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Hermenegilda Macìa1,∗, Valent́ın Valero1, Fernando Cuartero1, M. Carmen Ruiz1 and Igor V. Tarasyuk2
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Abstract: Stochastic Petri Box Calculus (sPBC) with immediate multiactions is an algebraic model for the description of concurrent
systems, whose activities have a random time associated (governed by an exponential distribution) or they are immediate (no time
is required for their execution). One of the main features ofsPBC, in contrast to other classical stochastic process algebras, is that it
considers multiactions instead of single actions. Furthermore, a description in this version of sPBC has a natural and easy translation into
Generalized Stochastic Petri Nets (GSPNs). In this paper weshow how the calculus can be applied to information science phenomena,
specifically, to model and analyze a Video Conference System. We will see that this particular kind of system can be easilydescribed
and analyzed within sPBC with immediate multiactions. Thiscase study illustrates the power and flexibility of our stochastic process
algebra in the area of control and systems engineering.
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1 Introduction and Related Work

Algebraic process calculi are a well-known formal model
for specification of computer and communication systems
and for analysis of their behaviour. In such process
algebras (PAs), systems and processes are specified by
process expressions, and verification of their properties is
accomplished at a syntactic level via equivalences,
axioms and inference rules. In the last decades, stochastic
extensions of PAs were proposed and widely used.
Stochastic process algebras (SPAs) do not just specify
actions that can occur (qualitative features), like ordinary
PAs, but they associate with actions quantitative
parameters (quantitative characteristics), such as ratesor
probabilities, related to the distributions of the random
action delays or durations. Some well-known SPAs are
Markovian TImed Processes for Performance evaluation
(MTIPP) [10], Performance Evaluation Process Algebra
(PEPA) [11] and Extended Markovian Process Algebra
(EMPA) [3].

PAs specify concurrent systems in a compositional
way via an expressive formal syntax. On the other hand,
Petri nets (PNs) provide a graphical representation of
such systems and capture explicit asynchrony in their
behaviour. To combine the advantages of both models, a

semantics of algebraic formulas in terms of PNs is
defined.

Petri Box Calculus (PBC) [4,5,6,7] is a flexible and
expressive PA, based on Calculus of Communicating
Systems (CCS) [20] and intended for the description and
analysis of concurrent systems. Its goal was to propose a
compositional semantics for high-level constructs of
concurrent programming languages in terms of
elementary PNs. Formulas of PBC are combined not just
from single (visible or invisible) actions and variables,
like in CCS, but from multisets of elementary actions and
their conjugates, called multiactions. The empty multiset
of actions is interpreted as the silent multiaction
specifying an invisible activity. The operators of PBC
have been selected in order to obtain an easy and natural
translation into Petri nets, thus combining the advantages
of both the algebraic and net formal models. PBC has a
step operational semantics in terms of labeled transition
systems, constructed by the rules of the classical
structural operational semantics (SOS). The denotational
semantics of PBC was defined via a subclass of PNs,
equipped with an interface and considered up to
isomorphism, called Petri boxes (shortly, boxes).

To specify systems with time constraints, such as
real-time systems, deterministic (fixed) or
nondeterministic (interval) time delays are used. In this
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way, PBC was enriched by adding time constraints that
permit to represent time-dependent and time-critical
systems within the calculus.

A time extension of PBC with a nondeterministic time
model, called time Petri box calculus (tPBC), was
proposed in [13]. In tPBC, timing information was added
by associating time intervals (the earliest and the latest
firing time) with instantaneousactions (i.e. not with
multiactions). Its denotational semantics was defined in
terms of a subclass of labeled time PNs (tPNs) [19],
called time Petri boxes (ct-boxes). tPBC has a step time
operational semantics in terms of labeled transition
systems.

Another time enrichment of PBC, called Timed Petri
box calculus (TPBC), was defined in [18], and it
accommodates a deterministic model of time. In contrast
to tPBC, multiactions of TPBC are not instantaneous, but
have time durations. Additionally, in TPBC there exist no
“illegal” multiaction occurrences, unlike tPBC. The
complexity of “illegal” occurrences mechanism was one
of the main intentions to construct TPBC, though this
calculus appeared to be more complex than tPBC. The
denotational semantics of TPBC was defined in terms of a
subclass of labeled Timed Petri nets (TPNs) [22], called
Timed Petri boxes (T-boxes). TPBC has a step timed
operational semantics in terms of labeled transition
systems.

The state space of the systems with deterministic or
nondeterministic delays often differs drastically from that
of the timeless systems, hence, the analysis results for
untimed systems may be non-applicable to the time ones.
Therefore, stochastic delays are considered, which are the
random variables with (discrete or continuous)
probability distributions. In particular, PBC was extended
by including stochastic time, with the goal to describe a
wider class of systems, such as fault-tolerance ones.

A stochastic extension of PBC, called stochastic Petri
box calculus (sPBC), was proposed in [14,15,16]. In
sPBC, delays of stochastic multiactions follow (negative)
exponential distribution. Each multiaction is equipped
with a rate that is a parameter of the corresponding
exponential distribution. The instantaneous execution ofa
stochastic multiaction is possible only after the stochastic
time delay assigned. The calculus has an interleaving
operational semantics in terms of transition systems,
labeled with multiactions and their rates. Its denotational
semantics was defined in terms of a subclass of labeled
continuous time stochastic PNs (CTSPNs) [1], called
stochastic Petri boxes (s-boxes). In sPBC, performance is
evaluated by analyzing the underlying stochastic process,
which is a continuous time Markov chain (CTMC).

In [17], sPBC was enriched with immediate
multiactions, which have a deterministic zero time delay.
Immediate multiactions improve the specification
capabilities: for instance, they can model instantaneous
probabilistic choices and activities whose duration is
insignificant compared to those of others. This allows us
to get a simpler and clearer representation of the systems.

sPBC with immediate multiactions has an interleaving
operational semantics via transition systems, labeled with
stochastic or immediate multiactions, together with their
rates or probabilities, respectively. The denotational
semantics of sPBC with immediate multiactions was
defined via a subclass of labeled generalized stochastic
PNs (GSPNs) [2], called generalized stochastic Petri
boxes (gs-boxes). The performance analysis in sPBC with
immediate multiactions is accomplished via the
underlying semi-Markov chains (SMCs).

In [24], a discrete time stochastic extension dtsPBC of
PBC was presented. In dtsPBC, the residence time in the
process states is geometrically distributed. A step
operational semantics of dtsPBC was constructed via
labeled probabilistic transition systems. Its denotational
semantics was defined in terms of a subclass of labeled
discrete time stochastic PNs (DTSPNs) [21], called
discrete time stochastic Petri boxes (dts-boxes). The
underlying stochastic process, which is a discrete time
Markov chain (DTMC), was constructed and investigated
to analyze performance in dtsPBC.

In [25], discrete time stochastic and immediate PBC
(dtsiPBC) was introduced, as an extension of dtsPBC by
adding immediate multiactions. Thus, dtsiPBC possess
concurrent discrete time semantics with geometrically
distributed (like in dtsPBC) or zero sojourn time in the
states of algebraic processes. dtsiPBC has a step
operational semantics, based on labeled probabilistic
transition systems. The denotational semantics of the
calculus is defined via a subclass of labeled discrete time
stochastic and immediate PNs (DTSIPNs), called
dtsi-boxes. To evaluate performance in dtsiPBC, the
underlying stochastic process is studied, which is an
SMC. In addition, the alternative solution methods were
developed, based on the underlying discrete time Markov
chain (DTMC) and its reduction (RDTMC) by
eliminating vanishing states (those with zero residence
time).

In this paper, we focus on sPBC with immediate
multiactions [17] (we shall simply call it sPBC from now
on) that is a (semi-)Markovian extension of PBC. If we
compare sPBC with the classical SPAs MTIPP, PEPA and
EMPA, the first main difference between them comes
from PBC, since sPBC is based on this calculus: all
algebraic operations and a notion of multiaction are
inherited from PBC. The second main difference is
immediate multiactions, since there are no instantaneous
activities in MTIPP and PEPA, although immediate
actions in EMPA partly resemble immediate multiactions.
Thus, unlike the classical SPAs, in sPBC, we have
multiactions, whose constituent elementary actions model
low-level concurrent activities in a natural way. More
elaborated stochastic multiactions are suitable for
modelling durational computations and delayed work
while immediate multiactions are useful to specify logical
conditions, probabilistic branching and urgent events.
Each stochastic multiaction is specified by the pair
<α, r>, whereα denotes a (classical) multiaction of PBC
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andr ∈ R+ is the parameter of the associated exponential
distribution. Each immediate multiaction is specified by
the pair <α,∞l ,p>, where α is again a (classical)
multiaction of PBC andl ∈ N is the priority of this
immediate multiaction whilep ∈ R+ is its weight,
interpreted in the same way as in GSPNs.

In addition, sPBC has the sequence operator, in
contrast to the prefix operator in the classical SPAs.
Relabeling in sPBC is analogous to that in EMPA, but it is
additionally extended to conjugated actions. Restriction
in sPBC differs from hiding in PEPA and functional
abstraction in EMPA, where hidden actions are labeled
with a symbol of “silent” actionτ. For a given expression
of sPBC, the restriction by an action means that any
process behaviour containing the action or its conjugate is
not allowed. sPBC has no recursion operation or recursive
definitions, but it includes the iteration operator, which
allows us to specify in a clear and easy way infinite
repetitive and looping behaviours.

Furthermore, unlike the other classical SPAs, the
synchronization operator in sPBC is separated from the
parallel one, thereby system design is considerably
simplified. The synchronization over an elementary action
in sPBC collects all the pairs consisting of this elementary
action and its conjugate, which are contained in the
multiactions from the synchronized activities. This
operation produces some new activities whose first
element is the union of the multiactions, excepting all the
pairs of conjugate actions that have been synchronized.
The second element of the activity resulting from a
synchronization between stochastic multiactions is the
conflict rate, taking the slowest one, and it is inspired by
the apparent rateof PEPA. On the other hand, we only
allow two immediate multiactions to synchronize if they
have the same level of priority, and in this case, the
second element of the resulting activity is the joint
weight, obtained as the product of the weights of the
immediate multiactions involved in the synchronization.

An important advantage of sPBC is its simple and
natural Petri net semantics, as it occurs in plain PBC, but
obviously extended with continuous stochastic and
deterministically zero timing. The denotational semantics
of sPBC is defined by taking as semantic domain a
special class of GSPNs, called gs-boxes. Each immediate
multiaction will correspond to an immediate transition in
a gs-box, and each stochastic multiaction will correspond
to a stochastic transition in a gs-box. As in GSPNs, in
case of conflict, immediate multiactions are executed
before stochastic multiactions. Furthermore, when two or
more immediate multiactions are simultaneously
activated, the one with the highest priority will be
executed. If some of such immediate multiactions have
the same (highest) priority level, then we apply the
branching policy, according to their weights. If we have
only stochastic multiactions (transitions) activated, then
we will adopt therace policy. Thus, whenever two or
more stochastic multiactions (transitions) are executable

(while any immediate ones are not), the fastest stochastic
multiaction will be executed.

We have preferred sPBC over dtsPBC and dtsiPBC,
since for our design and analysis purposes, a formalism
with a continuous stochastic time and a GSPNs-based
denotational semantics, which is also supported by a
computer tool, appeared to be more appropriate. Thus, the
main distinctive features of sPBC that we consider useful
for the intended system modelling are: immediate and
stochastic multiactions, suitable and practical algebraic
operators, continuous stochastic time and Petri net
semantics.

The main goal of this paper is therefore to show how
sPBC can be used as a tool to model and analyze some
information science phenomena, where time, concurrency
and synchronization play a crucial role. We have chosen
the Video Conference System (VCS) case study, based on
the model from [9], because it allows us to illustrate the
power, flexibility and ease to use of this algebra thanks to
its specific features. The users communicate to each other
in VCS via terminals that establish connections using
switches, each initiating a separate conference. First, we
consider the case of 2 terminals (users) and 1 switch
(conference) and we calculate the corresponding
performance measures. We then extend VCS ton
terminals and 1 or 3 switches. Finally, we model 3
terminals and 1 special new switch, with 1 caller user and
2 callee ports. In this case study, we have immediate and
stochastic multiactions that are combined with the
operators of sPBC: sequence, choice, parallel,
synchronization, restriction, scoping and iteration.

The paper is structured as follows. Section 2 describes
the syntax of sPBC and its semantics, by using both the
operational and denotational approaches. The Video
Conference System application example is presented in
Section 3. The concluding Section 4 contains a summary
of the results obtained and some hints for our future work.

2 Stochastic Petri Box Calculus

sPBC (stochastic Petri Box Calculus) is defined as a
stochastic extension of PBC, taking both stochastic and
immediate multiactions, but keeping the compositional
nature of PBC. In the following subsections we present
the syntax of the language, its operational semantics, and
the denotational semantics defined by using the so-calles
gs-boxes.

2.1 Syntax and overview of the language

From now onwards we will use the following notation:

– A will be a countable set of action names, as in CCS
(Calculus of Communicating Systems) [20], for each
a∈A , there existŝa∈A , such thata 6= â and̂̂a= a.
Lettersa,b, â, ... will be used to denote the elements of
A .
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– L = B(A ) will represent the set of all finite
multisets of elements inA , calledmultiactions.

– The alphabet ofα ∈ L is defined by:A(α) = {a ∈
A |α(a)> 0}.

– We will consider relabelling functionsf : A → A ,
which are the functions that preserve conjugates:
∀a∈A , f (â) = f̂ (a) (we will only consider bijective
relabelling functions).

– SL = {< α, r > |α ∈ L , r ∈ R+} represents the
set of all stochastic multiactions. We allow the same
multiactionα ∈L to have different stochastic rates in
the same specification.

– IL= {< α,∞l ,p > |α ∈ L , l ∈ N, p ∈ R+}
represents the set of all immediate multiactions. We
also allow the same multiactionα ∈L to have some
different immediate parameters in the same
specification.

– Finally, we define the synchronization of multiactions
α⊕a β =de f γ , as follows:

γ(b) =
{

α(b)+β (b)−1 if b= a ∨ b= â
α(b)+β (b) otherwise

which is only applicable when eithera∈ A(α) andâ∈
A(β ), or â∈ A(α) anda∈ A(β ).
As in plain PBC, static s-expressions are used to

describe the structure of a concurrent system, while
dynamic s-expressions describe the current state of a
system (they correspond to unmarked and marked Petri
nets, respectively). As a system evolves by executing
multiactions, the dynamic s-expression describing its
current state changes. This is captured by means of both
overbars and underbars that decorate the static
s-expression. Static s-expressions of sPBC are those
defined by the following BNF expression:

E ::= <α, r̃> | E;E | E✷E | E‖E | E[ f ] |
E sya| E rsa | [a : E] | [E ∗ E ∗ E]

where r̃ ∈ R+ ∪ Inf , and Inf = {∞l ,p | l ∈ N, p ∈ R+}.
Thus, if r̃ = r ∈ R+ then< α, r >∈ SL is a stochastic
multiaction, which corresponds to the simultaneous
execution of all the actions inα, after a delay that follows
a negative exponential distribution with parameterr. On
the other hand, if̃r = ∞l ,p ∈ Inf , then< α,∞l ,p > is an
immediate multiaction, wherel is its level of priority, and
p is its weight, and it corresponds to the simultaneous
execution of all the actions inα, but no time elapses in
this case.

For the remaining operators of sPBC we have the
following intuitive meaning: E1 ; E2 stands for the
sequential execution ofE1 andE2, E1✷E2 is the choice
between its argument,E[ f ] is the relabelling operator, and
E rs a denotes the restriction over the single actiona,
which generates a process that cannot execute any
stochastic or immediate multiactions<α, r̃ > with either
a∈ A(α) or â∈ A(α). The parallel operator,‖, represents
the (independent) parallel execution of both components,
where as in PBC there is no any synchronization

embedded in the operator. Synchronization is introduced
by the operatorsy, thus the processE syabehaves in the
same way asE, but it can also execute those new
multiactions generated by the synchronization of a pair of
actions (a, â). [a : E] is the derived operatorscoping
defined by [a : E] = (E sya) rsa. Finally, the iteration
operator [E1 ∗ E2 ∗ E3] represents the process that
performsE1, then executes several (possibly 0) timesE2,
and finishes after performingE3. In this paper we do not
consider the recursion operator, because it requires a
more sophisticated treatment, as it occurred in plain PBC.
However, we do consider the iteration operator, and some
infinite behaviours can be described if we adequately
combine this operator with the restriction operator.

We will denote static s-expressions by the following
letters: E, F, Ei , . . ., and the set of static
s-expressions byStatExpr. In sPBC without immediate
multiactions we need to restrict the syntax of sPBC to
those terms for which no parallel behaviour appears at the
highest level in a choice or in the two last arguments of an
iteration [14]. Terms fulfilling this restriction are called
regular terms, and the operational semantics is only
defined for them. This restriction is introduced in order to
guarantee that the moment in which the rule for the
synchronization is applied does not affect the value that
we obtain for the rate of the stochastic multiaction
obtained as result of a synchronization (see Examples that
illustrate the need of this restriction in [14,16]). Thus, the
following static s-expression:

E = (<a, r1> ‖<a, r2>)✷ <b, r3>

is not regular, and consequently, it is not allowed in sPBC
without immediate multiactions.

Then, we define regularity as follows. Regular static s-
expressions are those static s-expressionsE of sPBC that
are constructed as follows:

D ::= <α, r̃ > |D;E |Dsya|Drsa|D[ f ] | [a : D] |
D✷D | [D ∗ D ∗ D ]

E ::= <α, r̃ > |E;E |E sya|E rsa|E[ f ] | [a : E] |
E‖E |D✷D | [E ∗ D ∗ D ]

wherer̃ ∈ R+∪ Inf .

2.2 Operational Semantics of sPBC

The operational semantics of sPBC is defined on dynamic
s-expressionsG, which are obtained from the static
s-expressions, by annotating them with either upper or
lower bars, which indicate theactive componentsof the
system at the current instant of time. Thus, we have:

G ::= E |E |G; E |E ; G|G✷E |E✷G|
G‖G|G[ f ] |Gsya|Grsa|[a : G] |
[G ∗ E ∗ E] | [E ∗ G ∗ E] | [E ∗ E ∗ G]
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whereE denotes the initial state ofE, andE its final state.
We will say that a dynamic s-expression is regular if the
underlying static s-expression is regular. The set of
regular dynamic s-expressions will be denoted by
ReDynExpr.

The operational semantics of sPBC is defined in a
very similar way to that of PBC [4,5,7]. We firstly
present the inaction rules in Table1. They are introduced
to establish the active components of a regular dynamic
s-expression and by means of them we capture the
equivalence of regular dynamic s-expressions.

Table 1: Inaction rules

E;F
/0
−→ E;F E;F

/0
−→ E;F

E;F
/0
−→ E;F

E✷F
/0
−→ E✷F E✷F

/0
−→ E✷F

E✷F
/0
−→ E✷F E✷F

/0
−→ E✷F

∀op∈ {; ,✷}, G
/0
−→G′

GopE
/0
−→G′ opE

∀op∈ {; ,✷}, G
/0
−→G′

E opG
/0
−→ EopG′

E‖F
/0
−→ E‖F E‖F

/0
−→ E‖F

G1
/0
−→G′1

G1‖G2
/0
−→G′1‖G2

G2
/0
−→G′2

G1‖G2
/0
−→G1‖G

′
2

E[ f ]
/0
−→ E[ f ] E[ f ]

/0
−→ E[ f ]

G
/0
−→G′

G[ f ]
/0
−→G′[ f ]

E sya
/0
−→ E sya E rsa

/0
−→ E rsa

Ersa
/0
−→ E rsa

∀op∈ {sy, rs}, G
/0
−→G′

Gopa
/0
−→G′ opa

[E∗F ∗E′ ]
/0
−→ [E∗F ∗E′ ] [E∗F ∗E′ ]

/0
−→ [E∗ F ∗E′ ]

[E∗F ∗E′ ]
/0
−→ [E∗F ∗E′ ] [E∗F ∗E′ ]

/0
−→ [E∗F ∗ E′ ]

[E∗F ∗E′ ]
/0
−→ [E∗F ∗E′ ] G

/0
−→G′

[G∗E ∗F ]
/0
−→ [G′ ∗E ∗F ]

G
/0
−→G′

[E∗G∗F ]
/0
−→ [E ∗G′ ∗F ]

G
/0
−→G′

[E∗F ∗G]
/0
−→ [E ∗F ∗G′ ]

Definition 1. We say that a regular dynamic s-expression
G is operativeif it is not possible to apply any inaction
rule to it. For instance,<α, r > ✷ < β ,s> is operative,
but not <α, r >✷<β ,s>. We will denote the set of all
the operative regular dynamic s-expressions by
OpReDynExpr.

We say that an operative s-expressionG is immediate
if it has over-barred some immediate multiactions. For
instance,<α,∞l ,p> ✷ < β ,s> is immediate. We will
denote the set of all the immediate operative regular
dynamic s-expressions byIOpReDynExpr. ✷

Definition 2. We define the structural equivalence relation
for regular dynamic s-expressions as follows:

≡ =de f (
/0
−→∪

/0
←−)∗

As usual, we denote the equivalence class ofG with
respect to≡ by [G]≡. ✷

Before defining the rules of the operational semantics
we need to introduce some definitions. First, we need to
detect all the possible sets of bags of multiactions that can
potentially be executed concurrently by the corresponding
operative regular dynamic s-expressionG, which will be
called BC(G). Next, we define thelevel of its class,
level([G]≡), and finally we definenow(G), which gives us
the specific bags of stochastic or immediate multiactions
that can be executed fromG.

Definition 3. We define the sets of bags of multiactions
that can potentially be executed concurrently from an
operative dynamic regular s-expression as follows:

BC : OpReDynExpr−→P(B(SL ∪ IL ))

–If G ∈ OpReDynExpris final, i.e. G = E, we take
BC(G) = /0.

–If G ∈ OpReDynExpris not final, we distinguish the
following cases:

–BC(<α, r̃ >) = {{<α, r̃ >}}
–If γ ∈ BC(G), then:

γ ∈ BC(G;E), γ ∈ BC(E;G), γ ∈ BC(E✷G),
γ ∈ BC(G✷E), γ ∈ BC(Grsa) (when
a, â 6∈ A(γ)), γ ∈ BC(Gsya),
f (γ) ∈ BC(G[ f ]),γ ∈ BC([G ∗ E ∗ F ]) , γ ∈
BC([E ∗G∗F]) , γ ∈ BC([E ∗F ∗G]) .

–•If γ1 ∈ BC(G), thenγ1 ∈ BC(G‖H).
•If γ2 ∈ BC(H), thenγ2 ∈ BC(G‖H).
•If γ1 ∈ BC(G), γ2 ∈ BC(H), then

γ1+ γ2 ∈ BC(G‖H).
–γ∈BC(Gsya), and<α, r̃1>, <β , r̃2> ∈ γ, (with
either < α, r̃1 > 6= < β , r̃2 > or they are two
different instances of the same stochastic or
immediate multiaction inγ), with a ∈ A(α), and
â∈ A(β ), then:γ ′ ∈ BC(Gsya), where:γ ′ = (γ +
{<α⊕a β , R̃>}) \ {<α, r̃1>,<β , r̃2>}

and R̃ ∈ R+ ∪ Inf is the parameter of the new
multiaction, to be later defined (see rulesSy2and
Sy2i in Table3).

✷

Now, level of[G]≡ is defined as the maximum level of
priority of the immediate multiactions that can potentially
be executed from an operative in[G]≡, and−1 when there
is no executable immediate multiaction from an operative
in [G]≡. Formally:

Definition 4. Let G ∈ OpReDynExpr, then we define
level([G]≡) as follows: level([G]≡) =
{max{l | {<α,∞l ,p>} ∈ BC(Gi), Gi ∈ [G]≡ }.
By convention,level([G]≡) =−1 if the previous set is
empty. ✷

Stochastic multiactions are only executable from an
operative regular expressionG when level([G]≡) = −1.
Furthermore, an immediate multiaction<α,∞l ,p> is
only executable fromG if level([G]≡) = l . This is
captured by the following functionnow.
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Definition 5. We define the set of stochastic or immediate
multiactions than can be executed from an operative
dynamic s-expressions as follows:
now: OpReDynExpr−→P(B(SL ))∪P(B(IL ))
where

now(G) = {γ ∈ BC(G) | level([G]≡) =−1 ∨
(level([G]≡) = l ∈ N ∧ ∀ <α,∞l ′,p >∈ γ , l = l ′ )}

✷

The following example illustrates the above
definitions.

Example 1.Let us considerG=

<{a},∞2,2 >‖<{â, â},∞2,3 >‖<{b},∞1,2 >‖<{c},0.5>

Then:

BC(G) =
{{<{a},∞2,2 >},{<{â, â},∞2,3>},{<{b},∞1,2 >},
{<{c},0.5>},{<{a},∞2,2 >, <{â, â},∞2,3>},
{<{a},∞2,2 >, <{b},∞1,2 >},
{<{a},∞2,2 >, <{c},0.5>},
{<{â, â},∞2,3 >, <{b},∞1,2 >},
{<{â, â},∞2,3 >, <{c},0.5>} ,
{<{b},∞1,2 >, <{c},0.5>},
{<{a},∞2,2 >, <{â, â},∞2,3>, <{b},∞1,2 >},
{<{â, â},∞2,3 >, <{b},∞1,2 >, <{c},0.5>},
{<{a},∞2,2 >, <{b},∞1,2 >, <{c},0.5>},
{<{a},∞2,2 >, <{â, â},∞2,3>, <{c},0.5>},
{<{a},∞2,2 >, <{â, â},∞2,3>,
<{b},∞1,2>, <{c},0.5>}},

level([G]≡) = 2, and
now(G) = {{< {a},∞2,2>} , {< {â, â},∞2,3>} ,

{< {a},∞2,2>, < {â, â},∞2,3>}}. ✷

We have two types of transitions:

– Stochastic transitions, which have the following form:

G
<α ,r>
−→ G′, whereG is regular and operative,r ∈ R+,

and{<α, r >} ∈ now(G).

– Immediate transitions, which have the following

form: G
<α ,∞l ,p>
−→ G′, whereG is regular, operative and

immediate, and{<α,∞l ,p>} ∈ now(G).

The rules defining the stochastic and immediate
transitions are presented in Table2, together with those
corresponding to the synchronization operator, which will
be described in detail later. We assume that all dynamic
s-expressions that appear on the left-hand sides of each
transition in the rules are regular and operative.

Let us now see the semantics of the synchronization.
We have to distinguish two cases:

– Synchronization between two immediate
multiactions: They must have the same priority, the
new multiaction has this priority, and its weight is the
product of the weights of the arguments. The purpose
of this definition is to benefit the synchronization with
respect to the single execution of the arguments.
Notice that, in fact, this only occurs when the weights
of the arguments are greater than 1, which is the usual
case.

– Synchronization between two stochastic
multiactions: In this case, in order to define the rates
for the stochastic multiactions generated by a
synchronization, we need to identify the situations of
conflict (or competition, but we prefer the term
conflict since we only need to consider those
stochastic multiactions with exactly the same
multiaction). Concretely, for each operative regular
dynamic s-expressionG we define the multiset of
associated conflicts for every instance of a stochastic
multiaction <α, r >i (r ∈ R+) executable fromG,
which we will denote byConflict(G,<α, r >i). We
only need to consider those stochastic multiactions in
conflict executing the same multiactionα. We will
denote this multiset of conflicts by
Conflict(G,< α, r >i), although we will omit the
subindexi if it is clear which instance of<α, r > we
are considering.

Definition 6. We define the following partial function:

Conflict: OpReDynExpr×SL −→B(SL )

which for each instancei of the stochastic multiaction
<α, r > executable fromG, ({< α, r >} ∈ now(G)),
gives us the multiset of stochastic multiactions<α, r ′>
in conflict with it. We define the function in a structural
way:

1. Conflict(<α, r >,<α, r >) = {<α, r >}

2. If <α, r > is executable from G, and
C= Conflict(G,<α, r >), then:

(a) Conflict(G;E,<α, r >) =
Conflict(E;G,<α, r >) =C,

(b) Conflict(G‖H,<α, r >) =
Conflict(H‖G,<α, r >) =C,

(c) If a, â 6∈ A(α), then
Conflict(Grsa,<α, r >) =C,

(d) For any bijective functionf ,
Conflict(G[ f ],< f (α), r >) = f (C),

(e) For the choice operator we need to distinguish the
following two cases:

- If G 6≡ E :Conflict(G✷F,<α, r >) =
Conflict(F ✷G,<α, r >) =C
- If G≡ E : Conflict(G✷F,<α, r >) =
Conflict(F ✷G,<α, r >) =
C+{|<α, r j > |∃Hi ∈OpReDynExpr,

Hi ≡ F and Hi
<α ,r j>
−→ H ′i |}

(f) For the iteration operator we have:

–Conflict( [G∗E∗F],<α, r >) = C
–For the two last arguments of an iteration, we also
need to consider two cases:
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Table 2: Rules defining the stochastic and immediate transitions (I).

(B)
<α, r̃ >

<α ,r̃>
−→ <α, r̃ >

r̃ ∈ R+∪ Inf

(S1) G
<α ,r̃>
−→ G′

G;F
<α ,r̃>
−→ G′;F

r̃ ∈ R+∪ Inf

(S2) G
<α ,r̃>
−→ G′

E;G
<α ,r̃>
−→ E;G′

r̃ ∈ R+∪ Inf

(Rs) G
<α ,r̃>
−→ G′

Grsa
<α ,r̃>
−→ G′ rsa

a, â 6∈ A(α), r̃ ∈ R+∪ Inf

(Re) G
<α ,r̃>
−→ G′

G[ f ]
< f (α),r̃>
−→ G′[ f ]

r̃ ∈ R+∪ Inf

(C1) G
<α ,r>
−→ G′

G‖H
<α ,r>
−→ G′‖H

if level([H]≡) =−1, r ∈ R+

(C1i) G
<α ,∞l ,p>
−→ G′

G‖H
<α ,∞l ,p>
−→ G′‖H

if level([H]≡)≤ l

(C2) G
<α ,r>
−→ G′

H‖G
<α ,r>
−→ H‖G′

if level([H]≡) =−1, r ∈ R+

(C2i) G
<α ,∞l ,p>
−→ G′

H‖G
<α ,∞l ,p>
−→ H‖G′

if level([H]≡)≤ l

(E1) G
<α ,r>
−→ G′

G✷F
<α ,r>
−→ G′✷F

if G 6≡ E ∨ (G≡ E ∧ level([F]≡) =−1), r ∈ R+

(E1i) G
<α ,∞l ,p>
−→ G′

G✷F
<α ,∞l ,p>
−→ G′✷F

if G 6≡ E ∨ (G≡ E ∧ level([F]≡)≤ l )

(E2) G
<α ,r>
−→ G′

E✷G
<α ,r>
−→ E✷G′

if G 6≡ F ∨ (G≡ F ∧ level([E]≡) =−1), r ∈ R+

(E2i) G
<α ,∞l ,p>
−→ G′

E✷G
<α ,∞l ,p>
−→ E✷G′

if G 6≡ F ∨ (G≡ F ∧ level([E]≡)≤ l )

(It1) G
<α ,r̃>
−→ G′

[G∗E ∗F ]
<α ,r̃>
−→ [G′ ∗E ∗F ]

r̃ ∈ R+∪ Inf

(It2) G
<α ,r>
−→ G′

[E∗G∗F ]
<α ,r>
−→ [E∗G′ ∗F ]

if G 6≡ E1 ∨ (G≡ E1 ∧ level([F ]≡) =−1), r ∈ R+

(It2i) G
<α ,∞l ,p>
−→ G′

[E∗G∗F ]
<α ,∞l ,p>
−→ [E∗G′ ∗F ]

if G 6≡ E1 ∨ (G≡ E1 ∧ level([F]≡)≤ l )

(It3) G
<α ,r>
−→ G′

[E∗F ∗G]
<α ,r>
−→ [E∗F ∗G′]

if G 6≡ E1 ∨ (G≡ E1 ∧ level([F ]≡) =−1), r ∈ R+

(It3i) G
<α ,∞l ,p>
−→ G′

[E∗F ∗G]
<α ,∞l ,p>
−→ [E∗F ∗G′]

if G 6≡ E1 ∨ (G≡ E1 ∧ level([F]≡)≤ l )

- If G 6≡ E′ :
Conflict( [E ∗G∗F],<α, r >) =

Conflict( [E ∗F ∗G],<α, r >) =C
- If G≡ E′ :
Conflict( [E ∗G∗F],<α, r >) =

Conflict( [E ∗F ∗G],<α, r >) =
C+ {|<α, r j > |∃Hi ∈OpReDynExpr,

Hi ≡ F and Hi
<α ,r j>
−→ H ′i |}

(g) Conflict(Gsya,<α, r >) =C,

3. Let
{<α1, r1>, <α2, r2>} ∈ BC(Gsya), a∈ A(α1),

â∈ A(α2) and Gsya
<α1⊕aα2,R12>−→ G′ sya

obtained by applying ruleSy2. Then:
Conflict(Gsya,<α1⊕a α2 , R12>) =
{|<α1⊕a α2 , Ri j > |<α1, r i >∈C1,
<α2, r j > ∈C2, where
Ri j =

r i
cr(Gsya,<α1,r1>)

r j
cr(Gsya,<α2,r2>) ·

min
i=1,2
{cr(Gsya,<αi, r i >)} |}, taking:

Ci = Conflict(Gsya,< αi , r i >), i = 1,2, and
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cr(G,< α, r >i) is the so-calledconflict rate for G
and<α, r >i , defined by:

cr(G,<α, r >i) = ∑
<α ,r j>∈Conflict(G,<α ,r>i)

r j ·n j

wheren j is the number of instances of< α, r j > in
Conflict(G,<α, r >i).

✷

The rules for the synchronization are shown in Table
3. The first rule captures thatGsya preserves the
behaviour of G. Sy2i captures the aforementioned
behaviour of the synchronization between two immediate
multiactions. With respect toSy2, the synchronization
between two stochastic multiactions, we take as rate of
the new stochastic multiaction the minimum of the
conflict rates of each one, weighted by a factor, which
implies that, for instance, the following s-expressions are
equivalent:

E =<α, r1>✷<α, r2>✷ . . .✷<α, rn>

F =<α,
n

∑
i=1

r i >

According to the race policy that we apply to resolve the
choice, we obtain for both dynamic s-expressions,E and
F , the same delay for executing the multiactionα :

r =
n

∑
i=1

r i . As a consequence, the CTMCs obtained from

the transition systems ofE and F would be the same
and, thus, we may consider that both s-expressions are
stochastically equivalent. In order to capture that we have
defined the rate of synchronization of two stochastic
multiactions by using the so-calledconflict rates [16],
which are based on theapparent ratesof PEPA [11], but
with the advantage that, using the conflict rates, we obtain
a static translation to Petri Nets, while in PEPA the rates
of the transitions of the corresponding Stochastic Petri
Net can be marking dependent [23].

The following examples illustrate the above definitions
and rules.

Example 2.Let us consider:

G= (< {a},1>‖< {â, â},2>‖(< {a},3>✷

< {a},4>)sya) ; <b,∞2,3>,

H = (< {a},1>‖< {â, â},2>‖(< {a},3>✷

< {a},4>)sya) ; <b,∞2,3>,

G is a regular operative dynamic s-expression that has no
executable immediate multiactions, and
{< {â, â},2>,< {a},3>}∈ now(G).
Furthermore,
Conflict(G,< {â, â},2>) = {< {â, â},2>}
andcr(G,< {â, â},2>) = 2,
Conflict(G,< {a},3>) = {< {a},3>,< {a},4>}
andcr(G,< {a},3>) = 7.

Then, by applying ruleSy2, we obtain the following

transition: G
<{â},R>
−→ H , whereR= 3

7 min{2,7}= 6
7.

✷

Example 3.Let us consider:

G=< {a},∞2,2>‖< {â, â},∞2,3>‖< {b},∞1,2>‖

< {c},0.5>sya

Then, {< {a},∞2,2 >,< {â, â},∞2,3 >} ∈ now(G) By
applying rule Sy2i we obtain the following transition
(synchronizing < {a},∞2,2 > and < {â, â},∞2,3 >):

G
<{â},∞2,6>
−→ H, where

H =< {a},∞2,2>‖< {â, â},∞2,3>‖< {b},∞1,2>‖

< {c},0.5>sya
✷

Definition 7. For eachG∈ ReDynExpr, we define the set
of all dynamic s-expressions that can be derived from
[G]≡ , as follows:

[G〉= {G}∪{H ′ ∈ ReDynExpr|
∃< α1, r̃1 >,. . . ,< αn, r̃n >∈SL ∪ IL

withG≡G′
<α1,r̃1>−→ G1≡G′1

<α2,r̃2>−→ . . . Gn−1

≡G′n−1
<αn,r̃n>
−→ H ≡ H ′}

✷

We proved in [15,17] that, givenG ∈ OpReDynExpr
and γ ∈ now(G), every serialization ofγ is executable
from G. Moreover, by means of these serializations we
always obtain equivalent (with respect to≡) dynamic
s-expressions. On the other hand, for all the possible
transition sequences obtained by serialization ofγ, if we
can apply ruleSy2 a number of times in order to reach a
single stochastic or immediate multiaction, then we
conclude that it does not matter in which order ruleSy2
or Sy2i has been applied, neither the transition sequence
used, i.e. we will always obtain the same stochastic or
immediate multiaction. In fact, if we synchronize
stochastic multiactions, the rate of this new stochastic
multiaction is the minimum of the conflict rates of the
stochastic multiactions that have been synchronized,
weighted by a factor, which is the product of the ratios of
each rate with respect of its corresponding conflict rate.
The same occurs when the multiactions inγ are all
immediate, since they all have the same priority, and the
application ofSy2i generates a new multiaction that has
the same priority, and its weight is the product of the
weights of the arguments.

Definition 8. We define the labelled (multi)
transition system of any regular dynamic s-expressionG
by ts(G) = (V,A,v0), where:

–V = {[H]≡ |H ∈ [G〉} is the set of states,
–v0 = [G]≡ is the initial state.
–A is the multiset of stochastic and immediate
transitions, given by:

A= {| ([H]≡,< α, r̃ >, [J]≡) |H ∈ [G〉 ∧ H
<α ,r̃>
−→ J |}
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Table 3: Rules for the synchronization operator.

(Sy1) G
<α ,r̃>
−→ H

Gsya
<α ,r̃>
−→ H sya

(Sy2) Let {<α1, r1>,<α2, r2>} ∈ now(Gsya), a∈ A(α1) , â∈ A(α2), then

Gsya
<α1,r1>
−→ G1sya(

/0
−→)∗ G∗1sya

<α2,r2>
−→ G12sya

Gsya
<α1⊕aα2 ,R>
−→ G12sya

where R= r1
cr(Gsya,<α1,r1>)

r2
cr(Gsya,<α2,r2>) · min

i=1,2
{cr(Gsya,<αi , r i >)}

(Sy2i) Let {<α1,∞l ,p1 >, <α2,∞l ,p2 >} ∈ now(Gsya), a∈ A(α1) , â∈ A(α2), then

Gsya
<α1,∞l ,p1>−→ G1sya(

/0
−→)∗ G∗1sya

<α2,∞l ,p2>−→ G12sya

Gsya
<α1⊕aα2 ,∞l ,p1·p2>−→ G12sya

In order to compute the number of different instances of
each transition([H]≡,<α, r̃ >, [J]≡) in A, we consider
equivalent all the different ways to derive the same
transition by considering the different serializations ofthe
sameγ, as we said before. Then, when we apply the rules
Sy2 or Sy2i, the generated stochastic or immediate
multiaction can be annotated with the concatenation of
the numbering of the stochastic or immediate
multiactions involved in the synchronization1, then when
we detect that a permutation of the numbering has been
already obtained by a previous application of the
corresponding rule,Sy2 or Sy2i , then that new stochastic
or immediate transition will not be considered.

✷

Notice that in the labelled transition system,ts(G), of
any regular dynamic s-expressionG, the distribution of
the sojourn time in an arbitrary node can be expressed as
a composition of negative exponential and
deterministically (with time zero) distributions,
depending on whether we have stochastic or immediate
multiactions executable from that state. Furthermore, if it
is possible to execute some immediate multiactions from
a node[H]≡, then we apply a branching policy according
to the weights of the involved immediate multiactions.
For instance, if we only have the following two transitions
from the node [H]≡: ([H]≡,<α,∞l ,p1 >, [J1]≡) and
([H]≡,<β ,∞l ,p2 >, [J2]≡) , then we have that
level([H]≡) = l and the probability to execute
<α,∞l ,p1 > is p1

p1+p2
. On the other hand, if

level([H]≡) =−1, we apply a race policy according to the
rates of the involved stochastic multiactions. For instance,
if we only have these two transitions from the node[H]≡:
([H]≡,<α, r1>, [J1]≡) and ([H]≡,<β , r2>, [J2]≡) ,
then the probability to execute<α, r1 > is r1

r1+r2
. In this

way, we can recognize the evolution ofts(G) as a
semi-Markov stochastic chain.

1 We can enumerate the multiactions from left to right, in the
same order as they appear in the syntax of the s-expression.

2.3 Denotational semantics

Now, we present a denotational semantics for
s-expressions, which is obtained by taking Generalized
Stochastic Petri Nets as plain boxes. With this semantics
we have a graphical representation of the system, in terms
of a GSPN. Therefore, the semantic objects that we use
will be called generalized stochastic Petri boxes or just
gs-boxes. Thus, thesegs-boxesare essentially GSPNs, but
they have the same structure as the Petri boxes of PBC.
These boxes of PBC are labelled Petri nets fulfilling some
restrictions. They are labelled Petri netsΣ = (S,T,W,λ ),
where (S,T,W) is a Petri net, andλ is a labelling
function, which labels places with values from{e, i,x},
representingentry places, internal places, andexit places,
respectively; and transitions with elements in
B(L ) ×L ; i.e. λ (t) is a relation which associates
elements ofL to bags of multiactions. By convention,
◦Σ andΣ◦ will denote the set ofe-labelledplaces and the
set ofx-labelledplaces, respectively. Given a places∈ S,
we will denote by •s (s•) the set of input (output)
transitions ofs (called preconditions and postconditions
of s, respectively). A similar notation is used for
preconditions and postconditions of transitions. Both can
be easily extended to sets of places and sets of transitions.
Then, our boxes are defined to be labelled simple nets
such that the following conditions hold:◦Σ 6= /0 6= Σ◦,
•( ◦Σ) = /0 = (Σ◦)• and ∀t ∈ T : •t 6= /0 6= t• . A box is
said to beplain when for everyt ∈ T, λ (t) is a constant
relation, i.e. an element ofL .

Definition 9. A plain generalized stochastic Petri box (or
just plain gs-box) is a tupleΣ = (S,T,W, λ ,µ), where
(S,T,W,λ ) is a plain box, and

µ : T −→ R+∪ Inf , with Inf = {∞l ,p|l ∈N, p∈R+}

If µ(t) ∈ R+ then t is a stochastic transition, with rate
µ(t); otherwise, if µ(t) = ∞l ,p ∈ Inf , then t is an
immediate transition, with priorityl and weightp. In this
way, (S,T,W,µ) is a GSPN. We will denote byTexp the
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set of stochastic transitions, and byTimm the set of
immediate transitions. ✷

A plain gs-box can be either marked or not2. We will
denote byMe the marking in which onlyentry placesare
marked (each one with a single token). On the other hand,
Mx will denote the marking in which onlyexit placesare
marked, each one with a single token. We say that a
markingM is k-safe if for alls∈ S, M(s) ≤ k, and we say
thatM is clean if it is not a proper multiset of◦Σ nor Σ◦.
Then, a marked plain gs-box is k-safe if all its reachable
markings arek-safe, and safe if all its reachable markings
are 1-safe, and clean if all its reachable markings are
clean.

2.3.1 Algebra of gs-boxes

For each stochastic transition that we can obtain
compositionally, we need to know which stochastic
transitions are in conflict with it, in order to compute its
conflict rates. Thus, we enumerate the multiactions
appearing from left to right in the syntax of regular static
s-expressions, and we preserve this enumeration in the
corresponding transitions of the Generalized Stochastic
Petri Net. Only with the synchronization operator we can
obtain some new transitions, which will be annotated with
the concatenation of the numeration of the involved
transitions.

Another decision that we must take is the selection of
the operator box that we will use for the iteration, since
we have two proposals in plain PBC for that purpose (see
[5]). One of them provides us with a 1-safe version (with
six transitions in the operator box), but there is also a
simpler version, which has only three transitions in the
operator box. In general, in PBC, with the latter version
we may generate 2-safe nets, which only occurs when a
parallel behaviour appears at the highest level of the body
of the iteration. Nevertheless, in our case, and due to the
syntactical restriction introduced, this particular case
cannot occur, so that the net obtained will be always
1-safe (for more details see [14]).

In order to define the semantic function that associates
a plain gs-box with every regular term of sPBC, we need
to consider the following functions:

η : T −→ N∗,
κ : Texp−→P(N∗),

µ : T −→R+∪ Inf

whereη(t) stands for the numeration oft according to
our criterion (enumeration from left to right, and
concatenation in case of synchronization),κ(t) is only
defined if t is a stochastic transition and it identifies the
set of stochastic transitions in conflict witht, andµ(t) is

2 A marked plain gs-box is essentially a kind of marked
labelled Generalized Stochastic Petri Net, whose behaviour
follows the classicalfiring rule of GSPNs.

the rate of the exponential distribution fort ∈ Texp, or, if
t ∈ Timm, thenµ(t) = ∞l ,p, i.e. an immediate multiaction
with level l and weightp.

These functions will be defined in a structural way, as
we construct the corresponding plain gs-box. For each
transition t ∈ Texp, we also define its corresponding
conflict rate, and we will denote it bycr(t):

cr(t) = ∑
η(t j )∈κ(t)

µ(t j)

Then, the structure of the net is obtained as in PBC,
combining both refinement and relabelling. Consequently,
the gs-boxes thus obtained will be safe and clean.
Therefore, the denotational semantics for regular static
s-expressions can be formally defined by the following
homomorphism:

Boxgs(<α, r̃ >i) = N<α ,r̃>i
,

Boxgs(op(E1, . . . ,En)) = Ωop(Boxgs(E1), . . . ,Boxgs(En)),

As previously mentioned, for every operator of sPBC, we
have to defineη , µ andκ .

–Boxgs(<α, r̃ >i) = N<α ,r̃>i =

e < α, r̃ >

ti

x

or e |
< α, r̃ >

ti
x

depending on whether it is stochastic or not, taking
η(ti) = i and µ(t) = r̃. If r̃ ∈ R+, then κ(ti) = {i},
otherwise, if̃r = ∞l ,p ∈ Inf thenκ is not defined.

For the remaining operators of sPBC the
corresponding operator gs-boxes are shown in Figure1,
where the relabelling functions
ρop⊆ (B(SL )×SL ) ∪ (B(IL )×IL ) that appear
in that figure are defined as follows:3

� ρid =
{({<α, r̃ >},<α, r̃ >) | <α, r̃ >∈SL ∪IL }
� ρ[ f ] =
{({<α, r̃ >},< f (α), r̃ >) | <α, r̃ >∈SL ∪IL }
� ρrsa =
{({<α, r̃ >},<α, r̃ >) | <α, r̃ >∈SL ∪IL ∧
a, â 6∈ A(α)}

Thus, the corresponding semantic functions are now
defined, taking Boxgs(Ei) =
(Si ,Ti ,Wi ,λi ,µi) as the plain gs-box corresponding toEi ,
and ηi and κi are functions for the enumeration and
conflict ofEi , i = 1,2,3.

3 We separate the definition ofρsya, which will be presented
later, when we will formally defineBoxgs(E1 sya).
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x
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e
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Fig. 1: Operator gs-boxes for sPBC

– Boxgs(E1 ; E2) = Ω;(Boxgs(E1),Boxgs(E2)). Then we
take:

η(t) =
{

η1(t) if t ∈ T1
η2(t) if t ∈ T2

µ(t) =
{

µ1(t) if t ∈ T1
µ2(t) if t ∈ T2

κ(t) =
{

κ1(t) if t ∈ T1exp

κ2(t) if t ∈ T2exp

– Boxgs(E1‖E2) = Ω‖(Boxgs(E1),Boxgs(E2)).
η , µ andκ are defined in exactly the same way as in
the previous case.

– Boxgs(E1[ f ]) = Ω[ f ] (Boxgs(E1)).

η(t) = η1(t), t ∈ T1
µ(t) = µ1(t), t ∈ T1
κ(t) = κ1(t), if t ∈ T1exp

– Boxgs(E1✷E2) = Ω✷(Boxgs(E1),Boxgs(E2)).

η(t) =
{

η1(t) if t ∈ T1
η2(t) if t ∈ T2

µ(t) =
{

µ1(t) if t ∈ T1
µ2(t) if t ∈ T2

κ(t) =





κ1(t)∪κ2(t ′) if t ∈ T1exp,
•t ∈◦Boxgs(E1),

∃ t ′ ∈ T2exp,
•t ′ ∈◦Boxgs(E2),

λ (t) = λ (t ′)

κ1(t) if t ∈ T1exp,
•t ∈◦Boxgs(E1),

6 ∃ t ′ ∈ T2exp,
•t ′ ∈◦Boxgs(E2),

λ (t) = λ (t ′)

κ1(t) if t ∈ T1exp,
•t 6∈◦Boxgs(E1)

κ2(t)∪κ1(t ′) if t ∈ T2exp,
•t ∈◦Boxgs(E2),

∃ t ′ ∈ T1exp,
•t ′ ∈◦Boxgs(E1),

λ (t) = λ (t ′)

κ2(t) if t ∈ T2exp,
•t ∈◦Boxgs(E2),

6 ∃ t ′ ∈ T1exp,
•t ′ ∈◦Boxgs(E1),

λ (t) = λ (t ′)

κ2(t) if t ∈ T2exp,
•t 6∈◦Boxgs(E2)

– Boxgs( [E1 ∗ E2 ∗ E3 ] ) =
Ω[∗∗ ](Boxgs(E1),Boxgs(E2),Boxgs(E3)).

© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
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η(t) =





η1(t) if t ∈ T1
η2(t) if t ∈ T2
η3(t) if t ∈ T3

µ(t) =





µ1(t) if t ∈ T1
µ2(t) if t ∈ T2
µ3(t) if t ∈ T3

κ(t) =





κ1(t) if t ∈ T1exp

κ2(t)∪κ3(t ′) if t ∈ T2exp,
•t ∈◦Boxgs(E2),

∃ t ′ ∈ T3exp,
•t ′ ∈◦Boxgs(E3),

λ (t) = λ (t ′)

κ2(t) if t ∈ T2exp,
•t ∈◦Boxgs(E2),

6 ∃ t ′ ∈ T3exp,
•t ′ ∈◦Boxgs(E3),

λ (t) = λ (t ′)

κ2(t) if t ∈ T2exp,
•t 6∈◦Boxgs(E2)

κ3(t)∪κ2(t ′) if t ∈ T3exp,
•t ∈◦Boxgs(E3),

∃ t ′ ∈ T2exp,
•t ′ ∈◦Boxgs(E2),

λ (t) = λ (t ′)

κ3(t) if t ∈ T3exp,
•t ∈◦Boxgs(E3),

6 ∃ t ′ ∈ T2exp,
•t ′ ∈◦Boxgs(E2),

λ (t) = λ (t ′)

κ3(t) if t ∈ T3exp,
•t 6∈◦Boxgs(E3)

– Boxgs(E1 rsa) = Ωrsa(Boxgs(E1)).
η(t) = η1(t) , µ(t) = µ1(t) , and
κ(t) = κ1(t) if t ∈ T1exp, a, â 6∈ λ1(t)

– Boxgs(E1sya) = Ωsya(Boxgs(E1)).
We take the following relation for the
synchronization:
ρsya⊆ (B(SL )×SL )∪ (B(IL )×IL ),
as the least relabelling relation containingρid, and
fulfilling:
(Γ ,α + {a})∈ ρsya ∧ (∆ ,β + {â}) ∈ ρsya
then (Γ + ∆ ,α + β ) ∈ ρsya Thus,ρsya allows us to
obtain the net structure, as well as the multiactions
labelling the transitions. Now, for everyt1, t2 ∈ T1exp,
λ1(t1) = α + {a}, λ1(t2) = β + {â}, a new stochastic
transition t is generated by the synchronization,
whose label isλ (t) = α +β , and its rate is computed
as follows:

µ(t) =
µ1(t1)
cr(t1)

·
µ(t2)
cr(t2)

·min(cr(t1),cr(t2))

Moreover,

η(t) = η1(t1) .η1(t2)
κ(t) = κ1(t1)⊗κ1(t2) =
{n1 .n2 |n1 ∈ κ1(t1) , n2 ∈ κ2(t2)}

On the other hand, for everyt1, t2 ∈ T1imm, with
µ1(t1) = ∞l1,p1 and µ1(t2) = ∞l2,p2, with
λ1(t1) = α + {a}, λ1(t2) = β + {â} and l1 = l2 = l ,
then a new immediate transitiont is generated by the
synchronization, whose label isλ (t) = α +β , and

η(t) = η1(t1) .η1(t2)

µ(t) = ∞l ,p1·p2

Notice that in order not to introduce redundant
transitions, we only consider in the plain gs-box a
single one of the possible transitions that we can
obtain by synchronizing (in different order) the same
set of transitions. Furthermore, those stochastic
transitions that were inT1exp have the same label, rate,
numeration and conflict that they had inBoxgs(E1);
and those immediate transitions that were inT1imm
have the same label, numeration and immediate
information that they had inBoxgs(E1). On the other
hand, with this construction we can obtain in principle
infinite nets, as it occurs in PBC, but, taking into
account that the obtained nets are safe, the arcs having
non-unitary weight will not enable the corresponding
transitions, and thus, these transitions and arcs can be
removed from the net structure, without affecting its
behaviour.

Another classical operator of PBC is thescoping,
which is a derived operator defined by
[a : E] = (E sya) rsa. Thus we take:

– Boxgs([a : E1]) = Ωrsa(Boxgs(E1sya))

Finally, we show that given a regular static s-expression
E, the operational semantics ofE and the semantics of the
corresponding plain s-box are isomorphic.

Theorem 1. For any regular static s-expressionE, the
transition systemts(E) associated withE, and the
reachability graph of the marked GSPN(Boxgs(E),Me)
are isomorphic.

Proof. See [17]. ✷

3 Case Study: Video Conference System

In this section we illustrate the applicability of our model
with an example in the context of telecommunication
systems. It is inspired by the description that appears in
[9], which uses Intelligent Network (IN) architecture, but
here we consider a simpler version. Our intention is not to
make an exhaustive performance evaluation, instead, we
intend to show with this example the flexibility and power
of sPBC in this area.

We first consider a case in which two users
communicate to each other in a Video Conference System
(VCS) with a single switch. Let us see a brief description
of the system, following the illustration depicted in Table
4, where the events are shown in the order they occur: the
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Table 4: VCS Description

caller calling
terminal

switch called
terminal

callee

Pick Up/
Disconnect2
−→

O f fHook
−→ /

NotO f fHook
−→

DialTone
←−

Dial
ConReq
−→

RoutSignal
←−

Ring
−→

Pick Up Callee/
Disconnect2
←−

ResultRing
←−

ConResp
←−

Talk Talk

HangUp
HangUp

Disconnect
←−

Disconnect
−→

caller is responsible to initiate the conversation by
Picking Up the phone. Then, his terminal sends theOff
Hook signal to the switch, and waits for theDial Tone.
Then, hedials the number and aConnection Requirement
(ConReq) is sent from his terminal to the switch. After
that, the switch sends aRouting Signalto the caller and a
Ringsignal to the callee at the same time. When the callee
Picks Uphis terminal in order to answer, it sends aResult
Ring signal to the switch, and it sends aConnection
Response (ConRes) signal to the caller, and the
conversation can now be initiated. When both the callee
and the callerHang Up, the system is disconnected by a
double Disconnectsignal, sent from the switch to the
callee and the caller.

On the other hand, when the callerPicks Up, but it is
not possible for his terminal to send anOff Hooksignal
to the switch, possibly because it is busy, then the action
NotOffHookis introduced to return to the starting point.

In order to model this system with sPBC, we first
identify which actions are immediate, and which ones are
stochastic. The following actions are considered to be
immediate, because the time required to perform these
actions is negligible:ConReq, ResultRing, ConRespand
HangUp; all of them with the same priority (1) and
weight (1). But we also consider as immediate actions
OffHook (with priority 2) andNotOffHook(with priority
1). Notice that priorities are used to enforce the execution
of OffHookas soon as it becomes permitted. Then, action

NotOffHookcan only be performed whenOffHookcannot
be executed.

On the other hand,PickUpCallee is the action
corresponding to the answer of the callee user (with
priority 1 and weight 8). However, we also consider the
possibility for him not to answer, and thus, we have
introduced the actionDisconnect2, with priority 1 and
weight 2, so as to associate to this action a probability of
0.2, since it is in conflict with thePickUpCalleewhich
has weight 8

The other multiactions have a random delay
associated which follows a negative exponential
distribution. We have considered the following values:
every 12 minutes the callerPickUpsthe phone in order to
make a call, so the rate ofPickUp is r = 1/12. The switch
takes 3 seconds (1/20 min) to transmit theDialTone
(r = 20), the caller takes 10 seconds (1/6 min) to Dial
(r = 6), the switch takes 30 seconds (1/2 min) (r = 2) to
send both aRoutSignaland aRing signal at the same
time. Talk takes 3 minutes (r = 1/3), and finally
Disconnecttakes 1 second (1/60 min,r = 60). Conjugate
actions are used to represent the receiving of signals,
whereas non-conjugate actions represent the sending of
them. Notice that we use weights 1 for the conjugate of
immediate multiactions, and the same priority for their
partner actions, in order to obtain as final weight that of
the non-conjugate action. In a similar way, we assign for
conjugates of stochastic multiactions a value greater than
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Table 5: VCS specification in sPBC
Terminali =
[<b,∞1,1> ∗ Caller✷ Callee∗ < f ,∞1,1>] rs f

Caller=
<PickUp,1/12>;(<OffHook,∞2,1>;< ̂DialTone,200>;
<Dial,6>;<ConReq,∞1,1>;< ̂RoutSignal,20>;
(< ̂ConResp,∞1,1>;<Talk,1/3> ;< ĤangUp,∞1,1>;
< ̂Disconnect,600> )✷<Disconnect2,∞1,1 >)✷
<NotOffHook,∞1,1>

Callee=
< R̂ing,20>;(<PickUpCallee,∞1,8>;<ResultRing,∞1,1>;
<Talk,1/2>;<HangUp,∞1,1>;< ̂Disconnect,600>)✷
<Disconnect2,∞1,2 >

Switch=
[<b,∞1,1> ∗< ÔffHook,∞2,1>;<DialTone,20>;
< ĈonReq,∞1,1>;<{RoutSignal,Ring},2>;
(< ̂ResultRing,∞1,1>;<ConResp,∞1,1>;
<{T̂alk, T̂alk},10/3>;<{Disconnect,Disconnect},60>)✷

<{ ̂Disconnect2, ̂Disconnect2},∞1,1> ∗< f ,∞1,1>] rs f

their non-conjugate associated actions, in order to get as
synchronization rate that of the non-conjugate action. The
corresponding sPBC specification is shown in Table5.
Notice that we have introduced an initial actionb and a
final action f within the iteration, the latter is also
restricted in order to enforce a repetitive infinite behavior.

The whole system is therefore described by the
process:

VCS= [ A : Terminal1‖Terminal2‖Switch]

whereA= {OffHook, DialTone, ConReq, RoutSignal,
Ring, ResultRing, ConResp, Talk, HangUp,
Disconnect, Disconnect2}

All of stochastic multiactions obtained by
synchronization have as rate the minimum of the involved
rates. For the actionTalk we have a rate of 1/3 for the
caller, 1/2 for the callee and 10/3 for the switch. The rate
for the resulting synchronization action is
r = min{1/3,1/2,10/3}= 1/3, i.e. the average time of a
conversation is 3 minutes.

For the synchronization of immediate multiactions
(all of them having the same priority), the new weight is
obtained by multiplying the involved weights. For
example, if the callee does not answer, it follows that the
weight of his Disconnect2action is 2, and considering
that the action Disconnect2 of the caller and the
multiaction { ̂Disconnect2, ̂Disconnect2} of the switch
have both weight 1, then, if we synchronize these three
immediate multiactions, the obtained weight is 2 and,
since the weight ofPickUpCalleeis 8, it follows that the
probability for a call not to be answered is 0.2.

The corresponding plain gs-boxes are shown in
Figures2 to 4. Notice that exit places are isolated, as a

consequence of the restriction overf , so we do not
introduce them in the tool GreatSPN [8,12]. In the figures
presented conjugates are shown by prefixing the actions
with ’conj’, due to the use of the GreatSPN tool.
Furthermore, we just take the Petri net obtained by
removing the initial places, i.e. we only consider the
repetitive net obtained after initialization, thus we havean
ergodic model, and we are able to make a performance
analysis. The obtained throughputs of the relevant
transitions of this model are shown in Table6.

Table 6: Throughputs
PickUp 0.058035
OffHook 0.054764
DialTone 0.054764
Dial 0.054764
ConReq 0.054764
RoutSignal 0.054764
ConResp 0.043811
Talk 0.043811
HangUp 0.043811
Disconnect 0.043811
Disconnect2 0.010953
NotOffHook 0.003271

Thus, if this system is working for 10 hours (600
minutes) then we obtain the following approximated
estimations: a userPicks Up his terminal about 35 times
(600×0.058035), in two of them he does not receive the
signalOff Hook, and in 33 he gets the signal andDials .
Additionally, from the table we conclude that for about 7
times the callee will not answer the call, and 26 times
there has been a conservation.

Let us now analyse the productivity of the switch. In
this case we have obtained that the switch is idle with
probability 0.65717. Of course, the values in Table6
change according to the parameters introduced. For
instance, when the callerPicks Up every 8 minutes in
average, the probability for the switch to be idle becomes
0.56101.

In this first version, multiactions are used in a limited
way, only theSwitch uses this capability of the model.
However, we can scale this system by adding some new
terminals in the following way:

VideoConferencen =
[ A : Terminal1‖Terminal2‖ . . .‖Terminaln‖Switch]

where
A=
{OffHook, DialTone, ConReq, RoutSignal, Ring,
ResultRing, ConResp, Talk, HangUp, Disconnect,
Disconnect2}

As we have only one switch, a single videoconference
is permitted at a time, and involving just two users.
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Fig. 2: gs-box forTerminal

Fig. 3: gs-box forSwitch
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Fig. 4: gs-box forVideo ConferenceSystem

Nevertheless, we can extend the model easily in order to
allow several simultaneous videoconferences.

VideoConferencen,3 =
[ A : Terminal1‖Terminal2‖ . . .‖Terminaln‖
Switch‖Switch‖Switch]

where
A= {OffHook, DialTone, ConReq, RoutSignal, Ring,
ResultRing, ConResp, Talk, HangUp, Disconnect,
Disconnect2}

Thus, three simultaneous videoconferences are
enabled in this specific model. The most interesting case
is, of course, a videoconference involving three or more
people (a multiconference), for this case we need a new
model for theSwitch. In the following specification we
allow a caller and 2 callees, i.e. three people are involved
in the conversation.
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newSwitch=
[<b,∞1,1> ∗< ÔffHook,∞1,1>;<DialTone,20>;
< ĈonReq,∞1,1>;< {RoutSignal,Ring,Ring},2>;
(< { ̂ResultRing, ̂ResultRing},∞1,1>;
<ConResp,∞1,1>;
< {T̂alk, T̂alk, T̂alk},10/3>;
< {Disconnect,Disconnect,Disconnect},60>)✷

< { ̂Disconnect2, ̂Disconnect2, ̂Disconnect2},∞1,1>
∗< f ,∞1,1> ] rs f

The specification of the whole system with three users
and one switch is:

newVideoConference=
[ A : Terminal1‖Terminal2‖Terminal3‖newSwitch]

where A=
{OffHook, DialTone, ConReq, RoutSignal, Ring,
ResultRing, ConResp, Talk, HangUp, Disconnect,
Disconnect2}

4 Conclusions and Future Work

sPBC is a stochastic extension of PBC, which was
presented in [16,14,17]. It is a semi-Markovian extension
of PBC, which preserves the main features of that model.
Thus, the syntax of sPBC is a natural stochastic extension
of PBC, by annotating the multiactions with rates, which
represent the parameters of exponential distribution. An
important difference with respect to PBC is that in sPBC
we define a semantics where no simultaneous execution
of two multiactions is possible, although parallelism is
maintained at the level of multiactions, as all the actions
inside a multiaction are performed simultaneously.

In this paper we have considered an extended
operational and denotational semantics of sPBC, by
including immediate multiactions, in a similar way as
they are considered in GSPNs. The denotational
semantics of sPBC is defined using as semantic objects a
special kind of labelled generalized stochastic Petri nets,
called gs-boxes. An important characteristic of this
translation is that it is static, in the sense that the rates or
weights of the transitions will not be marking dependent.

Our main goal in this paper has been to show the
flexibility and specification power of sPBC in the area of
information science phenomena, modeling aVideo
Conference System. The main features of this language
make an evidence the advantages of its use. Stochastic
and immediate multiactions (with priorities and weights)
are useful to describe control systems with quantitative
information about times of actions and probabilities of
execution, a special synchronization operator allowing
multiway synchronization that considers the minimum
conflict rate of the involved stochastic multiactions,
which has the intuitive interpretation of taking the slowest
one. Additionally, it has the iteration operator for
repetitive behaviors, and, of course, an easy and natural

translation to GSPNs, which allows us to apply some
tools to obtain performance results. Consequently, we
have both the advantages of using a simple stochastic
process algebra language and Petri nets (GSPNs).

Our work in progress focuses on the definition of a
stochastic bisimulation [15] that respects also immediate
multiactions, which will capture precisely those processes
that can be considered equivalent taking into account the
stochastic information. Our plans for future work also
include the treatment of the recursion operator and the
develop of a particular tool based on sPBC and dtsiPBC.

Acknowledgement

This work received financial support from the Spanish
Government (cofinanced by FEDER funds) through the
TIN2012-36812-C02-02 Project. I.V. Tarasyuk was also
supported in part by Deutsche Forschungsgemeinschaft
(DFG), grant BE 1267/14-1, and Russian Foundation for
Basic Research (RFBR), grant 14-01-91334. The authors
are grateful to the anonymous referee for a careful
checking of the details and for helpful comments that
improved this paper.

References

[1] M. Ajmone Marsan. Stochastic Petri Nets: An Elementary
Introduction.Lecture Notes in Computer Science; Advances
in Petri Nets 1989, 424:1–29, 1990.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis.Modelling with Generalized Stochastic
Petri Nets. Wiley, 1995.

[3] M. Bernardo and R. Gorrieri. A Tutorial on EMPA:
A Theory of Concurrent Process with Nondeterminism,
Priorities, Probabilities and Time.Theoretical Computer
Science, 202:1–54, 1998.

[4] E. Best, R. Devillers, and M. Koutny. A Consistent Model
for Nets and Process Algebra. In the bookThe Handbook on
Process Algebras,J.A. Bergstra, A. Ponse and S.S. Smolka
(Eds.), North Holland, Chapter 14, pp. 873–944, 2001.

[5] E. Best, R. Devillers, and M. Koutny.Petri Net Algebra.
EATCS, Springer, 2001.

[6] E. Best, R. Devilllers, and J. Hall. The Box Calculus: A
New Causal Algebra with Multi-label Communication. In
Advances in Petri Nets,G. Rozenberg (Eds.), LNCS 609,
Springer, pp. 21–69, 1992.

[7] E. Best and M. Koutny. A Refined View of the Box
Algebra. InApplication and Theory of Petri Nets 1995, 16th
International Conference, Turin, Italy,G. De Michelis and
M. Diaz (Eds.), LNCS 935, Springer, pp. 1–20, 1995.

[8] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo.
GreatSPN 1.7: GRaphical Editor and Analyzer for Timed
and Stochastic Petri Nets.Performance Evaluation,24:47–
68, 1995.

[9] M.P. Gervais. Telecommunications Systems. In the book:
Petri Nets for Systems Engineering,C. Girault and R. Valk
(Eds.), Springer Verlag, Chapter 26, pp. 540–566, 2002.

© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
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[25] I. V. Tarasyuk, H. Macià, and V. Valero. Discrete Time
Stochastic Petri Box Calculus with Immediate Multiactions
dtsiPBC. Electric Notes Theoretical Computer Science,
296:229–252, 2013.

Hermenegilda Macià
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