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Abstract: In this paper, we show the very close relationship betweendfithe pioneering theorems on fixed point theory in pastiall
ordered metric spaces, such us Ran and Reuring’s theorerhliatml and Rodriguez-Lopez’s theorem. Although they se¢erhe
independent, they are both two faces of an unified resulthEtmore, we extend the kind of control functions involvedthe
contractivity condition and we use preorders rather thatigd@rders, which have the main advantage of unify, in aesaondition,
two usual cases: the framework in which none binary relasamonsidered and the partially ordered case.

Keywords: Fixed point, coupled fixed point, preorder, altering dis@function

1 Introduction Nieto and Rodriguez-Lope§ slightly modified the
hypothesis of the previous result obtaining the following

A contractionin a metric spacéX,d) is a self-map ~ theorem.

T : X — X such that there exists a constante [0,1) : . !
verifying d(TxTy) < A d(x.y) for all x,y € X. The Theorem 2(Nieto and Rodriguez-Lopez [18], Theorem

celebrated Banach Contractive Mapping Principle 2.2). Let (X, =) be an ordered set endowed with a metric

guarantees that every contraction in a complete metrin{j I?nd.T: X _d>tx beha I%‘Ye” mapping. Suppose that the
space into itself has a unigdied point that is, a point '©''0WINg conditions hold:

x € X such thaff x= x. S . (a)(X,d) is complete.
In 2004, Ran and Reuring iniciated the study of fixed (b)T is nondecreasing (W.r&).

point theory in metric spaces provided with a partial order.(c)hc a nondecreasing sequenégy} in X converges to a
Theorem 1(Ran and Reurings [L9], Theorem 2.1). Let some point x X, then x, < x for all m.
(X,=<) be an ordered set endowed with a metric d and T (d)There existsge X such that ¥ < Txo.

X — X be a given mapping. Suppose that the following(e)There exists a constahte (0,1) such that dTx Ty) <

conditions hold: A d(x,y) for all x,y € X with x:= y.

(a)(X,d) is complete. Then T has a fixed point. Moreover, if for & y) € X?

(b)T is nondecreasing (W.r). there exists X such that x5 z and y< z, we obtain

(c)T is continuous. uniqueness of the fixed point.

(d)There existsge X such that ¥ < T xo.

(e)There exists a constahite (0,1) suchthat dTx Ty) < Both theorems seem to be different because
Ad(xy) for all x,y € X with x3= y. hypothesegc) on each result are independent. If we pay

attention to conditiongc) on both theorems, we may see
Then T has afixed point. Moreover, if for &l y) € X2 that they are very different in the following sense: the
there exists £ X such that xx z and y< z, we obtain  continuity is a property on the mapping, and the
uniqueness of the fixed point. regularity is an assumption in the ordered metric space.
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Consequently, most of results proved after the appearance In the previous results, we can observe the necessity

of Ran and Reuring’'s theorem and Nieto and
Rodriguez-Lopez’s theorem in this field of study included
two cases: eithef is continuous or(X,d, <) is regular.
For instance, in a celebrated work, Gnana Bhaskar an
Lakshmikanthamd] proved the following results.

Theorem 3(Gnana Bhaskar and Lakshmikantham [2],
Theorem 2.1). Let (X,d,<) be an ordered space and let
F : X x X — X be a continuous mapping having the mixed
<-monotone property on X. Assume that there exdists
[0,1) with

d(F(xy),F(u,v)) <

N >

[d(x,u) +d(y,v) ]

for all x,y,u,v € X such that = u and y< v. If there exist
X0, Yo € X such that

Xo < F(X0,Y0) and ¥ = F(yo,Xo),

then there exist,y € X such that

x=F(x,y) and y=F(y,x).

Theorem 4Gnana Bhaskar and Lakshmikantham [2],
Theorem 2.2). Let (X, <) be a partially ordered set and
suppose that there exists a metric d in X such tXatl) is

a complete metric space . Suppose that X has the followin

property:

(i)if a non-decreasing sequengg,} — X, then x < x for
allneN;

(ihif a non-increasing sequendgin} — v, then y< y, for
allneN.

Let F: X x X — X be a mapping having the mixed
<-monotone property on X. Assume that there exists
[0,1) with

d(F(xy),F(u,v)) <

N >

[d(x,u)+d(y,v)]

for all x,y,u,v € X such that = u and y< v. If there exist
X0, Yo € X such that

Xo < F(Xo0,Yo) and ¥ = F(Yo,%o),

then there exist,y € X such that

x=F(x,y) and y=F(y,x).

Theorem 5Gnana Bhaskar and Lakshmikantham [2],
Theorem 2.4). Adding the following condition to the
hypothesis of Theorem

(C)for all (x,y), (X*,y") € X x X there exist$z;,2,) € X x
X that is comparable tox,y) and (x*,y");

we obtain the uniqueness of the coupled fixed point of F.

of distinguishing between whethér is continuous or
(X,d, <) is regular. After the appearance of these results,
the literature on coupled, tripled, quadrupled (and, even,
dnultidimensional) fixed point theory in the setting of
partially ordered metric spaces has grown exponentially.
To cite some of them, we refer the reader to Gnana
Bhaskar and Lakshmikanthargl][ Lakshmikantham and
Ciric [3], Choudhury and Kundu 2], Berinde and
Borcut [5,8], Karapinar L3], Karapinar and Luonglf),
Berzig and Samef7], Roldanet al.[21,22,23,24], Wang
[30, Karapinaret al. [16], Berzig et al. [6], Karapinar
and Agarwal 14], Roldan and Karapinap)], Agarwalet

al. [1] and Al-Mezelet al.[25], among others.

This work has three main aims. On the one hand, we
present a new condition that unifies the alternative
between whethel is continuous or the ordered metric
space is regular. Therefore, we show that, although they
are independent conditions, both assumptions are
intimately related. As a consequence, from now on,
researchers interested in this field of study can analyze
both conditions in an unified way. On the other hand, the
second objective is to relax the assumptions on the
control functions involved in the contractivity condition
Thus, our results extend and unify some well known very
recent results in this field. Finally, we involve preorders
rather than partial orders, which have the main advantage
of unifying, in a same condition, two usual cases: the
#amework in which none binary relation is considered
and the partially ordered case.

2 Preliminaries

In the sequelN = {0,1,2,3,...} denotes the set of all
nonnegative integers anfl denotes the set of all real
numbers. HencefortlX andY will denote nonempty sets.
Elements o are usually callegoints

LetT : X — Y be a mapping. Theomain of Tis X
and it is denoted by Dof. Its range that is, the set of
values ofT in Y, is denoted byT (X). A mappingT is
completely characterized by its domain, its range, and the
manner in which eachbrigin x € DomT is applied on its
image T(x) € T(X). For simplicity, we denote, as usual,
T(x) by Tx For any seX, we denote théentity mapping
on X by Ix : X — X, which is defined byixx = x for all
xe X.

Given a self-mapping : X — X, we will say that a
pointx € X is afixed point of Tif Tx= x. We will denote
by Fix(T) the set of all fixed points of . Given a mapping
F: X x X — X, acoupled fixed point of s a point(x,y) €
X such thaf (x,y) = xandF (y,x) =Y.

Given two mappingd : X - Y andS:Y — Z, the
composite of T and B8 the mappingo T : X — Z given
by

(SoT)x=STx forall xe DomT.
We say that two self-mappindsS: X — X arecommuting
if TSx= STxfor all x € X (thatis,ToS= SoT).
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The iterates of a self-mappingT : X — X are the
mappings{T" : X — X}nen defined by

ToO=lIx, T'=T, T?=ToT,
T —ToT" foralln>2.

The notion of metric spaceand the concepts of
convergent sequencand Cauchy sequencian a metric
space can be found, for instance, 28l We will write
{Xn} — x when a sequencéx,}ncny Of points of X
converges tox € X in the metric spacéX,d). A metric
space(X,d) is completeif every Cauchy sequence K
converges to some point &. The limit of a convergent
sequence in a metric space is unique.

In a metric spacgX,d), a mappingT : X — X is
continuous at a point £ X if {Tx} — Tz for all
sequence{x,} in X such that{x,} -z And T is
continuousf it is continuous at every point of.

A binary relation on Xis a nonempty subse? of X x
X. For simplicity, we denote <y if (x,y) € #, and we
will say that= is the binary relation oiX. This notation
let us to writex < y whenx <y andx # y. We writey > X
whenx <y. A binary relation= on X is reflexiveif x < x
for all x € X; it is transitiveif x < zfor all x,y,z € X such
thatx <y andy < z and it isantisymmetridf x <y and
y < ximply x=y.

A reflexive and transitive relation oX is a preorder
(or a quasiordej on X. In such a case(X,=) is a
preordered spacdf a preorder< is also antisymmetric,
then< is called apartial order, and (X, x) is apartially
ordered spac¢or apartially ordered set We will use the
symbol= for a general binary relation oX or a preorder
on X, and the symbok for a partial order oiX.

The usual order of the set of all real numb&ss
denoted by<. In fact, this partial order can be induced on
any non-empty subsétC R. Let < be the binary relation
onR given by

XKy <& (x=y or x<y<0).
Then< is a partial order ofR, but it is different from<.
Any equivalence relation is a preorder.

An ordered metric spacés a triple (X,d,<) where
(X,d) is a metric space and is a partial order oX. And
if < is a preorder orX, then (X,d, =) is a preordered
metric space
Definition 1.Let (X,d) be a metric space, let A X be
a non-empty subset and let be a binary relation on X.
Then(A,d, <) is said to be:

—non-decreasing-reguld for all sequence{xm} C A
such that{xn} — a< A and x =< Xp1 forall me N,
we have thatx <aforallme N;

—non-increasing-regulaf for all sequence{xn} C A
such that{xn} — a< A and x = Xypq forall me N,
we have thatx > aforallme N;

—regularif it is both non-decreasing-regular and non-
increasing-regular.

Some authors calledrdered completd¢o a regular
ordered metric space (see, for instancelQ))
Furthermore, Roldaret al. called sequential monotone
propertyto non-decreasing-regularity (sezl]).

Let < be a binary relation o and letT : X — X be
a mapping. We say thatis <-non-decreasingf Tx<Ty
for all x,y € X such thak < y.

Definition 2.Let X be a non-empty set endowed with a
binary relation< and let F: X2 — X be a mapping. The
mapping F is said to have thenixed <-monotone
propertyif F (X,y) is monotone<-non-decreasing in x and
monotone<-non-increasing in y, that s, for all.y € X ,

X, X2 €X, 13X = F(xy) <F(x.Y)

and

yLY2€X, yi=Xy2 = F(Xy1) = F(Xy2).

3 Control functions

One of the most important ingredients in a
contractivity condition is the kind of control function tha
are used. In this paper, we extend the control functions
that were used in previous manuscripts.

Let consider the following families of control
functions.

Far={@:[0,00) — [0,00) : ¢ continuous,
non-decreasingp(t) =0<t =0},

Fhi={@:[0,0) — [0,0) : @ lower semi-continuous,
p(t)=0<t=0}.

Functions in .7, are called altering distance
functions(see [L7,6,20,22]). To extend the previous kind
of functions, we will also consider:

F ={@:[0,00) — [0,0) : @ continuous from the right,
non-decreasingy(t) =0<t=0}.

Clearly, Za C Z.

Example IThe functiony : [0,c0) — [0, ), defined by
t, ifo<t<i,

"U(t):{ 2t, ift>1,

belongs to# but it is not an altering distance function.

Under the non-decreasingness assumption, upper
semi-continuity implies right-continuity.

Lemma 1If ¢ : [0,0) — [0,00) is non-decreasing and
upper semi-continuous, thegr is continuous from the
right.
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ProofTo prove it, letsy > 0 be arbitrary. The upper semi-
continuity of y in s means that

Y (s0) > limsupy (t).
t—s

Case 2. 4.1 <ty for all n € N. In this case{tn} is
a bounded below, strictly decreasing sequence. Then, it is
convergent. Let € [0,) be its limit. ThenL <th;1 <ty
for all n e N. As ¢ is continuous from the right,
Let {t,} be an arbitrary strictly decreasing sequence i) r!m’wtn)'
converging tosp. Thereforesy < th.1 <ty forall ne N.
As i is non-decreasingl (o) < ¢ (th+1) < @ (tn) for all
n € N, which means tha{y (t,)} is a bounded below,
non-increasing sequence. As a consequence, it

By (1),
_ 0<o(th) <Y (th) — Y(thia)
Iietting n — oo, we deduce thaf@(t,)} — 0. But, asg@ is

foralln € N.

convergentand ! .
lower semi-continuous,
Y (o) < im ¢ (tn). 0< (L) < liminf @(t) < lim @(ty) = O.
t—L n— o0
Therefore, Hence,@(L) =0 andL = 0.
(%) < lim @ (tn) < |iftn supy (t) < Y (o), Lemma 4Let {t,},{s,} C [0,%0) be two sequences that
—%0

converge to the same limit& [0,00). Assume that K t,
for all n € N and there exist two functiong € . and
@ € F; such that

P (tn) <P (sn) — @(sn)
Then L=0.

which means that

Am"’(t“>:"’(5°>' foralln e N.

2)
As a consequencey is continuous ag from the right.

The following properties are well known using ProofByitem2ofLemma2, foralln€ N,

functions onZ,y, but they are also valid i .
Lemma 2Lety, ¢ : [0,00) — [0,) be two functions such
that ¢ is non-decreasing ang* ({0}) = {0}, and let

t,s,r € [0,00).

LIfY(t) <y(s)—o@(r), thent<sorr=0.
21f ¢ also verifies ¢y~1({0})) = {0}
Yit)<(Pg—9)(s),thent<sort=s=0.

The second case is impossible becauselO< t, for all
n < N. As a consequence,

L<ty<sy, forallneN.

and  As is right-continuous at, we deduce that

L) =lim g (ta) = lim ¢(sn).
Proof(1) Assume that > s and we have to prove that e e

r = 0. Indeed, asy is non-decreasingy (s) < Y(t).
Therefore, s (t) < (s) — @(r) < Y(s) < Y(t). As a
consequence)(t) = @(s) andg(r) = 0. Therefore = 0.

(2) Next, assume thap (t) < (¢ — @) (s) andt > s. By
item (1), s=0. Therefore, 6< ¢ (t) < @(0) — @(0) =0,
soy (t) =0andt =0.

Lemma3lety € 7, ¢ € F}, and let{t,} C [0,0) be a
sequence such that

Y(thi1) <P (tn) — ()
Then{t,} — 0.

foralln € N.

1)

ProofWe distinguish two cases.
Case 1. There existgr N such that 4, < ty,;1. In

this case, asy is non-decreasing, we have that

Y (tno) < q"(tnoH) < q"(tno) - (0(tn0) < q"(tno)'

Therefore,  (thy) = Y (tnyr1) and @(ty,) = 0. As

®» € Fu then t,, = 0. Moreover,
0< Y (tny+1) < W (1) — (1) = $(0) ~ 9(0) =0, s0

¥ (tng+1) = 0 and alsatny+1 = 0. By induction, we can
show that, = 0 for alln > ng. In particular {t,} — 0.

By (2),
0< @(sn) S Y () — ¢ (thra)

Letting n — oo, we deduce thaf@(s,)} — 0. But, asg@ is
lower semi-continuous,

0< (L) <liminfe(t) < lim ¢(s) =0.

forallne N.

Hence,p(L) =0 andL = 0.

4 Main results

We introduce the following notion, which will be the
common condition of Theorenisand?.
Definition 3.Given a metric spacéX,d) endowed with a
binary relation <, a mapping T: X — X is
(d, <)-nondecreasing-continuousate X if we have that
{Txn} converges to Tg for all =<-nondecreasing
sequence {xm} convergent to  And T is
(d, <)-nondecreasing-continuous  if it is
(d, <)-nondecreasing-continuous at every point of X.
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It is obvious that every continuous mapping is also By Lemma3, we deduce that

non-decreasing-continuous, but the converse is false.

Example 2f R is endowed with the Euclidean metric
(de(x,y) = |x—y| for all x,y € R) and its usual partial
order<, then the mapping

Tx:{ 2:

is (de, <)-non-decreasing-continuous @ but it is not
continuous ak = 0.

if x<0,
if x>0,

The main result in this paper is the following one.

Theorem 6Let (X,d,=<) be a preordered metric space

and let T: X — X be a given mapping. Suppose that the

following conditions hold:

(a)(X,d) is complete.

(b)T is nondecreasing (W.r.x).

(c)T is(d, =%)-nondecreasing-continuous.

(d)There existsge X such that ¥ < T xo.

(e)There exist functiong € .# and ¢ € .#}, such that

Y(d(TxTy) <@dxy)-e(dXxy) (3)
for all x,y € X with x> y.

Then T has a fixed point.
Furthermore, if the following assumption is satisfied:

(U)for all x,y € Fix(T) there exists z X such that z is
=<-comparable, at the same time, to x and to y;

then we obtain uniqueness of the fixed point.
ProofLet xg € X be any point such thagy < Txy and let
{Xm} the Picard sequence of that is,
Xmi1 = TXmn, forallm>0.

Taking into account thak is a<-non-decreasing mapping,
we observe that

Xo=XTxo=xX1 implies x3=Tx <XTxs = Xo.
Inductively, we obtain
Xo=3X1 23X 2o X1 S Xm S X1 2

(4)

If there exists mp such that Xm, = Xm+1, then
Xmy = Xmg+1 = T %m,, that is, T has a fixed point, which

completes the existence part of the proof. On the contrary

case, assume thaty # Xne1 for all m e N, that is,
d (Xm,Xm+1) > 0 for all m > 0. Regarding 4), we set
X = Xm andy = Xm.1 in (3). Then we get, for aline N,

Y (d(Xmi+1,Xm+2)) = @Y (d(TXm, TXm-1))
< Y(d(Xm, Xm11)) — @(d(Xm, Xm+1))-

r!]ignoo d (Xm7 Xm+l) == O

Next, we will prove that{xy} is a Cauchy sequence in
(X,d) reasoning by contradiction. Suppose thak} is

not Cauchy. Then, following a classical argument (see, for
instance, 22)), there exists a positive real numbgr> 0

and two subsequenceég, )} and {Xmy } of {gxm} such
that, for allk € N,

k <n(k) <m(k) < n(k+1),
d(Xn(k) s Xmik)—1) < €0 < d(Xn)» Xmik))

and also

1im d (k) X)) = Jim d(Xak -1, Xmx)-1) = €0 (5)
Notice that as< is transitive, themy 1 = X1 for all
k € N. Using the contractivity conditiors], for allk € N,

W(d(Xn(ky, Xmk) ) = YA(T Xak)—1, T Xy —1))
< P(d(Xnk)—1- Xmik)—1)) — @A (Xn(k)—1, Xm(k)—1))-

By 5), {t = d(Xnw):Xm) Hken and
{s« = d(Xn(k)—1, Xm(k)—1) ke are two sequences {0, )
converging to the same limit = g and verifying

W) < W(s)—e(s) forallke .

Then, it follows from Lemma4 that &g = 0, which is a
contradiction. As a consequence, we must admitfka}
is a Cauchy sequence (iX,d).

Taking into account thgiX, d) is complete, there exists
z € X such that{xn} — z In addition to this, a{xm} is
a convergent non-decreasing sequence, &ainsl (d, <)-
nondecreasing-continuous, it follows that

{Txm} =Tz

But as{T ¥n = Xm+1} — z the uniqueness of the limit of
a convergent sequence in a metric space guarantees that
Tz=z thatis,zis a fixed point ofT .
Next, to prove the uniqueness of the fixed pointXet
andy be two arbitrary fixed points of . By hypothesis
(U), there existz € X such that is <-comparable, at the
same time, tox and toy. Let {zn} be the Picard sequence
of T based org, that is,zg = zand zn.1 = T zy, for all
m e N.We are going to show thdzn} — xand{zn} — vy
and, by the uniqueness of the limit, we will conclude that
X = . Indeed, agz is <-comparable t, thenz < x or
z = X. Assume thar < x (the other case is similar). AB
is <-non-decreasing,
Zp=z=X implies =Tz <Tx=Xx

By induction, it is possible to deduce that < x for all
m € N. Then, applying the contractivity conditioB)( we
deduce that, for alin € N,

Y (d(Xzns1)) = @(d(TX Tzn))
<@ (d(x.zm) — @(d (X, Zm)).
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Again by Lemma3, we deduce that (U)for all x,y € Fix(T) there exists z X such that z is
=<-comparable, at the same time, to x and to y;

lim d (X, zm+1) = 0,

m—e then we obtain uniqueness of the fixed point.
so {zn} — x. If we have supposed that< z the same
argument would have shown théty,} — x. Similarly, it
can be proved that, in any casézn} — y. As a
consequence,=y andT has a unique fixed point. Corollary 3.Let (X,d,<) be a preordered metric space
and let T: X — X be a given mapping. Suppose that the
following conditions hold:

If we take @ (t) =t for all t € [0,), it follows that
Y € F4 and we have the following particular case.

Remarki-ollowing Boyd and Wong49], the functionsy
and @ verifying (3) have only to be defined oR, where
P={d(xy):xye X} C[0,0)is the range ofl. Thus, if  (a)(X,d) is complete.

the metric spacéX,d) is bounded, that is, if there exists (b)T is nondecreasing (w.r.&).

M > 0 such that (x,y) <M for all x,y € X, then itis not  (c)T is(d, <)-nondecreasing-continuous.
necessary to considap and ¢ defined on the whole (d)There existsxe X such that ¥ < T xo.

interval  [0,c0). In this case, the function (e)There exists a functiope .72, such that, for all xy

Y :[0,M+1) — [0,) defined byy (t) =t/(M+1-t) X with x>y,
for all t € [0,M+1), which cannot be continuously
extended t@ = M + 1, can be useful to apply Theoresn d(TxTy) <d(xy)—@(d(xy))
As Zai C Z, the following result is immediate. Then T has a fixed point. Furthermore, if the following

. assumption is satisfied:
Corollary 1.Let (X,d, =) be a preordered metric space P

and let T: X — X be a given mapping. Suppose that the (U)for all x,y € Fix(T) there exists £ X such that z is

following conditions hold: <-comparable, at the same time, to x and to y;
(a)(X,d) is complete. then we obtain uniqueness of the fixed point.
(b)T is nondecreasing (W.r.x). ) ) o
()T is(d, <)-nondecreasing-continuous. The previous corollary is also valid if we assume that
(d)There existse X such that ¥ < T . @is a continuous function. In addition to this Afe [0,1)
(e)There exist functiong € .# and@ € .7/, such that, for ~ and we considep(t) = At forallt [0, ), it follows that

all x,y € X with x>y, @ € 7}, and we have the following particular case.

PY(d(TxTy) < @dxy)—edxy) Corollary 4.Let (X,d, <) be a preordered metric space

and let T: X — X be a given mapping. Suppose that the
Then T has a fixed point. Furthermore, if the following following conditions hold:

tion i tisfied: .
assumption is satisfie (a)(X. d) is complete.

(U)for all x,y € Fix(T) there exists £ X such that zis (b)T is nondecreasing (W.r.&).
<-comparable, at the same time, to x and to y; (c)T is(d, =<)-nondecreasing-continuous.
(d)There existsxe X such that ¥ < T xo.

then we obtain uniqueness of the fixed point. (e)There exists a constahte [0,1) such that, for all xy

The following result follows from Lemma. X with x>y,
Corollary 2.Let (X,d,=<) be a preordered metric space d(TxTy) <Ad(x,y)
and let T: X — X be a given mapping. Suppose that the ) ) ) )
following conditions hold: Then T has a fixed point. Furthermore, if the following

assumption is satisfied:
(a)(X,d) is complete. ) ] )
(b)T is nondecreasing (W.r.&). (U)for all x,y € Fix(T) there exists £ X such that z is

(c)T is(d, <)-nondecreasing-continuous. =<-comparable, at the same time, to x and to y;

(d)There eX|§tso<e X such that = . . ) then we obtain uniqueness of the fixed point.

(e)There exists a non-decreasing, upper-semicontinuous
function ¢ : [0,00) — [0,0) such that Next we deduce that Theoremisand 2 are simple

~1({0}) = {0} and a functiong € .7}, verifying,  consequences of our main result.
for all X,y € X with x>y,

d(TxTy)) <@ ((d(x,y))—@(d(x,
WETxT) < 9(deey) —o(dxy) Prooflt follows from the fact that ifT is continuous, then
Then T has a fixed point. Furthermore, if the following it is also (d, <)-nondecreasing-continuous, and Corollary
assumption is satisfied: 4is applicable.

Theorem 7 Theoreml follows from TheorerB.
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Theorem 8Theoren® follows from Theorerd. Theorem 9(utta and Choudhury [11], Theorem 2.1).

» Let (X,d) be a complete metric space and let X — X
Proof We have to prove that, under all conditions of be a self-mapping satisfying the inequality

Theorem2, T is <-nondecreasing-continuous. Indeed, let

{Xm} € X be a=-nondecreasing convergent sequence in YA(TxTy)) < @d(xy) — ¢ (d(xy))

X, and letu € X be its limit. By hypothesis(c) in

Theorem2, we have thaky, < u for all m. Applying the  for all x,y € X, where ¢),¢ : [0,0] — o are both

contractivity condition, we have that continuous and monotone nondecreasing functions with
Y(t)=¢(t)=0ifand onlyift=0. Then T has a unique
d(Txm, Tu) <Ad(xy,u) forallneN. fixed point.

Then {Txn} — Tu, and this proves thatT is
(d, <)-nondecreasing-continuous. Therefore, Corollary

is applicable. 5 Coupled fixed point theorems

The reader may notice that the continuity of
guarantees the=-non-decreasing continuity ofT.
However, althougiT is <-non-decreasing, the regularity
of (X,d,=) does not imply thafl is <-non-decreasing
continuous. In fact, the contractivity condition plays g ke
role in this proof.

One of the main advantages of preorders versus ; ;
partial orders is that the foIIowi?ng two gorollaries, with Aim, d (xa Xn+2) = 1M d(Yn, Y1) = 0.
their respective consequences (as before) follow

: . : Suppose that, at least, one of them is not Cauchy in
immediately from Theorerf. In the following result, we ;
involve a partial ordex. (X,d). Then there existg > 0 and two sequences of

natural numbergn(k) }ken and {m(k) }ken such that, for
Corollary 5(Harjani and Sadarangani [12). Let (X,<)  allkeN,
be a partially ordered set and suppose that there exists a

In this section, we extend Theorefnto the coupled
case. The following result will be useful in the proof of the
main result of this section.

Lemma5Let {xn},{yn} € X be two sequences on a
metric spac€X,d) such that

metric d in X such thatX,d) is a complete metric space. k<n(k) <m(k) <n(k+1),
Let T: X — X be a<-non-decreasing mapping such that max{d(xn(k)7Xm(k)7l)7d(Yn(k)a)’m(k)—l)} <&
Yd(TxTy) <gdxy)—edxy) foralx:y, < max{d(Xn) Xmiig ), d (Vg Vi)

where ¢ and ¢ are altering distance functions. Also and also
assume that, at least, one of the following conditions

holds. lim [max{d(xn(k)vxm(k))ad(yn(k)vym(k))} }

()T is continuous, or — lim | max{d(x X d

(ii)if a <-non-decreasing sequen¢r,} in X converges to koo { {01k -1). A0t 1Yt} }
a some pointx X, then % < x for all n. = &.

If there exists g€ X with Xy < Txg, then T has a fixed
point. Theorem 10Let (X,d, =) be a preordered metric space
Furthermore, if for all xy € X there exists z X such  and let F: X x X — X be a given mapping. Suppose that
that z is<-comparable, at the same time, to x and to y, the following conditions hold:

then we obtain uniqueness of the fixed point. (a)(X.d) is complete.

In the following statement we use the fact that the (b)F has the mixeek-monotone property.

binary relation=o on X, defined by (©)If z w € X are two points andXn}, {yn} C X are two
sequences such thak,} — z, {yn} — w, and % =<
x=oy forallxyeX (6) Xnt1 @nd y = Yniq for all n € N, then{F (Xn,yn)} —

F (z w) and{F (yn,Xn)} — F (w,2).
(d)There exist Yo € X such that ¥ < F (Xo,Yo) and y >

Corollary 6.Let (X,d) be a complete metric space and let F (VO’XO); ,
T :X — X be a given mapping. Suppose that there exist(€)There exist functiong € .7 and¢ € 7, such that

functionsyy € 7 and@ € 7 such that W(d(F(xy),F(UV) < @ (max{d(xu),d(yv)})
X,U)

is a preorder oIX.

alt

Ll"(d (TKTY))SW(d (va))_(p(d (X7y)) for a”X,yEX. —qo(maX{d( ) ,d(y,V)}) (7)
Then T has a unique fixed point. for all x,y,u,v € X with x<u and y> v.
(@© 2016 NSP
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Then F has, at least, a coupled fixed point. As = is transitive, we have that,)_1 =< Xmu)-1 and
Y1 = Ymk)-1 for all k € N. Then, applying the
ProofStarting from the pointsg,yg € X such thatxg < contractivity condition ), it follows that, for allk € N,
F (X0,¥0) andyp = F (yo,%0), we consider the sequences

{X} and{yn} defined by (A (X Xm(k) )
Xor1 = F (Xnyn)  and yae1 = F(ynxa) forallne . = Y(A(F Xn(—1> Ynk)—1)» F Km()—15 Ym-1)))
(8) < w(max{d(xn(k)flaxm(k) 1),d(Yn(—1,Ym(-1)})

Using thatF has the mixed<-monotone property, it is — @(max{d(Xn_1,X d .
possible to prove that @(max{d(Xn()—1: Xm(k)—1), A (Yn(g—1: Ym(-1) })

Similarly, asym) -1 = Yn(k)—1 8aNdXmk)—1 = Xn(k)—1 for all
k € N, we have that

(Yn(k)» Ym(k))) = (A (Ymk), Ynk)))

Xn<Xpp1 and yn,=yn1 forallneN.

Then, applying the contractivity conditio)( it follows
that W(

o

Y (d (Xn+1,%112)) = Y (d (F (Xn,¥n) , F (Xn41,Yn+1))) - (’U(d(F(ym( =1 Xm(k)-1 1) (yn( k)— 17Xn(k)—1)))
< @ (max{d (Xn, Xn+1)d (Yo, Ynr1)}) < Y(max{d(Ymk)-1:Yn(k)—1)s d(Xm(k)—1:Xn(k)-1) })
— @(max{d (Xn,%n:+1) ,d (Yn,Yns1)}) — @(max{d(Ym)1,Yn(k)—1)> d Xm) -1, Xn(k) 1) })
and, similarly, using that, 1 < Yn andx,;1 = Xn, = (max{d(Xn(ig—1, Xm(~1)> d(Yn(g—1, Y -1) })
WA O1.3012)) = WA (F (YoX) F Yos1.50s1))) - A S )
=Y (d(F (Yn+1,%1+1) s F (Yn, Xn))) As ) is non-decreasing, it yields

< @ (max{d (Ynt1,¥n),d (Xn+1,%)})
— @(max{d (Ynt1,¥n),d (Xns1,%n)}).

Therefore, agl is non-decreasing,

W(max{d (Xn(k)» Xm(k))> d(Yn(k)» Ym(k)) })
= max{ (d(Xn(k)» Xm(k) )) W(d(Yn)> Ym)) }
< (max{d(Xn()—1, Xm(k)—1)» A (Yn( -1, Ym-1) })
Y (max{d (xns1,Xn+2),d (i1, Ynt2)}) — @(max{d(xn) 1,xm ~1),d(Yng-1,Yimito-1)})-
= max{{ (d (Xn+1,%+2)) , ¥ (d (Ynr1,Yn+2)) }

< w(max{d (Xn Xns1) ,d (Y1) }) If we consider the sequences

— @(max{d (Xn,Xn+1) ,d (Yn,Yn+1)}) - {1t = max{d (X, Xmk) ) A (Yo Yk )} Jken  and
By Lemma3, we deduce that { s« = max{d(xn( 1,Xm( K-1)> d(yn( K)—1 Ym(k)—1)} JkeN,
r!m) max{d (Xn, Xn+1),d (Y, ¥nt1)} =0, we have proved tha (t) < ¢ () — @(s¢) for all k €
) N. Moreover, by 10), {tx} and{s} converge to the same
thatis, limit, which is L = g, and by @), L = g < t, forall k € N.

Using Lemma4, we conclude thatgy = L = 0, which is a
{00 ni2)} =0 and {d(¥nYni2)} =0 contradiction. Then, we must accept that both sequences,

Next, we show that{x,} and {y,} are Cauchy {xn} and{yn}, are Cauchy sequences(X,d). As (X,d)
sequences orfX,d) reasoning by contradiction. If, at is complete, there existsw € X such that{x,} — zand
least, one of them is not a Cauchy sequence, Lerima {yn} — w. Let show tha(z, w) is a coupled fixed point of
guarantees that there exisf > 0 and two sequences of F.

natural numbergn(k) }ken and {m(k) }xery such that, for As {X,} is <-non-decreasing and convergest@nd
allke N, {yn} is <-non-increasing and convergestn assumption

(c) guarantees that{F (X.,¥n)} — F(zw) and

k< n(k) <m(k) <n(k+1), {F (yn.Xn)} — F(®,2). Then {X;1} — F(zw) and
max{d(xn Xm(k)—1)» A (Vg Ym( 71)} <& {Yns1} — E(w, 2) by 8). As the Iimit of a convergent

sequence in a metric space is unique, thelz, w) = z
< max{d( Xn(k)’Xm(k>)’d(yn<k>’ym(k>)} ) ©)  andF (w,2) = w, that is,(z w) is a coupled fixed point of

and also F.

lim {max{d Xk Xk )> A (Vg » Ymii ) }

k—o0

= lim [max{d Xn(k)—1> Xm(k) ) d(yn() 1,ym(k)71)} }

k—00

= &p. (10)
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6 Uniqueness

In this section we study the uniqueness of the coupled

fixed point in two senses.

Theorem 11Under the hypotheses of Theoretf), let
(x,y) and (X,y) be two coupled fixed points of F such
that there exist§z, w) € X? verifying, at least, one of the
following conditions hold:

e zxXx, z=X, wry, w=xy; (11)
o z=x, z-X, wry w=<y;, (12
o z-x z=X, W=y, wrYy; (13)
o z-x, z-X, w=y w=<y. (14

Then(xy) = (X.Y),
fixed point.

that is, both are the same coupled

ProofLet (x,y) and (X,y) be arbitrary coupled fixed
points of F. By hypothesis, there existg w) € X? such
that, at least, one of the four conditiorsl)-(14) holds.
Let {z,} and{wn} be the sequences defined by

(20,00) = (zw) and

(Znt1, Whe1) = (F (%, Yn), F (Yn,Xn)) forallne N.

We are going to show thdix,} converges tx and tox,
and thaf{y,} converges ty and toy’ (in such a case;= X’
andy =Y, soF has a unique coupled fixed point). Let

assume thatl(1) holds (the other cases are similar). Using fix

(x,y), we claim that{z,} — x and{wn} — vy (if we take

(X,y'), we will deduce a similar conclusion). Indeed, as

Zp = z=xandwy = w =y, then the mixed<-monotone
property ofF proves that

F(x,y)=x and

(X, ) <
=F(y,x) =Y.

(Y, 20)

7 =F(20,w) XF
w =F (wn,20) =F
As < is transitive, therr; < x andw; = y. By induction,
it can be proved that, < x and w, = y for all n € N.
Applying the contractivity condition7), it follows that,
forallne N,

Y (d(zn+1,%) = Y (d(F (z0,n) ,F (x,Y)))
< @ (max{d(z,x),d («n,Y)})
- (p(max{d (Zn,x) 7d (o‘)f'hy)}) .

Similarly, asy < w, andx = z, foralln e N,

W(d(whia,y) =@ (d(F (¥,X),F (an,z0)))
< @ (max{d(y,wn),d(X,zn)})
— @(max{d(y,wn),d(X,z1)})

Joining the last two inequalities and taking into account
thaty is non-decreasing, for afl € N,

W (max{d (zn+1,X),d (wh+1,Y)})
= max{{ (d(zr+1,%)) , ¥ (d (wht1,Y))}
< ¢ (max{d(z,x),d (en,y)})
— @(max{d(z,,x),d(wh,y)}).

Lemma3 guarantees that
lim max{d (z,x),d (ah,y)} =0,

that is, {z,} — x and {an} — y. The other cases are
similar, so{z,} — X and{wn} — Y. As a consequence,
x=X andy=Y.

Corollary 7.Under the hypotheses of Theoret, also
assume that the following condition holds:

(Uy)for all coupled fixed pointgx,y) and (X,y) of F,
there exists(z, w) € X? verifying, at least, one of the
conditions (1)-(14).

Then F has a unique coupled fixed point.

Prooflf (x,y) and(X,y’) are two arbitrary coupled fixed
points of F, then Theorem 11 guarantees that
(x,y) = (X,¥), soF has a unique coupled fixed point.

The previous result does not say how is the unique
ed point. The following one is more specific. Notice
that we do not assume hypothefib).

Theorem 12Under the hypotheses of Theoretf, let
(x,y) be a coupled fixed point of F such that there exists
z e X verifying, at least, one of the following conditions:

o y=<zZ=X
o X=zZ=YV.

(15)
(16)

Then x=Yy.

ProofLet (x,y) be an arbitrary coupled fixed point &f.
By hypothesis, there exisise X such that, at least, one
of the conditions 15)-(16) holds. Assume, for instance,
that (15) holds (the other case is similar). Let consider the
sequence

Zp=z and z,1=F(z,z) forallneN.
We claim that{z,} converges, at the same time,x@nd
toy. Indeed, agy/ < z= 7y < x, the mixed=<-monotone
property guarantees that, for ale N,

= Y (max{d(z,,x),d (wn,y)}) 7 =F(2,20) <= F (X, 20) = F (x,y) =x and
— @(max{d(z,x),d (an,y)})- 3 =F(20,20) = F(Y.20) 2 F (¥.X) =V.
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As < is transitive, thely < z; < x. Reasoning by induction,
we may prove thay < z, < x for all n € N. Using the
contractivity condition ) with z, < xandz, >y, we have
that

Y (d(z01,%) = Y (d(F (zn,20) ,F(xy)))
< g (max{d(z,x),d(z,Y)})
— @(max{d(z,x),d(z.,y)}).
Similarly, asy < z, andx = z,, then

Y(d(zr1,y) = @ (d(Y,Z041))
=Y (d(F(¥.%),F(z,2)))
< @y (max{d(y,z,).d(x,zn)})
—@(max{d(y,zn),d(x,zn)}).
Joining the last two inequalities and taking into account
thaty is non-decreasing, for afl € N,
¥ (max{d(zn+1,%),d (zn42,Y)})
=max{y (d(z141,X), ¥ (d (zn:1,Y))}
< ¢ (max{d(z,x),d(zn,y)})
— @(max{d(zn,x),d (zn,y)}).
Lemma3 guarantees that

lim max{d (z,+1,x),d (zn11.y)} =0,

that is,{z,} — xand{z,} — y. By the unicity of the limit
of a convergent sequence in a metric space, xhely.

Corollary 8.Under the hypotheses of TheorEdn also
assume that the following condition is fulfilled:

(Uz)for all coupled fixed poingx,y) of F, there exists
X such that, at least, one of the conditiod%)¢(16)
holds.

Then any coupled fixed point of F is of the fopax),
for some x X.

Prooflf (x,y) is an arbitrary coupled fixed point &f, then
X =y by Theoreml2.

And, finally, we join assumptiondJ;) and(U) in the
same result.

Corollary 9.Under the hypotheses of TheorEdn also
assume that condition$);) and (U,) hold. Then f has a
unique coupled fixed point, which is of the fofryx), for
some x X.

In particular, there exists a unique & X such that
F (X, X) = x.

Theorem 11 and Corollaries8 and 9 can be

particularized in several ways, as the consequences o

Theorem6 in Section4. Finally, we only highlight the
following statements: the first one is a particular version
of the mentioned results using a partial ordeon X (we

Corollary 10.Let (X,d) be a complete metric space and
let F: X x X — X be a given mapping. Suppose that there

exist functionsp € .7 andg € .7}, such that

Y(d(F(xy),F(uv)) <@ (max{d(xu),d(y,v)})
—@(max{d(x,u),d(y,v)})

for all x,y,u,v € X. Then F has a unique coupled fixed
point, which is of the forngx, x) for some » X.

Now, we deduce the following consequences.

Theorem 13Gnana Bhaskar and Laksmikhantam’s
coupled fixed point theorems follows from Theorgin
and Corollaries8 and9.

As conclusion, we must highlight thaRan and
Reuring’s theorem and Nieto and Rodriguez-Lopez's
theorem are different faces of a same theorem, using a
common condition

Following the same techniques, it is possible to show
existence and uniqueness theorems for Berinde and
Borcut's tripled fixed points and Karapinar's quadrupled
fixed points.
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