the
quality of the final solution. Instead of the random
initialization approach of the original ABC algorithm, a
novel initialization approach which employs chaotic
systems and the opposition-based learning method is used
in the improved ABC algorithm.

The second change is a new search mechanism which
includes two improved solution search equations namely
ABC/best/1(9) and ABC/rand/1(10) which are defined
below. WhileABC/best/1uses the information of the best
solution in the current population,ABC/rand/1explores
the population:

vi,m = xbest,m+ϕi, j(xi,m− xk1,m) (9)

vi,m = xk1,m+ϕi, j(xi,m− xk2,m) (10)

wherek1 andk2 are two different random food source
indexes andm is a positive integer that controls how many
parameters to be changed.

To use the advantages of the above equations and
avoid the shortages of them, two solution search
equations are hybridized according to the parameterp
which is the selecting probability of the two equations.
So, the exploitation and the exploration of the improved
ABC algorithm are balanced.

3.6 Chaotic Artificial Bee Colony (CABC)
Algorithm

In order to improve the convergence speed of the original
ABC algorithm and to prevent the original ABC to get
stuck on local solutions, the chaotic ABC algorithm was
proposed which uses chaotic maps [22]. Instead of the
random number sequences, chaotic sequences are used
because of their spread-spectrum characteristic,
non-periodic, complex temporal behavior, and ergodic
properties.

In the original ABC algorithm, the value of the limit
parameter and the generated random numbers do not
change at the new iterations. This situation reduces the
convergence speed of the original ABC algorithm. So, to
take advantages of the chaotic sequences, they are used at

the initialization and scout bees stages instead of the
random numbers. At the initialization stage, chaotic
sequences are used for generating the initial food sources.
In the original ABC algorithm, an employed bee becomes
a scout bee when its food source cannot be improved after
limit trails. However, afterlimit/2 trail employed bee
becomes a scout bee in the chaotic ABC algorithm and
this time scout bee searches new foods by using chaotic
search. The chaotic maps;Logistic, Circle, Gauss, Henon,
Sinusoidal, Sinus, Tentare used for chaotic search in the
chaotic ABC algorithm.

3.7 Rosenbrock Artificial Bee Colony (RABC)
Algorithm

RABC [23] algorithm was proposed for accurate
numerical optimization that combines Rosenbrock’s
rotational direction method (RM) with an ABC algorithm.
RM is used as a local exploitation tool for the original
ABC algorithm. Fitness calculation mechanism is
changed of the original ABC algorithm; rank-based
fitness transformation is adopted:

f itnessi = 2−SP+
2(SP−1)(r i −1)

SN−1
(11)

whereSP∈ [1.0, 2.0] is the selection pressure andr i is
the rank of the solution (food source)i in entire population.

In the RABC algorithm, after the initialization stage,
the population is evaluated and the best solution is
memorized. Then the step size of the modified RM
procedures is calculated according to the following
equation:

δ j = 0.1
∑m

i=1(x
′
i,j − xgbest, j)

m
(12)

whereδ j is step size of thejth dimension,x′i is theith

solution after ranking andm is the number of solutions
selected to calculate the step size. After that, the modified
RM procedure is called for some iterations with the best
solution and the new best solution is obtained. After the
ranking, the solution in the middle position is changed
with the best-so-far solution. Then the exploration phase
is executed by the ABC algorithm.

3.8 Incremental Artificial Bee Colony (IncABC)
Algorithm

IncABC proposed incremental population size and
hybridization with local search procedures to tackle
large-scale benchmark functions [24]. These changes
have been applied by the authors to particle swarm
optimization (PSO) and ant colony optimization (ACO)
before and the results have shown that performances of
these algorithms were improved. Therefore, growing
population is applied to the ABC algorithm, provided by
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a control parameterg. This means, a new food source is
added to the population in everyg iterations until a
maximum number of food sources (SNmax) is reached.
IncABC algorithm applies local search procedures to the
ABC algorithm. Powell’s conjugate directions set [25]
and Lin-Yu Tseng’s Mtsls1 [26] methods are hybridized
as a local search procedure in the incremental ABC
algorithm.

At every g iterations, new food source is added
according to the (13) which uses the information of the
best-so-far solution.

Xnew, j = xnew, j +ϕi, j(xgbest, j − xnew, j) (13)

where xnew, j is the randomly generated new food
source location according to (1), Xnew, j is the updated
location of the new food source.

Besides, some extra modifications have been applied
to the original ABC algorithm. At the employed bee
stage, new food source is generated around the best-so-far
solution instead of the randomly selected food source. At
the scout bee stage, similar replacement mechanism is
used which adds a new control parameterRf actor to
control the how much the new food source will be closer
to the best-so-far food source, is used with the following
equation:

vi, j = xgbest, j +R f actor(xgbest, j − xnew, j) (14)

4 Problem Definitions

In this paper, we aim to compare ABC variants with three
engineering optimization problems. The descriptions of
these three problems are given in the following
subsections.

4.1 Parameter Estimation for
Frequency-modulated (FM) Sound Waves
Problem

Sound waves are expressed with a six dimensional
equations. The problem is to generate a sound (expressed
in (15)) similar to target sound (expressed in (16)). The
parameters of an FM synthesizer are going to be
optimized and this is a six dimensional optimization
problem. The equations of the sound waves are:

y(t) = a1.sin(w1.t.θ +a2.sin(w2.t.θ )
+a3.sin(w3.t.θ )))

(15)

y0(t) = (1.0).sin((5.0).t.θ − (1.5).sin((4.8).t.θ )
+(2.0).sin((4.9).t.θ ))) (16)

whereθ is 2π/100 and the range of parameters is [-6.4,
6.35]. The fitness function of the problem is as follows:

f (X) =
100

∑
i=0

(y(t)− y0(t))
2 (17)

The detailed description of this problem can be found
in [27].

4.2 Spread Spectrum Radar Poly Phase Code
Design Problem

Radar systems and spread spectrum communication
systems uses a group of vertical poly phase coded signals
which are designed specially in order to improve the
system performance. These poly phase coded signals can
be formulated as a nonlinear multivariable 20
dimensional optimization problem. The problem can be
expressed as follows:

globalmin
x∈X

f (x) = max{φ1(x), ...,φ2m(x)} (18)

X = {(x1, ...xn) ∈ Rn|0≤ xi ≤ 2π , j = 1, ...,n},
wherem= 2n−1 and

φ2i−1(x) =
n

∑
j=1

cos(
j

∑
k=|2i− j−1|+1

xk), i = 1, ...,n (19)

φ2i(x) = 0.5+
n

∑
j=i+1

cos(
j

∑
k=|2i− j |+1

xk), i = 1, ...,n−1 (20)

φm+i(x) =−φi(x), i = 1, ...,m (21)

The purpose is minimizing the maximum value of
coded signals asφ at the above equations. The detailed
description of this engineering problem can be found in
[27].

4.3 Economic Power Dispatch Problem

The economic power dispatch problems are about
satisfying power demands of a place by combination of
power generation units output while minimizing the total
fuel cost. The objective function,f, for the problem is
formulated as follows:

min f =
n

∑
i=1

Fi(Pi) (22)

whereFi is the total fuel cost for theith generator (in
$/h) and Pi is the power of generatori (in MW). Each
generator unit has inequality constraint expressed as each
unit should be laid between maximum and minimum
limits.

The fuel cost of the generator uniti without valve point
effect is presented in polynomial function [13],

Fi(Pi) = aiP
2
i +biPi + ci (23)
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whereai, bi andci are cost coefficients of generatori.
In literature, there are some test functions for the
problem. In this paper, we only used 30-generators and
six dimensional optimization problem. The detailed
description of the problem and the test function can be
found in [28].

5 Empirical Analysis

Performances of Artificial Bee Colony algorithms are
analyzed in engineering optimization problems in this
section. Section 5.1 summarizes the experimental
procedure, while section 5.2 and section 5.3 discuss the
results obtained from three test problems with using
default parameters and tuned parameters respectively.
Finally, in section 5.4, the comparison of best performing
ABC variants with the contemporary algorithms is
represented.

5.1 Experimental Setup

The main objective of the empirical analysis conducted
for the purposes of this article is to determine the best
performing ABC variant within all considered ABC
algorithms. The real position of the best ABC variants
compared with state-of-the-art algorithms will be
determined as a second objective.

To do fair comparison, we performed two sets of
experiments. First, we ran ABC algorithms using their
default parameter settings. Then the parameters of each
algorithm were tuned, and tuned version of ABC
algorithms were ran on three engineering optimization
problems. These problems were tackled at IEEE
Conference on Evolutionary Competition (CEC) 2011
competition as well. Therefore, all experiments were
conducted under the same conditions with CEC 2011
competition. All ABC variants were run 25 times for each
problem. At the end, mean, median and the best objective
function values are listed after executing the algorithms
for 50000, 100000 and 150000 function evaluations
(FEs). Experiments are run under C++ on Linux with a
Quad-Core machine running @2.40 GHz with 4 GB of
RAM.

5.2 Comparison of ABC Variants with Default
Parameter Values

Parameter values are the important key for the
performances of the ABC algorithms. For this reason,
developers of the algorithms aim to find good parameter
values for the problems by running their algorithms
several times on the problems with different parameter
values.

In our study, the parameter values of the ABC
algorithms were taken from the original papers and these
values are set as the default values of the parameters
(Table 1). We ran each ABC algorithm on the three
engineering problems with these values. Then, we
compared the results of each ABC algorithm and
presented the results in Table3. The best values are
shown in bold faces.

As shown in the Table3, for the first problem, IABC
is giving best performance when considering best and
mean results. For median values, RABC algorithm is
better than other variants. For the second problem, RABC
algorithm is the best for all of the values (best, median,
mean). Also IABC algorithm reaches the optimum value
for the second problem. For the third problem, BABC
algorithm gives the best performance for all of the values
(best, median, mean). It is interesting that BABC
algorithm is the worst for other problems.

5.3 Comparison of ABC Variants with Tuned
Parameter Values

As in other meta-heuristics, parameter values affect
directly the performance of ABC algorithms. In general
parameters should be tuned according to the problem
instances. Therefore, for fair comparison, we have
obtained the tuned parameters of the algorithms by an
offline automatic parameter tuning algorithm, Iterated
F-Race [15].

F-Race algorithm is based on finding best parameter
set after trying randomly generated candidate parameter
values to the problem instances and eliminating the worst
ones by statistical tests like as a race. In iterated F-Race,
the procedure of F-Race is iteratively continues in a loop
and each loop a new candidate sets are generated around
the best candidate parameters found in previous step.

In our case, we have used three problems as the
instances for Iterated F-Race. We have used default
parameters of Iterated F-Race suggested by the authors.
The tuned parameters are determined after obtaining the
best results from the 5 independent runs of Iterated
F-Race for each algorithm. The tuned parameter values
are listed in Table2.

After parameter tuning task, the algorithms were
compared with using tuned parameters. The comparison
results are shown in Table4. The results, which are better
than the results obtained by default parameters, are in
bold faces. Table4 indicates that the performances of the
all considered algorithms were improved after parameter
tuning almost all cases.

5.4 Comparison with the Contemporary
Algorithms

Finally, best performing ABC variants were compared
with the contemporary algorithms which have tackled to
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Table 1: Default parameter values of ABC algorithms

ABC BABC CABC GbABC GbdABC IABC IncABC MABC RABC

SN 62 100 10 40 15 25 8 10 25
limit 1 1 1 1 1 1 1.2 1 1

C - - - 1.5 1 - - - -
wMin - 0.2 - - - - - - -
wMax - 1 - - - - - - -

SF - - - - - - - 1 -
m - - - - - 1*D - 0.4 -
p - - - - - 0.25 - - -
K - - - - - 200 - - -

rItr - - - - - - - - 15
NC - - - - - - - - 5
SP - - - - - - - - 1.5

Rf actor - - - - - - 10−6 - -
SNmax - - - - - - 13 - -
growth - - - - - - 8 - -

Table 2: Tuned parameter values of ABC algorithms

ABC BABC CABC GbABC GbdABC IABC IncABC MABC RABC

SN 54 21 88 44 82 23 9 62 66
limit 2.85 2.4 1.96 3.34 1.93 0.52 0.95 2.03 1.77

C - - - 1.46 1.54 - - - -
wMin - 0.37 - - - - - - -
wMax - 0.64 - - - - - - -

SF - - - - - - - 0.09 -
m - - - - - 0.58*D - 0.33 -
p - - - - - 0.01 - - -
K - - 90 - - 76 - - -

rItr - - - - - - - - 71
NC - - - - - - - - 2
SP - - - - - - - - 1.88

Rf actor - - - - - - 10−8 - -
SNmax - - - - - - 76 - -
growth - - - - - - 2 - -

same engineering optimization problems. For the
Problem I and II, these algorithms are the competitors of
CEC 2011 conference. For the Problem III, the recent
algorithms which are designed for economic power
dispatch are selected for comparison. The results are
listed in Table5, Table6, and Table7. The results show
that ABC variants give competitive results compared with
the other algorithms at the literature. BABC algorithm
also gives the best performance in comparison with the
state-of-the-art algorithms for the problem III.

6 Conclusion

The main objective of this paper was to determine the
best performing ABC variants in engineering
optimization problems. For this purpose, nine ABC

algorithms were compared on three test problems taken
from CEC 2011 competition. The comparison test was
done using default parameters and tuned parameters to
determine real performances of the algorithms.

The test results showed that there is no best
performing algorithm for all considered test problems.
IABC algorithm has better results for the first problem but
worst results for the third problem. Just the opposite,
BABC algorithm has good results for the third problem
but very poor results for first and second problem.
Besides, RABC algorithm is the best for second problem.
Therefore, these results show that there is not a best
algorithm for all problems. As in discussed in [49], the
differences in search equations, that effect
exploitation/exploration behavior, and local search
strategies are the main reason of these results. IABC
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Table 3: Comparison results of ABC algorithms with default parameter values

Problem I Problem II Problem III

Algorithm FEs Best Median Mean Best Median Mean Best Median Mean

ABC 50000 1.58E-03 8.54E-02 8.98E-01 7.30E-01 8.76E-01 8.69E-01 9.249E+02 9.249E+02 9.249E+02
100000 8.03E-04 1.66E-02 5.16E-01 6.51E-01 8.42E-01 8.38E-01 9.249E+02 9.249E+02 9.249E+02
150000 8.03E-04 1.44E-02 3.14E-01 6.46E-01 8.14E-01 8.10E-01 9.249E+02 9.249E+02 9.249E+02

BABC 50000 8.20E-02 4.07E+00 3.63E+00 6.12E-01 8.29E-01 8.27E-01 9.232E+02 9.232E+02 9.233E+02
100000 2.76E-02 2.97E+00 2.77E+00 5.92E-01 8.03E-01 7.76E-01 9.231E+02 9.232E+02 9.233E+02
150000 1.04E-02 2.82E+00 2.20E+00 5.91E-01 7.76E-01 7.58E-01 9.231E+02 9.232E+02 9.232E+02

CABC 50000 1.48E-02 7.11E-01 9.26E-01 6.98E-01 8.81E-01 8.65E-01 9.249E+02 9.250E+02 9.250E+02
100000 1.48E-02 3.85E-01 6.86E-01 6.98E-01 8.28E-01 8.27E-01 9.249E+02 9.250E+02 9.250E+02
150000 1.48E-02 2.59E-01 3.24E-01 6.98E-01 8.00E-01 8.03E-01 9.249E+02 9.249E+02 9.249E+02

GbABC 50000 2.12E-03 2.18E-02 7.49E-01 6.73E-01 8.53E-01 8.55E-01 9.249E+02 9.249E+02 9.249E+02
100000 2.00E-05 1.16E-02 2.67E-01 6.65E-01 8.11E-01 7.97E-01 9.249E+02 9.249E+02 9.249E+02
150000 2.00E-05 3.57E-03 1.20E-01 6.65E-01 7.78E-01 7.71E-01 9.249E+02 9.249E+02 9.249E+02

GbdABC 50000 5.73E-04 1.16E-02 5.89E-01 6.84E-01 8.47E-01 8.36E-01 9.249E+02 9.249E+02 9.249E+02
100000 1.48E-04 5.37E-03 1.18E-01 6.59E-01 7.83E-01 7.94E-01 9.249E+02 9.249E+02 9.249E+02
150000 8.60E-05 1.12E-03 1.14E-01 6.59E-01 7.78E-01 7.80E-01 9.249E+02 9.249E+02 9.249E+02

IABC 50000 6.70E-07 4.07E+00 4.34E+00 5.00E-01 7.11E-01 7.12E-01 9.249E+02 9.249E+02 9.249E+02
100000 0.00E+00 3.36E+00 3.37E+00 5.00E-01 7.08E-01 6.94E-01 9.249E+02 9.249E+02 9.249E+02
150000 0.00E+00 2.91E+00 2.70E+00 5.00E-01 6.98E-01 6.81E-01 9.249E+02 9.249E+02 9.249E+02

IncABC 50000 1.21E-05 4.06E+00 3.23E+00 5.59E-01 9.07E-018.88E-01 9.249E+02 9.249E+02 9.249E+02
100000 1.14E-05 4.06E+00 3.23E+00 5.58E-01 9.06E-01 8.85E-01 9.249E+02 9.249E+02 9.249E+02
150000 1.09E-05 3.93E+00 3.22E+00 5.57E-01 9.05E-01 8.83E-01 9.249E+02 9.249E+02 9.249E+02

MABC 50000 3.34E-02 5.77E-01 9.38E-01 6.90E-01 9.21E-01 9.17E-01 9.249E+02 9.249E+02 9.249E+02
100000 3.34E-02 3.26E-01 4.90E-01 6.90E-01 8.97E-01 8.90E-01 9.249E+02 9.249E+02 9.249E+02
150000 3.34E-02 2.53E-01 3.84E-01 6.87E-01 8.77E-01 8.64E-01 9.249E+02 9.249E+02 9.249E+02

RABC 50000 2.78E-06 1.15E-03 9.93E-01 5.00E-01 6.67E-01 6.76E-01 9.249E+02 9.249E+02 9.249E+02
100000 2.20E-06 5.49E-04 6.81E-01 5.00E-01 6.06E-01 6.21E-01 9.249E+02 9.249E+02 9.249E+02
150000 1.79E-06 3.71E-04 6.74E-01 5.00E-01 5.83E-01 5.94E-01 9.249E+02 9.249E+02 9.249E+02

Table 5: Comparison of the best ABC variants and CEC 2011
Algorithms for the problem I

Algorithm Best Mean

BABC 9.13E-04 2.88E+00
RABC 3.70E-06 1.12E+00
IABC 0.00E+00 1.59E+00

GA-MPC [29] 0.00E+00 0.00E+00
SAMODE [30] 0.00E+00 1.21E+00

ENSML DE [31] 0.00E+00 1.78E+00
EA-DE-MA [32] 1.17E-11 2.09E+00
Adap.DE171 [33] 0.00E+00 3.85E+00

ED-DE [34] 0.00E+00 0.00E+00
OXCoDE [35] 0.00E+00 4.40E+00
DE-RHC [36] 5.02E-20 8.91E+00

RGA [37] 1.00E-04 9.29E+00
CDASA [38] 3.28E-18 1.01E+00

mSBX-GA [39] 6.79E-05 4.20E+00
DE-ACr [40] 7.21E-15 8.77E-01
WI DE [41] 0.00E+00 3.28E+00

Mod DE LS [42] 3.00E-06 2.60E-05

algorithm modifies more than one dimension in the search
equation that leads to a performance improvement for low

Table 6: Comparison of the best ABC variants and CEC 2011
Algorithms for the problem II

Algorithm Best Mean

BABC 6.58E-01 7.39E-01
RABC 5.00E-01 5.03E-01
IABC 5.00E-01 5.57E-01

GA-MPC [29] 5.00E-01 7.48E-01
SAMODE [30] 5.00E-01 8.17E-01

ENSML DE [31] 1.28E+00 1.42E+00
EA-DE-MA [32] 5.00E-01 5.28E-01
Adap.DE171 [33] 5.00E-01 5.00E-01

ED-DE [34] 5.19E-01 1.19E+00
OXCoDE [35] 5.00E-01 6.84E-01
DE-RHC [36] 9.51E-01 1.15E+00

RGA [37] 6.77E-01 9.65E-01
CDASA [38] 6.76E-01 9.39E-01

mSBX-GA [39] 6.79E-01 9.84E-01
DE-ACr [40] 6.66E-01 8.85E-01
WI DE [41] 5.00E-01 6.56E-01

Mod DE LS [42] 7.23E-01 8.33E-01

dimensional hard problems. For high dimensional
functions, the performance of ABC decreases
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Table 4: Comparison results of ABC algorithms with default parameter values

Problem I Problem II Problem III

Algorithm FEs Best Median Mean Best Median Mean Best Median Mean

ABC 50000 2.72E-04 2.30E-02 6.89E-01 5.63E-01 8.31E-01 8.18E-01 9.249E+02 9.249E+02 9.249E+02
100000 7.59E-05 9.41E-03 6.11E-01 5.62E-01 8.19E-01 8.00E-01 9.249E+029.249E+02 9.249E+02
150000 7.59E-05 6.54E-03 4.65E-01 5.62E-01 7.82E-01 7.80E-01 9.249E+029.249E+02 9.249E+02

BABC 50000 2.21E-01 4.28E+00 4.30E+00 6.96E-017.90E-01 7.94E-01 9.232E+02 9.232E+029.237E+02
100000 1.84E-02 3.70E+00 3.21E+00 6.76E-01 7.35E-01 7.60E-01 9.232E+02 9.232E+02 9.237E+02
150000 9.13E-04 3.58E+00 2.88E+00 6.58E-01 7.19E-01 7.39E-01 9.232E+02 9.232E+02 9.237E+02

CABC 50000 5.59E-04 3.98E-02 1.10E+00 7.87E-01 8.77E-01 8.77E-01 9.249E+02 9.249E+02 9.249E+02
100000 5.46E-04 3.42E-02 6.34E-01 7.33E-01 8.52E-01 8.51E-01 9.249E+02 9.249E+02 9.249E+02
150000 1.69E-04 1.09E-02 5.83E-01 7.33E-01 8.00E-01 8.39E-019.249E+02 9.249E+02 9.249E+02

GbABC 50000 1.28E-04 1.09E-02 5.17E-01 6.46E-018.67E-01 8.52E-01 9.249E+02 9.249E+02 9.249E+02
100000 1.28E-04 6.57E-03 4.54E-01 6.46E-01 8.41E-01 8.31E-01 9.249E+02 9.249E+02 9.249E+02
150000 1.28E-04 3.28E-03 4.51E-01 6.42E-01 8.36E-01 8.24E-01 9.249E+02 9.249E+02 9.249E+02

GbdABC 50000 4.48E-05 4.86E-03 2.94E-01 7.11E-01 8.49E-01 8.40E-01 9.249E+02 9.249E+02 9.249E+02
100000 3.52E-05 7.60E-04 1.31E-01 6.14E-01 8.21E-01 7.97E-01 9.249E+02 9.249E+02 9.249E+02
150000 3.33E-05 6.71E-04 1.16E-01 6.14E-01 7.98E-01 7.88E-01 9.249E+02 9.249E+02 9.249E+02

IABC 50000 2.23E-13 3.57E+00 3.21E+00 5.00E-01 5.32E-01 5.89E-01 9.249E+02 9.249E+02 9.249E+02
100000 0.00E+00 2.91E+00 2.37E+00 5.00E-01 5.01E-01 5.63E-01 9.249E+02 9.249E+02 9.249E+02
150000 0.00E+00 2.74E+00 1.59E+00 5.00E-01 5.00E-01 5.57E-01 9.249E+02 9.249E+02 9.249E+02

IncABC 50000 3.46E-05 2.75E+00 1.63E+00 6.18E-01 8.13E-01 8.06E-01 9.249E+02 9.249E+02 9.249E+02
100000 3.42E-05 2.75E+00 1.62E+00 5.48E-01 7.92E-01 7.64E-01 9.249E+029.249E+02 9.249E+02
150000 3.40E-05 2.75E+00 1.62E+00 5.44E-01 7.84E-01 7.56E-01 9.249E+029.249E+02 9.249E+02

MABC 50000 3.66E-04 3.19E-03 1.06E+00 5.93E-01 7.22E-01 7.19E-01 9.249E+02 9.249E+02 9.249E+02
100000 3.66E-04 1.16E-03 9.26E-01 5.00E-01 6.77E-01 6.58E-01 9.249E+029.249E+02 9.249E+02
150000 2.63E-04 1.08E-03 7.38E-01 5.00E-01 6.17E-01 6.27E-01 9.249E+02 9.249E+029.249E+02

RABC 50000 8.47E-05 6.89E-04 1.26E+00 5.00E-01 5.00E-01 5.21E-01 9.249E+02 9.249E+02 9.249E+02
100000 6.81E-06 6.80E-04 1.13E+005.00E-01 5.00E-01 5.03E-01 9.249E+02 9.249E+02 9.249E+02
150000 3.70E-06 5.99E-04 1.12E+005.00E-01 5.00E-01 5.03E-01 9.249E+02 9.249E+02 9.249E+02

Table 7: Comparison of the best ABC variants and other
algorithms for the problem III

Algorithm Best Mean

BABC 9.232E+02 9.237E+02
RABC 9.249E+02 9.249E+02
IABC 9.249E+02 9.249E+02

MSG-HS [28] 9.256E+02 9.269E+02
GA [43] 9.960E+02 -

GA-APO [43] 9.960E+02 -
NSOA [43] 9.849E+02 -

DE [44] 9.630E+02 -
PSO [45] 9.258E+02 9.264E+02
EP [46] 9.555E+02 9.577E+02
IEP [8] 9.536E+02 9.565E+02
TS [47] 9.565E+02 9.585E+02

TS-SA [46] 9.596E+02 9.629E+02
ITS [46] 9.691E+02 9.771E+02

SADE ALM [ 48] 9.440E+02 9.548E+02

dramatically when modifying too many dimensions in
search equation. In BABC, all dimensions are replaced by
a guidence of the same dimension. This approach is very
effective for some problems such as third problem or

basic test problems but in most cases, a decrease of the
performance can be observed on several engineering
problems and shifted-rotated test functions. For RABC
case, local search strategy effect on search behavior can
be observed. Local search used in RABC is effective for
the second problem but is not good for other problems.
This behavior can be seen in benchmark functions
presented in [12].
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[44] S. Özyön, C. Yaşar, H. Temurtaş, Differential evolution
algorithm approach to nonconvex economic power dispatch
problems with valve point effect, 6th International Advanced
Technologies Symposium (IATS’11), 181-186, (2011).

[45] S. Özyön, C. Yaşar, H. Temurtaş, Particle swarm
optimization algorithm for the solution of nonconvex
economic dispatch problem with valve point effect,
Electrical and Electronics Engineering (ELECO), 2011 7th
International Conference on, 101-105, (2011).

[46] W. Ongsakul and T. Tantimaporn, Optimal Power Flow
by Improved Evolutionary Programming, Electric Power
Components and Systems34(1), 79-95, (2006).

[47] M.A. Abido, Optimal Power Flow Using Tabu Search
Algorithm, Electric Power Components and Systems30(5),
469-483, (2002).

[48] C. Thitithamrongchai and B. Eua-arporn, Self-adaptive
differential evolution based optimal power flow for units with
non-smooth fuel cost functions, J. Electrical Systems3(2),
88-99, (2007).

[49] D. Aydin, Composite artificial bee colony algorithms: From
component-based analysis to high-performing algorithms,
Applied Soft Computing32, 266-285, (2015).

Bekir Afşar is a
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