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Abstract: In this paper, we show the very close relationship between two of the pioneering theorems on fixed point theory in partially
ordered metric spaces, such us Ran and Reuring’s theorem andNieto and Rodrı́guez-López’s theorem. Although they seemto be
independent, they are both two faces of an unified result. Furthermore, we extend the kind of control functions involved in the
contractivity condition and we use preorders rather than partial orders, which have the main advantage of unify, in a same condition,
two usual cases: the framework in which none binary relationis considered and the partially ordered case.
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1 Introduction

A contractionin a metric space(X,d) is a self-map
T : X → X such that there exists a constantλ ∈ [0,1)
verifying d(Tx,Ty) ≤ λ d(x,y) for all x,y ∈ X. The
celebrated Banach Contractive Mapping Principle
guarantees that every contraction in a complete metric
space into itself has a uniquefixed point, that is, a point
x∈ X such thatTx= x.

In 2004, Ran and Reuring iniciated the study of fixed
point theory in metric spaces provided with a partial order.
Theorem 1(Ran and Reurings [19], Theorem 2.1). Let
(X,4) be an ordered set endowed with a metric d and T:
X → X be a given mapping. Suppose that the following
conditions hold:

(a)(X,d) is complete.
(b)T is nondecreasing (w.r.t.4).
(c)T is continuous.
(d)There exists x0 ∈ X such that x0 4 Tx0.
(e)There exists a constantλ ∈ (0,1) such that d(Tx,Ty)≤

λ d(x,y) for all x,y∈ X with x< y.

Then T has a fixed point. Moreover, if for all(x,y)∈X2

there exists z∈ X such that x4 z and y4 z, we obtain
uniqueness of the fixed point.

Nieto and Rodrı́guez-López [18] slightly modified the
hypothesis of the previous result obtaining the following
theorem.

Theorem 2(Nieto and Rodrı́guez-Ĺopez [18], Theorem
2.2). Let (X,4) be an ordered set endowed with a metric
d and T : X → X be a given mapping. Suppose that the
following conditions hold:

(a)(X,d) is complete.
(b)T is nondecreasing (w.r.t.4).
(c)If a nondecreasing sequence{xm} in X converges to a

some point x∈ X, then xm 4 x for all m.
(d)There exists x0 ∈ X such that x0 4 Tx0.
(e)There exists a constantλ ∈ (0,1) such that d(Tx,Ty)≤

λ d(x,y) for all x,y∈ X with x< y.

Then T has a fixed point. Moreover, if for all(x,y)∈X2

there exists z∈ X such that x4 z and y4 z, we obtain
uniqueness of the fixed point.

Both theorems seem to be different because
hypotheses(c) on each result are independent. If we pay
attention to conditions(c) on both theorems, we may see
that they are very different in the following sense: the
continuity is a property on the mappingT, and the
regularity is an assumption in the ordered metric space.
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Consequently, most of results proved after the appearance
of Ran and Reuring’s theorem and Nieto and
Rodrı́guez-López’s theorem in this field of study included
two cases: eitherT is continuous or(X,d,4) is regular.
For instance, in a celebrated work, Gnana Bhaskar and
Lakshmikantham [2] proved the following results.

Theorem 3(Gnana Bhaskar and Lakshmikantham [2],
Theorem 2.1). Let (X,d,4) be an ordered space and let
F : X×X → X be a continuous mapping having the mixed
�-monotone property on X. Assume that there existsλ ∈
[0,1) with

d(F(x,y),F(u,v))≤
λ
2
[ d(x,u)+d(y,v) ]

for all x,y,u,v∈ X such that x< u and y4 v. If there exist
x0,y0 ∈ X such that

x0 4 F(x0,y0) and y0 < F(y0,x0),

then there exist x,y∈ X such that

x= F(x,y) and y= F(y,x).

Theorem 4(Gnana Bhaskar and Lakshmikantham [2],
Theorem 2.2). Let (X,4) be a partially ordered set and
suppose that there exists a metric d in X such that(X,d) is
a complete metric space . Suppose that X has the following
property:

(i)if a non-decreasing sequence{xn} → x, then xn 4 x for
all n ∈ N;

(ii)if a non-increasing sequence{yn} → y, then y4 yn for
all n ∈ N.

Let F : X ×X → X be a mapping having the mixed
�-monotone property on X. Assume that there existsλ ∈
[0,1) with

d(F(x,y),F(u,v))≤
λ
2
[ d(x,u)+d(y,v) ]

for all x,y,u,v∈ X such that x< u and y4 v. If there exist
x0,y0 ∈ X such that

x0 4 F(x0,y0) and y0 < F(y0,x0),

then there exist x,y∈ X such that

x= F(x,y) and y= F(y,x).

Theorem 5(Gnana Bhaskar and Lakshmikantham [2],
Theorem 2.4). Adding the following condition to the
hypothesis of Theorem3:

(C)for all (x,y),(x∗,y∗)∈ X×X there exists(z1,z2) ∈X×
X that is comparable to(x,y) and(x∗,y∗);

we obtain the uniqueness of the coupled fixed point of F.

In the previous results, we can observe the necessity
of distinguishing between whetherT is continuous or
(X,d,4) is regular. After the appearance of these results,
the literature on coupled, tripled, quadrupled (and, even,
multidimensional) fixed point theory in the setting of
partially ordered metric spaces has grown exponentially.
To cite some of them, we refer the reader to Gnana
Bhaskar and Lakshmikantham [2], Lakshmikantham and
Ćirić [3], Choudhury and Kundu [26], Berinde and
Borcut [5,8], Karapınar [13], Karapınar and Luong [15],
Berzig and Samet [7], Roldánet al. [21,22,23,24], Wang
[30], Karapınaret al. [16], Berzig et al. [6], Karapınar
and Agarwal [14], Roldán and Karapınar [20], Agarwalet
al. [1] and Al-Mezelet al. [25], among others.

This work has three main aims. On the one hand, we
present a new condition that unifies the alternative
between whetherT is continuous or the ordered metric
space is regular. Therefore, we show that, although they
are independent conditions, both assumptions are
intimately related. As a consequence, from now on,
researchers interested in this field of study can analyze
both conditions in an unified way. On the other hand, the
second objective is to relax the assumptions on the
control functions involved in the contractivity condition.
Thus, our results extend and unify some well known very
recent results in this field. Finally, we involve preorders
rather than partial orders, which have the main advantage
of unifying, in a same condition, two usual cases: the
framework in which none binary relation is considered
and the partially ordered case.

2 Preliminaries

In the sequel,N= {0,1,2,3, . . .} denotes the set of all
nonnegative integers andR denotes the set of all real
numbers. Henceforth,X andY will denote nonempty sets.
Elements ofX are usually calledpoints.

Let T : X → Y be a mapping. Thedomain of Tis X
and it is denoted by DomT. Its range, that is, the set of
values ofT in Y, is denoted byT(X). A mappingT is
completely characterized by its domain, its range, and the
manner in which eachorigin x ∈ DomT is applied on its
image T(x) ∈ T(X). For simplicity, we denote, as usual,
T(x) by Tx. For any setX, we denote theidentity mapping
on X by IX : X → X, which is defined byIXx = x for all
x∈ X.

Given a self-mappingT : X → X, we will say that a
pointx∈ X is afixed point of Tif Tx= x. We will denote
by Fix(T) the set of all fixed points ofT. Given a mapping
F : X×X →X, acoupled fixed point of Fis a point(x,y)∈
X such thatF (x,y) = x andF (y,x) = y.

Given two mappingsT : X → Y and S : Y → Z, the
composite of T and Sis the mappingS◦T : X → Z given
by

(S◦T)x= STx for all x∈ DomT.

We say that two self-mappingsT,S: X →X arecommuting
if TSx= STxfor all x∈ X (that is,T ◦S= S◦T).
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The iterates of a self-mappingT : X → X are the
mappings{Tn : X → X}n∈N defined by

T0 = IX, T1 = T, T2 = T ◦T,

Tn+1 = T ◦Tn for all n≥ 2.

The notion of metric spaceand the concepts of
convergent sequenceand Cauchy sequencein a metric
space can be found, for instance, in [29]. We will write
{xn} → x when a sequence{xn}n∈N of points of X
converges tox ∈ X in the metric space(X,d). A metric
space(X,d) is completeif every Cauchy sequence inX
converges to some point ofX. The limit of a convergent
sequence in a metric space is unique.

In a metric space(X,d), a mappingT : X → X is
continuous at a point z∈ X if {Txn} → Tz for all
sequence{xn} in X such that {xn} → z. And T is
continuousif it is continuous at every point ofX.

A binary relation on Xis a nonempty subsetR of X×
X. For simplicity, we denotex � y if (x,y) ∈ R, and we
will say that� is the binary relation onX. This notation
let us to writex≺ y whenx� y andx 6= y. We writey� x
whenx� y. A binary relation� on X is reflexiveif x� x
for all x∈ X; it is transitiveif x� z for all x,y,z∈ X such
thatx � y andy � z; and it isantisymmetricif x � y and
y� x imply x= y.

A reflexive and transitive relation onX is a preorder
(or a quasiorder) on X. In such a case,(X,�) is a
preordered space. If a preorder4 is also antisymmetric,
then4 is called apartial order, and(X,4) is a partially
ordered space(or apartially ordered set). We will use the
symbol� for a general binary relation onX or a preorder
onX, and the symbol4 for a partial order onX.

The usual order of the set of all real numbersR is
denoted by≤. In fact, this partial order can be induced on
any non-empty subsetA⊆ R. Let4 be the binary relation
onR given by

x4 y ⇔ ( x= y or x< y≤ 0 ) .

Then4 is a partial order onR, but it is different from≤.
Any equivalence relation is a preorder.

An ordered metric spaceis a triple (X,d,4) where
(X,d) is a metric space and4 is a partial order onX. And
if � is a preorder onX, then (X,d,�) is a preordered
metric space.
Definition 1.Let (X,d) be a metric space, let A⊆ X be
a non-empty subset and let� be a binary relation on X.
Then(A,d,�) is said to be:

–non-decreasing-regularif for all sequence{xm} ⊆ A
such that{xm} → a∈ A and xm � xm+1 for all m∈ N,
we have that xm � a for all m∈ N;

–non-increasing-regularif for all sequence{xm} ⊆ A
such that{xm} → a∈ A and xm � xm+1 for all m∈ N,
we have that xm � a for all m∈ N;

–regular if it is both non-decreasing-regular and non-
increasing-regular.

Some authors calledordered completeto a regular
ordered metric space (see, for instance, [10]).
Furthermore, Roldánet al. called sequential monotone
propertyto non-decreasing-regularity (see [21]).

Let � be a binary relation onX and letT : X → X be
a mapping. We say thatT is�-non-decreasingif Tx� Ty
for all x,y∈ X such thatx� y.

Definition 2.Let X be a non-empty set endowed with a
binary relation� and let F : X2 → X be a mapping. The
mapping F is said to have themixed �-monotone
propertyif F (x,y) is monotone�-non-decreasing in x and
monotone�-non-increasing in y, that is, for all x,y∈ X ,

x1,x2 ∈ X, x1 � x2 ⇒ F(x1,y)� F(x2,y)

and

y1,y2 ∈ X, y1 � y2 ⇒ F(x,y1)� F(x,y2).

3 Control functions

One of the most important ingredients in a
contractivity condition is the kind of control function that
are used. In this paper, we extend the control functions
that were used in previous manuscripts.

Let consider the following families of control
functions.

Falt = {φ : [0,∞)→ [0,∞) : φ continuous,

non-decreasing,φ (t) = 0⇔ t = 0} ,

F
′
alt = {φ : [0,∞)→ [0,∞) : φ lower semi-continuous,

φ (t) = 0⇔ t = 0} .

Functions in Falt are called altering distance
functions(see [17,6,20,22]). To extend the previous kind
of functions, we will also consider:

F = {φ : [0,∞)→ [0,∞) : φ continuous from the right,

non-decreasing,φ (t) = 0⇔ t = 0} .

Clearly,Falt ⊂ F .
Example 1.The functionψ : [0,∞)→ [0,∞), defined by

ψ (t) =

{

t, if 0 ≤ t < 1,
2t, if t ≥ 1,

belongs toF but it is not an altering distance function.

Under the non-decreasingness assumption, upper
semi-continuity implies right-continuity.

Lemma 1.If ψ : [0,∞) → [0,∞) is non-decreasing and
upper semi-continuous, thenψ is continuous from the
right.
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Proof.To prove it, lets0 ≥ 0 be arbitrary. The upper semi-
continuity ofψ in s0 means that

ψ (s0)≥ limsup
t→s0

ψ (t) .

Let {tn} be an arbitrary strictly decreasing sequence
converging tos0. Therefore,s0 < tn+1 < tn for all n ∈ N.
As ψ is non-decreasing,ψ (s0) ≤ ψ (tn+1) ≤ ψ (tn) for all
n ∈ N, which means that{ψ (tn)} is a bounded below,
non-increasing sequence. As a consequence, it is
convergent and

ψ (s0)≤ lim
n→∞

ψ (tn) .

Therefore,

ψ (s0)≤ lim
n→∞

ψ (tn)≤ limsup
t→s0

ψ (t)≤ ψ (s0) ,

which means that

lim
n→∞

ψ (tn) = ψ (s0) .

As a consequence,ψ is continuous ats0 from the right.

The following properties are well known using
functions onFalt, but they are also valid inF .

Lemma 2.Let ψ ,φ : [0,∞)→ [0,∞) be two functions such
that ψ is non-decreasing andφ−1 ({0}) = {0}, and let
t,s, r ∈ [0,∞).

1.If ψ (t)≤ ψ (s)−φ (r), then t< s or r= 0.
2.If ψ also verifies ψ−1 ({0}) = {0} and

ψ (t)≤ (ψ −φ)(s), then t< s or t= s= 0.

Proof.(1) Assume thatt ≥ s and we have to prove that
r = 0. Indeed, asψ is non-decreasing,ψ (s) ≤ ψ (t).
Therefore,ψ (t) ≤ ψ (s)− φ (r) ≤ ψ (s) ≤ ψ (t). As a
consequence,ψ(t) = ψ(s) andφ(r) = 0. Thereforer = 0.

(2) Next, assume thatψ (t)≤ (ψ −φ)(s) andt ≥ s. By
item (1), s= 0. Therefore, 0≤ ψ (t) ≤ ψ(0)− φ (0) = 0,
soψ (t) = 0 andt = 0.

Lemma 3.Let ψ ∈ F , φ ∈ F ′
alt and let{tn} ⊂ [0,∞) be a

sequence such that

ψ (tn+1)≤ ψ (tn)−φ (tn) for all n ∈ N. (1)

Then{tn}→ 0.

Proof.We distinguish two cases.
Case 1. There exists n0 ∈ N such that tn0 ≤ tn0+1. In

this case, asψ is non-decreasing, we have that
ψ
(

tn0

)

≤ ψ
(

tn0+1
)

≤ ψ
(

tn0

)

− φ
(

tn0

)

≤ ψ
(

tn0

)

.
Therefore, ψ

(

tn0

)

= ψ
(

tn0+1
)

and φ
(

tn0

)

= 0. As
φ ∈ F ′

alt, then tn0 = 0. Moreover,
0 ≤ ψ

(

tn0+1
)

≤ ψ
(

tn0

)

− φ
(

tn0

)

= ψ (0)− φ (0) = 0, so
ψ
(

tn0+1
)

= 0 and alsotn0+1 = 0. By induction, we can
show thattn = 0 for all n≥ n0. In particular,{tn}→ 0.

Case 2. tn+1 < tn for all n ∈ N. In this case,{tn} is
a bounded below, strictly decreasing sequence. Then, it is
convergent. LetL ∈ [0,∞) be its limit. ThenL < tn+1 < tn
for all n∈ N. As ψ is continuous from the right,

ψ (L) = lim
n→∞

ψ (tn) .

By (1),

0≤ φ (tn)≤ ψ (tn)−ψ (tn+1) for all n∈N.

Letting n→ ∞, we deduce that{φ (tn)} → 0. But, asφ is
lower semi-continuous,

0≤ φ (L)≤ lim inf
t→L

φ (t)≤ lim
n→∞

φ (tn) = 0.

Hence,φ (L) = 0 andL = 0.

Lemma 4.Let {tn},{sn} ⊂ [0,∞) be two sequences that
converge to the same limit L∈ [0,∞). Assume that L< tn
for all n ∈ N and there exist two functionsψ ∈ F and
φ ∈ F ′

alt such that

ψ (tn)≤ ψ (sn)−φ (sn) for all n ∈N. (2)

Then L= 0.

Proof.By item 2 of Lemma2, for all n∈N,

tn < sn or tn = sn = 0.

The second case is impossible because 0≤ L < tn for all
n∈N. As a consequence,

L < tn < sn for all n∈N.

As ψ is right-continuous atL, we deduce that

ψ(L) = lim
n→∞

ψ (tn) = lim
n→∞

ψ (sn) .

By (2),

0≤ φ (sn)≤ ψ (sn)−ψ (tn+1) for all n∈ N.

Letting n→ ∞, we deduce that{φ (sn)} → 0. But, asφ is
lower semi-continuous,

0≤ φ (L)≤ lim inf
t→L

φ (t)≤ lim
n→∞

φ (sn) = 0.

Hence,φ (L) = 0 andL = 0.

4 Main results

We introduce the following notion, which will be the
common condition of Theorems1 and2.
Definition 3.Given a metric space(X,d) endowed with a
binary relation �, a mapping T : X → X is
(d,�)-nondecreasing-continuous atz0 ∈ X if we have that
{Txm} converges to Tz0 for all �-nondecreasing
sequence {xm} convergent to z0. And T is
(d,4)-nondecreasing-continuous if it is
(d,4)-nondecreasing-continuous at every point of X.
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It is obvious that every continuous mapping is also
non-decreasing-continuous, but the converse is false.

Example 2.If R is endowed with the Euclidean metric
(de(x,y) = |x− y| for all x,y ∈ R) and its usual partial
order≤, then the mapping

Tx=

{

0, if x≤ 0,
1, if x> 0,

is (de,≤)-non-decreasing-continuous onR, but it is not
continuous atx= 0.

The main result in this paper is the following one.

Theorem 6.Let (X,d,�) be a preordered metric space
and let T : X → X be a given mapping. Suppose that the
following conditions hold:

(a)(X,d) is complete.
(b)T is nondecreasing (w.r.t.�).
(c)T is(d,�)-nondecreasing-continuous.
(d)There exists x0 ∈ X such that x0 � Tx0.
(e)There exist functionsψ ∈ F andφ ∈ F ′

alt such that

ψ (d (Tx,Ty))≤ ψ (d (x,y))−φ (d (x,y)) (3)

for all x,y∈ X with x� y.

Then T has a fixed point.
Furthermore, if the following assumption is satisfied:

(U)for all x,y ∈ Fix(T) there exists z∈ X such that z is
�-comparable, at the same time, to x and to y;

then we obtain uniqueness of the fixed point.

Proof.Let x0 ∈ X be any point such thatx0 � Tx0 and let
{xm} the Picard sequence ofT, that is,

xm+1 = Txm, for all m≥ 0.

Taking into account thatT is a�-non-decreasing mapping,
we observe that

x0 � Tx0 = x1 implies x1 = Tx0 � Tx1 = x2.

Inductively, we obtain

x0 � x1 � x2 � . . .� xm−1 � xm � xm+1 � . . . (4)

If there exists m0 such that xm0 = xm0+1, then
xm0 = xm0+1 = Txm0, that is,T has a fixed point, which
completes the existence part of the proof. On the contrary
case, assume thatxm 6= xm+1 for all m ∈ N, that is,
d (xm,xm+1) > 0 for all m ≥ 0. Regarding (4), we set
x= xm andy= xm+1 in (3). Then we get, for allm∈ N,

ψ (d(xm+1,xm+2)) = ψ (d(Txm,Txm+1))

≤ ψ(d(xm,xm+1))−φ(d(xm,xm+1)).

By Lemma3, we deduce that

lim
m→∞

d(xm,xm+1) = 0.

Next, we will prove that{xm} is a Cauchy sequence in
(X,d) reasoning by contradiction. Suppose that{xm} is
not Cauchy. Then, following a classical argument (see, for
instance, [22]), there exists a positive real numberε0 > 0
and two subsequences{xn(k)} and{xm(k)} of {gxm} such
that, for allk∈ N,

k≤ n(k)< m(k)< n(k+1),

d(xn(k),xm(k)−1)≤ ε0 < d(xn(k),xm(k))

and also

lim
k→∞

d(xn(k),xm(k)) = lim
k→∞

d(xn(k)−1,xm(k)−1) = ε0. (5)

Notice that as� is transitive, thenxn(k)−1 � xm(k)−1 for all
k∈N. Using the contractivity condition (3), for all k∈ N,

ψ(d(xn(k),xm(k))) = ψ(d(Txn(k)−1,Txm(k)−1))

≤ ψ(d(xn(k)−1,xm(k)−1))−φ(d(xn(k)−1,xm(k)−1)).

By (5), {tk = d(xn(k),xm(k))}k∈N and
{sk = d(xn(k)−1,xm(k)−1)}k∈N are two sequences in[0,∞)
converging to the same limitL = ε0 and verifying

ψ (tk)≤ ψ (sk)−φ (sk) for all k∈ N.

Then, it follows from Lemma4 that ε0 = 0, which is a
contradiction. As a consequence, we must admit that{xm}
is a Cauchy sequence in(X,d).

Taking into account that(X,d) is complete, there exists
z∈ X such that{xm} → z. In addition to this, as{xm} is
a convergent non-decreasing sequence, andT is (d,�)-
nondecreasing-continuous, it follows that

{Txm}→ Tz.

But as{Txm = xm+1} → z, the uniqueness of the limit of
a convergent sequence in a metric space guarantees that
Tz= z, that is,z is a fixed point ofT.

Next, to prove the uniqueness of the fixed point, letx
and y be two arbitrary fixed points ofT. By hypothesis
(U), there existsz∈ X such thatz is �-comparable, at the
same time, tox and toy. Let {zm} be the Picard sequence
of T based onz, that is,z0 = z and zm+1 = Tzm for all
m∈ N.We are going to show that{zm}→ x and{zm}→ y
and, by the uniqueness of the limit, we will conclude that
x = y. Indeed, asz is �-comparable tox, thenz� x or
z� x. Assume thatz� x (the other case is similar). AsT
is�-non-decreasing,

z0 = z� x implies z1 = Tz0 � Tx= x.

By induction, it is possible to deduce thatzm � x for all
m∈ N. Then, applying the contractivity condition (3), we
deduce that, for allm∈ N,

ψ (d (x,zm+1)) = ψ (d (Tx,Tzm))

≤ ψ (d (x,zm))−φ (d (x,zm)) .
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Again by Lemma3, we deduce that

lim
m→∞

d (x,zm+1) = 0,

so {zm} → x. If we have supposed thatx � z, the same
argument would have shown that{zm} → x. Similarly, it
can be proved that, in any case,{zm} → y. As a
consequence,x= y andT has a unique fixed point.

Remark.Following Boyd and Wong [9], the functionsψ
andφ verifying (3) have only to be defined onP, where
P= {d (x,y) : x,y∈ X} ⊆ [0,∞) is the range ofd. Thus, if
the metric space(X,d) is bounded, that is, if there exists
M > 0 such thatd (x,y) ≤ M for all x,y∈ X, then it is not
necessary to considerψ and φ defined on the whole
interval [0,∞). In this case, the function
ψ : [0,M+1) → [0,∞) defined byψ (t) = t/(M+1− t)
for all t ∈ [0,M+1), which cannot be continuously
extended tot = M+1, can be useful to apply Theorem6.

As Falt ⊂ F , the following result is immediate.

Corollary 1.Let (X,d,�) be a preordered metric space
and let T : X → X be a given mapping. Suppose that the
following conditions hold:

(a)(X,d) is complete.
(b)T is nondecreasing (w.r.t.�).
(c)T is(d,�)-nondecreasing-continuous.
(d)There exists x0 ∈ X such that x0 � Tx0.
(e)There exist functionsψ ∈F andφ ∈F ′

alt such that, for
all x,y∈ X with x� y,

ψ (d (Tx,Ty))≤ ψ (d (x,y))−φ (d (x,y))

Then T has a fixed point. Furthermore, if the following
assumption is satisfied:

(U)for all x,y ∈ Fix(T) there exists z∈ X such that z is
�-comparable, at the same time, to x and to y;

then we obtain uniqueness of the fixed point.

The following result follows from Lemma1.

Corollary 2.Let (X,d,�) be a preordered metric space
and let T : X → X be a given mapping. Suppose that the
following conditions hold:

(a)(X,d) is complete.
(b)T is nondecreasing (w.r.t.�).
(c)T is(d,�)-nondecreasing-continuous.
(d)There exists x0 ∈ X such that x0 � Tx0.
(e)There exists a non-decreasing, upper-semicontinuous

function ψ : [0,∞) → [0,∞) such that
ψ−1 ({0}) = {0} and a functionφ ∈ F ′

alt verifying,
for all x,y∈ X with x� y,

ψ (d (Tx,Ty))≤ ψ (d (x,y))−φ (d (x,y))

Then T has a fixed point. Furthermore, if the following
assumption is satisfied:

(U)for all x,y ∈ Fix(T) there exists z∈ X such that z is
�-comparable, at the same time, to x and to y;

then we obtain uniqueness of the fixed point.

If we take ψ (t) = t for all t ∈ [0,∞), it follows that
ψ ∈ Falt and we have the following particular case.

Corollary 3.Let (X,d,�) be a preordered metric space
and let T : X → X be a given mapping. Suppose that the
following conditions hold:

(a)(X,d) is complete.
(b)T is nondecreasing (w.r.t.�).
(c)T is(d,�)-nondecreasing-continuous.
(d)There exists x0 ∈ X such that x0 � Tx0.
(e)There exists a functionφ ∈ F ′

alt such that, for all x,y∈
X with x� y,

d (Tx,Ty)≤ d (x,y)−φ (d (x,y))

Then T has a fixed point. Furthermore, if the following
assumption is satisfied:

(U)for all x,y ∈ Fix(T) there exists z∈ X such that z is
�-comparable, at the same time, to x and to y;

then we obtain uniqueness of the fixed point.

The previous corollary is also valid if we assume that
φ is a continuous function. In addition to this, ifλ ∈ [0,1)
and we considerφ (t) = λ t for all t ∈ [0,∞), it follows that
φ ∈ F ′

alt and we have the following particular case.

Corollary 4.Let (X,d,�) be a preordered metric space
and let T : X → X be a given mapping. Suppose that the
following conditions hold:

(a)(X,d) is complete.
(b)T is nondecreasing (w.r.t.�).
(c)T is(d,�)-nondecreasing-continuous.
(d)There exists x0 ∈ X such that x0 � Tx0.
(e)There exists a constantλ ∈ [0,1) such that, for all x,y∈

X with x� y,

d (Tx,Ty)≤ λ d (x,y)

Then T has a fixed point. Furthermore, if the following
assumption is satisfied:

(U)for all x,y ∈ Fix(T) there exists z∈ X such that z is
�-comparable, at the same time, to x and to y;

then we obtain uniqueness of the fixed point.

Next we deduce that Theorems1 and 2 are simple
consequences of our main result.

Theorem 7.Theorem1 follows from Theorem6.

Proof.It follows from the fact that ifT is continuous, then
it is also(d,�)-nondecreasing-continuous, and Corollary
4 is applicable.
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Theorem 8.Theorem2 follows from Theorem6.

Proof.We have to prove that, under all conditions of
Theorem2, T is �-nondecreasing-continuous. Indeed, let
{xm} ⊆ X be a�-nondecreasing convergent sequence in
X, and let u ∈ X be its limit. By hypothesis(c) in
Theorem2, we have thatxm � u for all m. Applying the
contractivity condition, we have that

d(Txm,Tu)≤ λ d(xn,u) for all n∈ N.

Then {Txm} → Tu, and this proves thatT is
(d,�)-nondecreasing-continuous. Therefore, Corollary4
is applicable.

The reader may notice that the continuity ofT
guarantees the�-non-decreasing continuity ofT.
However, althoughT is �-non-decreasing, the regularity
of (X,d,�) does not imply thatT is �-non-decreasing
continuous. In fact, the contractivity condition plays a key
role in this proof.

One of the main advantages of preorders versus
partial orders is that the following two corollaries, with
their respective consequences (as before) follow
immediately from Theorem6. In the following result, we
involve a partial order4.

Corollary 5(Harjani and Sadarangani [12]). Let (X,4)
be a partially ordered set and suppose that there exists a
metric d in X such that(X,d) is a complete metric space.
Let T : X → X be a4-non-decreasing mapping such that

ψ (d (Tx,Ty))≤ ψ (d (x,y))−φ (d (x,y)) for all x < y,

where ψ and φ are altering distance functions. Also
assume that, at least, one of the following conditions
holds.

(i)T is continuous, or
(ii)if a 4-non-decreasing sequence{xn} in X converges to

a some point x∈ X, then xn 4 x for all n.

If there exists x0 ∈ X with x0 4 Tx0, then T has a fixed
point.

Furthermore, if for all x,y∈ X there exists z∈ X such
that z is4-comparable, at the same time, to x and to y,
then we obtain uniqueness of the fixed point.

In the following statement we use the fact that the
binary relation�0 onX, defined by

x�0 y for all x,y∈ X (6)

is a preorder onX.

Corollary 6.Let (X,d) be a complete metric space and let
T : X → X be a given mapping. Suppose that there exist
functionsψ ∈ F andφ ∈ F ′

alt such that

ψ (d (Tx,Ty))≤ψ (d (x,y))−φ (d (x,y)) for all x,y∈X.

Then T has a unique fixed point.

Theorem 9(Dutta and Choudhury [11], Theorem 2.1).
Let (X,d) be a complete metric space and let T: X → X
be a self-mapping satisfying the inequality

ψ(d(Tx,Ty))≤ ψ(d(x,y))−ϕ(d(x,y))

for all x,y ∈ X, where ψ ,ϕ : [0,∞[ → ∞ are both
continuous and monotone nondecreasing functions with
ψ(t) = ϕ(t) = 0 if and only if t= 0. Then T has a unique
fixed point.

5 Coupled fixed point theorems

In this section, we extend Theorem6 to the coupled
case. The following result will be useful in the proof of the
main result of this section.
Lemma 5.Let {xn},{yn} ⊆ X be two sequences on a
metric space(X,d) such that

lim
n→∞

d (xn,xn+1) = lim
n→∞

d (yn,yn+1) = 0.

Suppose that, at least, one of them is not Cauchy in
(X,d). Then there existε0 > 0 and two sequences of
natural numbers{n(k)}k∈N and{m(k)}k∈N such that, for
all k ∈ N,

k≤ n(k)< m(k) < n(k+1),

max
{

d(xn(k),xm(k)−1),d(yn(k),ym(k)−1)
}

≤ ε0

< max
{

d(xn(k),xm(k)),d(yn(k),ym(k))
}

and also

lim
k→∞

[

max
{

d(xn(k),xm(k)),d(yn(k),ym(k))
}

]

= lim
k→∞

[

max
{

d(xn(k)−1,xm(k)−1),d(yn(k)−1,ym(k)−1)
}

]

= ε0.

Theorem 10.Let (X,d,�) be a preordered metric space
and let F : X ×X → X be a given mapping. Suppose that
the following conditions hold:

(a)(X,d) is complete.
(b)F has the mixed�-monotone property.
(c)If z,ω ∈ X are two points and{xn},{yn} ⊆ X are two

sequences such that{xn} → z, {yn} → ω , and xn �
xn+1 and yn � yn+1 for all n ∈ N, then{F (xn,yn)} →
F (z,ω) and{F (yn,xn)}→ F (ω ,z).

(d)There exist x0,y0 ∈ X such that x0 � F (x0,y0) and y0 �
F (y0,x0).

(e)There exist functionsψ ∈ F andφ ∈ F ′
alt such that

ψ (d (F (x,y) ,F (u,v)))≤ ψ (max{d (x,u) ,d (y,v)})

−φ (max{d (x,u) ,d (y,v)}) (7)

for all x,y,u,v∈ X with x� u and y� v.
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Then F has, at least, a coupled fixed point.

Proof.Starting from the pointsx0,y0 ∈ X such thatx0 �
F (x0,y0) andy0 � F (y0,x0), we consider the sequences
{xn} and{yn} defined by

xn+1 = F (xn,yn) and yn+1 = F(yn,xn) for all n∈ N.
(8)

Using thatF has the mixed�-monotone property, it is
possible to prove that

xn � xn+1 and yn � yn+1 for all n∈ N.

Then, applying the contractivity condition (7), it follows
that

ψ (d (xn+1,xn+2)) = ψ (d (F (xn,yn) ,F (xn+1,yn+1)))

≤ ψ (max{d (xn,xn+1) ,d (yn,yn+1)})

−φ (max{d (xn,xn+1) ,d (yn,yn+1)})

and, similarly, using thatyn+1 � yn andxn+1 � xn,

ψ (d (yn+1,yn+2)) = ψ (d (F (yn,xn) ,F (yn+1,xn+1)))

= ψ (d (F (yn+1,xn+1) ,F (yn,xn)))

≤ ψ (max{d (yn+1,yn) ,d (xn+1,xn)})

−φ (max{d (yn+1,yn) ,d (xn+1,xn)}) .

Therefore, asψ is non-decreasing,

ψ (max{d (xn+1,xn+2) ,d (yn+1,yn+2)})

= max{ψ (d (xn+1,xn+2)) ,ψ (d (yn+1,yn+2))}

≤ ψ (max{d (xn,xn+1) ,d (yn,yn+1)})

−φ (max{d (xn,xn+1) ,d (yn,yn+1)}) .

By Lemma3, we deduce that

lim
n→∞

max{d (xn,xn+1) ,d (yn,yn+1)}= 0,

that is,

{d (xn,xn+1)}→ 0 and {d (yn,yn+1)}→ 0.

Next, we show that{xn} and {yn} are Cauchy
sequences on(X,d) reasoning by contradiction. If, at
least, one of them is not a Cauchy sequence, Lemma5
guarantees that there existε0 > 0 and two sequences of
natural numbers{n(k)}k∈N and{m(k)}k∈N such that, for
all k∈ N,

k≤ n(k)< m(k)< n(k+1),

max
{

d(xn(k),xm(k)−1),d(yn(k),ym(k)−1)
}

≤ ε0

< max
{

d(xn(k),xm(k)),d(yn(k),ym(k))
}

, (9)

and also

lim
k→∞

[

max
{

d(xn(k),xm(k)),d(yn(k),ym(k))
}

]

= lim
k→∞

[

max
{

d(xn(k)−1,xm(k)−1),d(yn(k)−1,ym(k)−1)
}

]

= ε0. (10)

As � is transitive, we have thatxn(k)−1 � xm(k)−1 and
yn(k)−1 � ym(k)−1 for all k ∈ N. Then, applying the
contractivity condition (7), it follows that, for allk∈N,

ψ(d(xn(k),xm(k)))

= ψ(d(F(xn(k)−1,yn(k)−1),F(xm(k)−1,ym(k)−1)))

≤ ψ(max{d(xn(k)−1,xm(k)−1),d(yn(k)−1,ym(k)−1)})

−φ(max{d(xn(k)−1,xm(k)−1),d(yn(k)−1,ym(k)−1)}).

Similarly, asym(k)−1 � yn(k)−1 andxm(k)−1 � xn(k)−1 for all
k∈ N, we have that

ψ(d(yn(k),ym(k))) = ψ(d(ym(k),yn(k)))

= ψ(d(F(ym(k)−1,xm(k)−1),F(yn(k)−1,xn(k)−1)))

≤ ψ(max{d(ym(k)−1,yn(k)−1),d(xm(k)−1,xn(k)−1)})

−φ(max{d(ym(k)−1,yn(k)−1),d(xm(k)−1,xn(k)−1)})

= ψ(max{d(xn(k)−1,xm(k)−1),d(yn(k)−1,ym(k)−1)})

−φ(max{d(xn(k)−1,xm(k)−1),d(yn(k)−1,ym(k)−1)}).

As ψ is non-decreasing, it yields

ψ(max{d(xn(k),xm(k)),d(yn(k),ym(k))})

= max{ψ(d(xn(k),xm(k))),ψ(d(yn(k),ym(k)))}

≤ ψ(max{d(xn(k)−1,xm(k)−1),d(yn(k)−1,ym(k)−1)})

−φ(max{d(xn(k)−1,xm(k)−1),d(yn(k)−1,ym(k)−1)}).

If we consider the sequences

{ tk = max{d(xn(k),xm(k)),d(yn(k),ym(k))}}k∈N and

{sk = max{d(xn(k)−1,xm(k)−1),d(yn(k)−1,ym(k)−1)}}k∈N,

we have proved thatψ (tk) ≤ ψ (sk)− φ (sk) for all k ∈
N. Moreover, by (10), {tk} and{sk} converge to the same
limit, which is L = ε0, and by (9), L= ε0 < tk for all k∈N.
Using Lemma4, we conclude thatε0 = L = 0, which is a
contradiction. Then, we must accept that both sequences,
{xn} and{yn}, are Cauchy sequences in(X,d). As (X,d)
is complete, there existsz,ω ∈ X such that{xn} → z and
{yn}→ ω . Let show that(z,ω) is a coupled fixed point of
F.

As {xn} is �-non-decreasing and converges toz, and
{yn} is �-non-increasing and converges toω , assumption
(c) guarantees that {F (xn,yn)} → F (z,ω) and
{F (yn,xn)} → F (ω ,z). Then {xn+1} → F (z,ω) and
{yn+1} → F (ω ,z) by (8). As the limit of a convergent
sequence in a metric space is unique, thenF (z,ω) = z
andF (ω ,z) = ω , that is,(z,ω) is a coupled fixed point of
F.
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6 Uniqueness

In this section we study the uniqueness of the coupled
fixed point in two senses.
Theorem 11.Under the hypotheses of Theorem10, let
(x,y) and (x′,y′) be two coupled fixed points of F such
that there exists(z,ω) ∈ X2 verifying, at least, one of the
following conditions hold:

• z� x, z� x′, ω � y, ω � y′; (11)

• z� x, z� x′, ω � y, ω � y′; (12)

• z� x, z� x′, ω � y, ω � y′; (13)

• z� x, z� x′, ω � y, ω � y′. (14)

Then(x,y) = (x′,y′), that is, both are the same coupled
fixed point.

Proof.Let (x,y) and (x′,y′) be arbitrary coupled fixed
points ofF. By hypothesis, there exists(z,ω) ∈ X2 such
that, at least, one of the four conditions (11)-(14) holds.
Let {zn} and{ωn} be the sequences defined by

(z0,ω0) = (z,ω) and

(zn+1,ωn+1) = (F (xn,yn) ,F (yn,xn)) for all n∈ N.

We are going to show that{xn} converges tox and tox′,
and that{yn} converges toy and toy′ (in such a case,x= x′

and y = y′, so F has a unique coupled fixed point). Let
assume that (11) holds (the other cases are similar). Using
(x,y), we claim that{zn} → x and{ωn} → y (if we take
(x′,y′), we will deduce a similar conclusion). Indeed, as
z0 = z� x andω0 = ω � y, then the mixed�-monotone
property ofF proves that

z1 = F (z0,ω0)� F (x,ω0)� F (x,y) = x and

ω1 = F (ω0,z0)� F (y,z0)� F (y,x) = y.

As � is transitive, thenz1 � x andω1 � y. By induction,
it can be proved thatzn � x and ωn � y for all n ∈ N.
Applying the contractivity condition (7), it follows that,
for all n∈ N,

ψ (d (zn+1,x)) = ψ (d (F (zn,ωn) ,F (x,y)))

≤ ψ (max{d (zn,x) ,d (ωn,y)})

−φ (max{d (zn,x) ,d (ωn,y)}) .

Similarly, asy� ωn andx� zn for all n∈ N,

ψ (d (ωn+1,y)) = ψ (d (F (y,x) ,F (ωn,zn)))

≤ ψ (max{d (y,ωn) ,d (x,zn)})

−φ (max{d (y,ωn) ,d (x,zn)})

= ψ (max{d (zn,x) ,d (ωn,y)})

−φ (max{d (zn,x) ,d (ωn,y)}) .

Joining the last two inequalities and taking into account
thatψ is non-decreasing, for alln∈ N,

ψ (max{d (zn+1,x) ,d (ωn+1,y)})

= max{ψ (d (zn+1,x)) ,ψ (d (ωn+1,y))}

≤ ψ (max{d (zn,x) ,d (ωn,y)})

−φ (max{d (zn,x) ,d (ωn,y)}) .

Lemma3 guarantees that

lim
n→∞

max{d (zn,x) ,d (ωn,y)}= 0,

that is, {zn} → x and {ωn} → y. The other cases are
similar, so{zn} → x′ and{ωn} → y′. As a consequence,
x= x′ andy= y′.

Corollary 7.Under the hypotheses of Theorem10, also
assume that the following condition holds:

(U1)for all coupled fixed points(x,y) and (x′,y′) of F,
there exists(z,ω) ∈ X2 verifying, at least, one of the
conditions (11)-(14).

Then F has a unique coupled fixed point.

Proof.If (x,y) and(x′,y′) are two arbitrary coupled fixed
points of F , then Theorem 11 guarantees that
(x,y) = (x′,y′), soF has a unique coupled fixed point.

The previous result does not say how is the unique
fixed point. The following one is more specific. Notice
that we do not assume hypothesis(U).

Theorem 12.Under the hypotheses of Theorem10, let
(x,y) be a coupled fixed point of F such that there exists
z∈ X verifying, at least, one of the following conditions:

• y� z� x; (15)

• x� z� y. (16)

Then x= y.

Proof.Let (x,y) be an arbitrary coupled fixed point ofF .
By hypothesis, there existsz∈ X such that, at least, one
of the conditions (15)-(16) holds. Assume, for instance,
that (15) holds (the other case is similar). Let consider the
sequence

z0 = z and zn+1 = F (zn,zn) for all n∈ N.

We claim that{zn} converges, at the same time, tox and
to y. Indeed, asy � z= z0 � x, the mixed�-monotone
property guarantees that, for alln∈ N,

z1 = F (z0,z0)� F (x,z0)� F (x,y) = x and

z1 = F (z0,z0)� F (y,z0)� F (y,x) = y.
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As� is transitive, theny� z1 � x. Reasoning by induction,
we may prove thaty � zn � x for all n ∈ N. Using the
contractivity condition (7) with zn � x andzn � y, we have
that

ψ (d (zn+1,x)) = ψ (d (F (zn,zn) ,F(x,y)))

≤ ψ (max{d (zn,x) ,d (zn,y)})

−φ (max{d (zn,x) ,d (zn,y)}) .

Similarly, asy� zn andx� zn, then

ψ (d (zn+1,y)) = ψ (d (y,zn+1))

= ψ (d (F (y,x) ,F (zn,zn)))

≤ ψ (max{d (y,zn) ,d (x,zn)})

−φ (max{d (y,zn) ,d (x,zn)}) .

Joining the last two inequalities and taking into account
thatψ is non-decreasing, for alln∈ N,

ψ (max{d (zn+1,x) ,d (zn+1,y)})

= max{ψ (d (zn+1,x)) ,ψ (d (zn+1,y))}

≤ ψ (max{d (zn,x) ,d (zn,y)})

−φ (max{d (zn,x) ,d (zn,y)}) .

Lemma3 guarantees that

lim
n→∞

max{d (zn+1,x) ,d (zn+1,y)}= 0,

that is,{zn}→ x and{zn}→ y. By the unicity of the limit
of a convergent sequence in a metric space, thenx= y.

Corollary 8.Under the hypotheses of Theorem10, also
assume that the following condition is fulfilled:

(U2)for all coupled fixed point(x,y) of F, there exists z∈
X such that, at least, one of the conditions (15)-(16)
holds.

Then any coupled fixed point of F is of the form(x,x),
for some x∈ X.

Proof.If (x,y) is an arbitrary coupled fixed point ofF, then
x= y by Theorem12.

And, finally, we join assumptions(U1) and(U2) in the
same result.

Corollary 9.Under the hypotheses of Theorem10, also
assume that conditions(U1) and(U2) hold. Then f has a
unique coupled fixed point, which is of the form(x,x), for
some x∈ X.

In particular, there exists a unique x∈ X such that
F (x,x) = x.

Theorem 11 and Corollaries 8 and 9 can be
particularized in several ways, as the consequences of
Theorem6 in Section4. Finally, we only highlight the
following statements: the first one is a particular version
of the mentioned results using a partial order4 on X (we
leave to the reader this task), and the second one can be
deduced using the preorder�0 given in (6).

Corollary 10.Let (X,d) be a complete metric space and
let F : X×X → X be a given mapping. Suppose that there
exist functionsψ ∈ F andφ ∈ F ′

alt such that

ψ (d (F (x,y) ,F (u,v)))≤ ψ (max{d (x,u) ,d (y,v)})

−φ (max{d (x,u) ,d (y,v)})

for all x,y,u,v ∈ X. Then F has a unique coupled fixed
point, which is of the form(x,x) for some x∈ X.

Now, we deduce the following consequences.

Theorem 13.Gnana Bhaskar and Laksmikhantam’s
coupled fixed point theorems follows from Theorem11
and Corollaries8 and9.

As conclusion, we must highlight thatRan and
Reuring’s theorem and Nieto and Rodrı́guez-López’s
theorem are different faces of a same theorem, using a
common condition.

Following the same techniques, it is possible to show
existence and uniqueness theorems for Berinde and
Borcut’s tripled fixed points and Karapınar’s quadrupled
fixed points.
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