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Abstract: We investigate the various types of entanglement such as atom-cavity entanglement, atom-atom entanglement and cavity-
cavity entanglement in an ideal cavity as well as their evolution in presence of cavity dissipation or environment. We quantify the
various entanglement in ideal situation and they are plotted versus the Rabi anglegt. Next, we discuss the above cases in presence of
cavity dissipation. Basically we present a comparative study of atom-cavity, atom-atom and cavity-cavity entanglement for ideal and
realistic situation using two entanglement measures concurrence and the negativity or logarithmic negativity. We have seen sudden
death of entanglement in finite time induced by environment for large value of cavity leakage parameterκ.

Keywords: Entanglement, Jaynes-Cummings Model, Cavity-QED, Concurrence, Negativity, Logarithmic negativity

1 Introduction

The esssence of nonlocality [1,2] follows from the
property of inseparability of composite quantum systems.
Consider two particles that once interacted but are remote
from one another now and do not interact. Although they
do not interact, they are stillentangledif their joint state
cannot be written as a product of the states of individual
subsystems. Schrödinger [3] first coined the term
‘entanglement’ for the non-local correlation represented
by the inseparable state. Such states are now called
entangled states. Quantum entanglement is one of the
essential ingredients in the current development of
quantum information processing. Now entanglement is
treated as a resource in quantum communication and
computation protocols [4,5]. After Bell’s work quantum
entanglement became a subject of intensive study among
those interested in the foundations of quantum theory. But
more recently, entanglement has come to be viewed not
just as a tool for exposing the weirdness of quantum
mechanics, but as a potentially valuable resource. By
exploiting entangled quantum states, we can perform
tasks that are otherwise difficult or impossible i.e., typical
resources required for cryptography, quantum
teleportation,dense-coding [4] and controlled
dense-coding [6] are entangled states. For example, in
entanglement-assisted teleportation entangled pairs are

used (one maximally entangled qubit pair is needed for
every qubit teleported).

The arena of atom-photon interactions is a vast and
potentially useful physical domain for implementing
quantum information protocols. Entanglement has been
widely observed in quantum optical systems such as
cavity quantum electrodynamics. A number of
experiments have been carried out. Several studies have
been performed to quantify the entanglement that is
obtained in atom-photon interactions in a cavity [7]-[14],
which, from the view point of information processing, is
considered an important aspect. Practical realization of
various features of quantum entanglement are obtained in
atom-photon interactions in optical and microwave
cavities, using which controlled experiments can be
performed with the present state-of-the-art technology. In
this paper we perform the study of several facets of
quantum entanglement generated in atom-photon
interactions with the viewpoint of obtaining interesting
and useful applications in real physical processes and
devices.

The structure of the paper is as follows. In Sec. 2, we
review briefly the the Jaynes-Cummings model. In Sec. 3,
we investigate the dissipatives dynamics. In Sec. 4, we
show the various types of entanglement such as
atom-cavity entanglement, atom-atom entanglement and
cavity-cavity entanglement in an ideal cavity as well as
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their evolution in presence cavity dissipation. A summary
of our results and some concluding remarks are presented
in Sec. 5.

2 The Jaynes-Cummings model

One of the most fundamental models in quantum
mechanics presented in introductory text books is that of
the two-level system and the harmonic oscillator.
Combining these two into a bipartite system gives many
interesting results using one of the most studied models,
i.e., the Jaynes Cummings (JC) model [15]. The JC model
is the simplest fully quantized model describing the
interaction between a two-level atom and a quantized
electromagnetic field. The model consists of a single
two-level atom interacting with a single quantized
electromagnetic cavity field (Figure 1).

photon

e

g

ω
ω

Fig. 1 A two-level atom-photon interaction.

The Jaynes-Cummings Hamiltonian is obtained by
simply imposing the rotating wave approximation RWA
[16]. In this approximation exact analytical solutions
exist, and in spite of the simplicity of the JC model, the
dynamics have turned out to be very rich and complex,
describing well several physical phenomena. Among
these, atom-field entanglement [17,18,19] is a very
interesting subject of research. We have used the
Jaynes-Cummings interaction to investigate atom-cavity,
atom-atom and cavity-cavity entanglements. In this paper
we will disscuss atom-cavity, atom-atom and
cavity-cavity entanglement in detail without and with
cavity field dissipation.

A two level atom is formally analogous to a spin-1/2
system with two possible states. Let us denote the upper
level of the atom as|e〉 and the lower level as|g〉. Here we
can write the step up and the step down operator asσ+ =
|e〉〈g| andσ− = |g〉〈e|, with the commutation relation

[σ+,σ−] = |e〉〈e|− |g〉〈g|
= σz. (1)

A quantum mechanical field can be represented as (for
present purpose, we consider a single mode field)

E(t) =
E

2
[ae−iωt +a†eiωt ] (2)

apart from a mode function which we omit here as it is
not required for the present discussion. Herea anda† are
annihilation and creation operators, respectively,ω is the
frequency of the field andE has the dimension of electric
field. The graininess of the radiation field is represented
by the photon number state|n〉, n = 0,1,2, ...., such that
a|n〉 = √

n|n− 1〉 and a†|n〉 =
√

n+1|n+ 1〉. It is an
eigenstate of the number operator ˆn = a†a, n̂|n〉 = n|n〉.
The field in Eq.(2) can be represented by a quantum
mechanical state vector|ψ〉 which is a linear
superposition of the number states|n〉, that is

|ψ〉=
∞

∑
n=0

cn|n〉 (3)

wherecn is, in general, complex and gives the probabilty
that the field hasn photons by the relation

Pn = 〈n|ψ〉〈ψ |n〉= |cn|2 (4)

It is now a quantum statistical field and its average photon
number is given by

< n>=
∞

∑
n=0

nPn (5)

with the intensity of the fieldI ∝< n >. The statistics
brings in a quantum mechanical noise which is
represented by the variance

V =
< n2 >−< n>

< n2 >
. (6)

V = 1 is for coherent state field andV < 1 signifies a
non-classical state. The parameters< n > andV give a
fair description of the quantum mechanical nature of the
radiation field. The interaction between the two-level
atom and the single mode field can be written in the
dipole approximation as,Hint = d.E/h̄. Here Hint is in
frequency units, andd is the dipole moment of the atom
which can be witten asd = −〈e|x|g〉. Writing E in terms
of operators in Eq.(2), and the dipole moment by spin
operators in Eq.(1), the interacting atom-field system can
be represented by the Hamiltonian

H = H0+Hint , (7)

where the unperturbed Hamiltonian
H0 = Ωσz

2 +(a†a+ 1
2)ω andHint = g(σ+ +σ−)(a+ a†)

andg= − dE

h̄ is the coupling constant. In a frame rotating
at frequencyω [σz/2+(a†a+1)], the equation of motion
defining the system is

i
∂
∂ t

|ψ(t)〉I = HI |ψ(t)〉I , (8)

where the HamiltonianH reduces to

HI = g(σ+a+σ−a†). (9)

We deal with this interaction HamiltonianHI to
investigate the atom-cavity, atom-atom and cavity-cavity
entanglements in this paper.
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3 Dissipative dynamics

Let us now investigate the dynamics of atom-photon
interactions in the presence of cavity dissipation. Since
the lifetime of a two-level Rydberg atom is usually much
longer compared to the atom-cavity interaction time, we
can safely neglect the atomic dissipation. The dynamics
of the atom-photon interaction is governed by the
evolution equation

ρ̇ = ρ̇|atom-field+ ρ̇|field-reservoir, (10)

where the strength of the couplings are given by the
parametersκ (the cavity leakage constant) andg (the
atom-field interaction constant).
ρ̇|atom-field = −i[HI ,ρatom-field]. The
reservoir-induced interactions can be effectively
represented by the well-known master equations [20,21]
using Born and Markoff approximations. For the reservoir
coupling we have, after tracing over the reservoir
variables,

ρ̇|field-reservoir =−κ(1+< n>)(a†aρ −2aρa†+ρa†a)

−κ < n> (aa†ρ −2a†ρa+ρaa†), (11)

where< n > is average thermal photons at the cavity
temperatureT. A derivation of this equation is given in
the Appendix 1 on page 114. At temperatureT = 0K the
average thermal photon number is zero, and hence one
has [21]

ρ̇|field-reservoir=−κ(a†aρ −2aρa†+ρa†a). (12)

The total dynamical equation for atom-field density state
ρ , is thus given by

ρ̇ =−i[HI ,ρatom-field]−κ(a†aρ −2aρa†+ρa†a). (13)

3.1 A model solution

In cavity-QED, one usually hasg ≫ κ . Hence, in most
cases, it is sufficient to get a solution of Eq.(13) to the
first order in κ . It is straightforward to express the
damping equation for the density matrix elements in the
dressed state basis.

〈+,0|ρ̇|+,0〉 = −κ〈+,0|ρ |+,0〉− κ
2
〈−,0|ρ |+,0〉

−κ
2
〈+,0|ρ |−,0〉. (14)

〈−,0|ρ̇|−,0〉 = −κ〈−,0|ρ |−,0〉− κ
2
〈+,0|ρ |−,0〉

−κ
2
〈−,0|ρ |+,0〉. (15)

〈+,0|ρ̇|−,0〉 = −2ig〈+,0|ρ̇|−,0〉−κ〈+,0|ρ |−,0〉
−κ

2
〈+,0|ρ |+,0〉− κ

2
〈−,0|ρ |−,0〉. (16)

We note that the terms〈+,0|ρ |+,0〉 and 〈−,0|ρ |−,0〉
oscillate at zero frequency (or donot oscillate), whereas

the terms 〈+,0|ρ̇|−,0〉 oscillate at frequencyg. The
strength of the coupling of these terms are of the order of
κ . Hence, forg≫ κ , it is reasonable to assume that they
decouple. In other words, we can neglect their coupling.
In the literature, such an approximation is called the
“secular approximation”. Under this approximation, the
equations of motion reduce to

〈+,0|ρ̇|+,0〉=−κ〈+,0|ρ |+,0〉. (17)

〈−,0|ρ̇|−,0〉=−κ〈−,0|ρ |−,0〉. (18)

〈+,0|ρ̇|−,0〉=−2ig〈+,0|ρ̇|−,0〉−κ〈+,0|ρ |−,0〉. (19)

The obvious solutions of Eq.(17), Eq.(18) and Eq.(19) are

〈+,0|ρ |+,0〉t = e−κt〈+,0|ρ |+,0〉t=0, (20)

〈−,0|ρ |−,0〉t = e−κt〈−,0|ρ |−,0〉t=0, (21)

〈+,0|ρ |−,0〉t = e−2igte−κt〈+,0|ρ |−,0〉t=0. (22)

We also work under a further approximation (that is
justified when the cavity is close to 0K) that the probability
of getting two or more photons inside the cavities is zero,
or in other words, the cavity always remains in the two-
level state comprising of|0> and|1>. For example, the
initial state|e,0〉 corresponds to the boundary condition

〈+,0|ρ |+,0〉t=0 = 〈−,0|ρ |−,0〉t=0 =
1
2
, (23)

and

〈+,0|ρ |−,0〉t=0 =−1
2
. (24)

Therefore

〈e,0|ρ |e,0〉t =
1
2
[〈+,0|ρ |+,0〉t + 〈−,0|ρ |−,0〉t

− 〈+,0|ρ |−,0〉t −〈−,0|ρ |+,0〉t]

=
1
2

e−κt [1+ cos2gt]

= e−κt cos2gt, (25)

〈g,1|ρ |g,1〉t =
1
2
[〈+,0|ρ |+,0〉t + 〈−,0|ρ |−,0〉t

+ 〈+,0|ρ |−,0〉t + 〈−,0|ρ |+,0〉t ]

=
1
2

e−κt [1− cos2gt]

= e−κt sin2gt, (26)

and

〈e,0|ρ |g,1〉t =
1
2
[〈+,0|ρ |+,0〉t + 〈+,0|ρ |−,0〉t

− 〈−,0|ρ |+,0〉t −〈−,0|ρ |−,0〉t]

=
i
2

e−κt [sin2gt]

= ie−κt singtcosgt, (27)
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〈g,1|ρ |e,0〉t =−ie−κt singtcosgt. (28)

The initial state|g,1〉 corresponds to the boundary
condition

〈+,0|ρ |+,0〉t=0 = 〈−,0|ρ |−,0〉t=0 =
1
2
, (29)

and

〈+,0|ρ |−,0〉t=0 =
1
2
. (30)

Therefore

〈e,0|ρ |e,0〉t =
1
2
[〈+,0|ρ |+,0〉t + 〈−,0|ρ |−,0〉t

− 〈+,0|ρ |−,0〉t −〈−,0|ρ |+,0〉t ]

=
1
2

e−κt [1− cos2gt]

= e−κt sin2gt, (31)

〈g,1|ρ |g,1〉t =
1
2
[〈+,0|ρ |+,0〉t + 〈−,0|ρ |−,0〉t

+ 〈+,0|ρ |−,0〉t + 〈−,0|ρ |+,0〉t]

=
1
2

e−κt [1+ cos2gt]

= e−κt cos2gt, (32)

and

〈e,0|ρ |g,1〉t =
1
2
[〈+,0|ρ |+,0〉t + 〈+,0|ρ |−,0〉t

− 〈−,0|ρ |+,0〉t −〈−,0|ρ |−,0〉t]

= − i
2

e−κt [sin2gt]

= −ie−κt singtcosgt, (33)

〈g,1|ρ |e,0〉t = ie−κt singtcosgt. (34)

The above method provides a typical way of solving
cavity-QED coupled equations with dissipation. We use
them here to study the effect of cavity dissipation on
entanglement.

4 Various types of entanglement and the
effect of cavity dissipation on them

In this section we investigate the various types of
entanglement such as atom-cavity entanglement,
atom-atom entanglement and cavity-cavity entanglement
in an ideal cavity as well as their evolution in presence
cavity dissipation. We quantify the entanglement either
with the entanglement measure ‘concurrence’ or
‘entanglement of formation’ [22,23,24], through we
know that for pure state the von Neumann entropy and
‘entanglement of formation’ are the same. For a
comparison we will also consider the negativity or
logarithmic negativity [25,26] to quantify the
entanglement. The negativity and logarithmic negativity

are defined as N(ρ) = (||ρTA||1 − 1)/2 and
EN(ρ) = log2||ρTA||1 respectively, whereρTA is the
partial transpose of the bipartite mixed stateρ and
||ρTA||1 is is the trace norm ofρTA. The trace norm of any
hermitian operatorA is ||A1||= tr

√
A†A which is equal to

the sum of the absolute values of the eigenvalues ofA,
whenA is hermitian.

4.1 Atom-cavity entanglement

Let us first consider a two-level atomA1 prepared in the
excited state|e〉 passing through an empty cavityC1
(Figure 6). The initial joint state of atom-cavity bipartite
system is

|ΨA1C1(t = 0)〉= |e〉⊗ |0〉. (35)

The atom-field joint state evolves under the
Jaynes-Cummings interaction to

|ΨA1C1(t)〉= cosgt|e,0〉+ singt|g,1〉, (36)

Therefore, the density state can be written as

ρA1C1(t) = |ΨA1C1(t)〉〈ΨA1C1(t)|
= cos2gt|e,0〉〈e,0|+ cosgtsingt|e,0〉〈g,1|

+cosgtsingt|g,1〉〈e,0|+ sin2gt|g,1〉〈g,1|(37)

C

A

1

1

Fig. 2 A two-level atom prepared in the excited state is
traversing through an epmty cavity.

The corresponding density matrixρA1C1(t) can be
written as

ρ =







0 0 0 0
0 cos2gt cosgtsingt 0
0 cosgtsingt sin2gt 0
0 0 0 0






, (38)

in the basis|e,1 >, |e,0 >, |g,1 > and |g,0 > states. The
concurrenceC of ρA1C1(t) is 2|cosgtsingt|. C is
maximum (= 1) for Rabi anglegt = (2n+1)π/4. So for
an interaction timegt = (2n+1)π/4, |ΨA1C1(t)〉 becomes
maximally entangled and for an interaction time
gt = nπ/2, |ΨA1C1(t)〉 becomes disentangled.
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Fig. 3 Atom-cavity entanglement i.e., concurrence is plotted vs
gt
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Fig. 4 N(ρ) (solid line) andEN(ρ)(dotted line) of atom-cavity
are plotted vsgt respectively.

In Figure 3 the concurrenceC between the atom and
the cavity is plotted versus the Rabi anglegt.

In Figure 4 the negativity and logarithmic negativity
between the atom and the cavity are plotted versus the Rabi
anglegt. We notice that for separable stateN(ρ) becomes
zero [25].

Next, we discuss the above case in presence of cavity
dissipation. At temperatureT = 0K, the average thermal
photon number is zero, and one has (see, for instance, Ref.
[21])

ρ̇|field-reservoir=−κ(a†aρ −2aρa†+ρa†a), (39)

as in Eq.(12). When g ≫ κ , it is possible to make the
secular approximation [27] (discussed in section 3) to get
the density elements ofρA1C1(t). We also work under a
further approximation (which is justified when the cavity

is close to 0K) that the probability of getting two or more
photons inside the cavity is zero. The method of solving
the dissipation equation has been outlined in section 3.1.
The joint density state of atom and cavity is then obtained
as

ρA1C1(t) = (e−κt cos2 gt|e,0〉〈e,0|+ ie−κt cosgtsingt|e,0〉〈g,1|
−ie−κt cosgtsingt|g,1〉〈e,0|+e−κt sin2 gt|g,1〉〈g,1|), (40)

where κ is leakage constant for cavityC1. The
corresponding density matrixρA1C1(t) is given by

ρ =







0 0 0 0
0 e−κt cos2gt ie−κt cosgtsingt 0
0 −ie−κt cosgtsingt e−κt sin2gt 0
0 0 0 0






,(41)

in the basis of|e,1>, |e,0>, |g,1> and|g,0> states.
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C

Fig. 5 Atom-cavity entanglement i.e., concurrence is plotted vs
gt for (i) κ/g= 0.05 (solid line), (ii)κ/g= 0.1 (dashed line).

The concurrenceC of ρA1C1(t) is |2e−κt cosgtsingt|.
It is clear from the expression of the concurrence that it
decreases with incease ofκ and C = 0 for κ = ∞.
Two-qubit entanglement may terminate abruptly in a
finite time [28], a phenomenon termed entanglement
sudden death (ESD). In Figure 5 the concurrenceC
between the atom and the cavity is plotted versus the Rabi
anglegt for different values of the cavity leakage constant
κ/g. We see clearly the effect of dissipation on
entanglement which reduces as we increase the cavity
leakage constantκ . This shows that disipation reduces the
atom-cavity entanglement and, ultimately it is destroyed
at a later time. If we send an atom prepared in the ground
state|g〉 through the one photon cavity, the initial joint
atom-cavity state will be

|Ψ(t = 0)〉= |g〉⊗ |1〉. (42)

The time evolved state is

|Ψ(t)〉= cosgt|g,1〉− singt|e,0〉. (43)
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Fig. 6 Atom-cavity negativity (solid line) and logarithmic
negativity (dotted line) are plotted vsgt for κ/g= 0.05

In this case the result for entanglement is similar to the
case for the state

|Ψ(t)〉= cosgt|e,0〉+ singt|g,1〉, (44)

that we have considered earlier, both with and without
dissipation.

In Figure 6 Atom-cavity negativity and logarithmic
negativity are plotted vsgt for cavity leakage constant
κ/g= 0.05. We notice that degree of magnetude has been
reduced for both cases.

4.2 Atom-atom entanglement

We consider a system where two two-level atoms, the first
prepared in the excited state and the second prepared in the
ground state, are sent into a cavity in the vacuum state one
after the other (see Figure 5). The flight times of both the
atoms through the cavity are assumed to be the same.

A

C

A

1

12

Fig. 7 Two two-level atoms, first prepared in the excited state
and second prepared in the ground state, traverses an empty
cavity one after the other.

Let us first consider the passage of the first atom,
initially in the excited state|e>, through the cavity. The
initial joint atom-field state is given by

|Ψ(t = 0)〉A1C1 = |e〉⊗ |0〉. (45)

The atom-field state evolves with the interaction given by
Eqs.(36) to

|Ψ(t)A1C1〉= cosgt|e,0〉+ singt|g,1〉, (46)

The next atom prepared in|g > which enters the cavity
interacts with this “changed” field and thus a correlation
develops between the two atoms via the cavity field. The
joint tripartite state of the two atoms and the field is given
by

|Ψ(t)〉A1A2C1 = cosgt|e1,g2,0〉+ cosgtsingt|g1,g2,1〉
−sin2gt|g1,e2,0〉 (47)

The corresponding atom-atom-field pure density state is

ρ(t)A1A2C1 = |Ψ(t)〉A1A2C1 A1A2C1〈Ψ(t)|
= cos2gt|e1,g2,0〉〈e1,g2,0|+cos2 gtsin2 gt|g1,g2,1〉〈g1,g2,1|
+sin4 gt|g1,e2,0〉〈g1,e2,0|+cos2 gtsingt|e1,g2,0〉〈g1,g2,1|
+cos2gtsingt|g1,g2,1〉〈e1,g2,0|−cosgtsin2 gt|e1,g2,0〉〈g1,e2,0|
−cosgtsin2gt|g1,e2,0〉〈e1,g2,0|−cosgtsin3 gt|g1,g2,1〉〈g1,e2,0|
−cosgtsin3gt|g1,e2,0〉〈g1,g2,1|. (48)

The reduced density state of the pairA1A2 is obtained by
tracing out the field variables, and is given by

ρ(t)A1A2 = TrC1(ρA1A2C1)

= cos2gt|e1,g2〉〈e1,g2|+ cos2gtsin2gt|g1,g2〉〈g1,g2|
+sin4gt|g1,e2〉〈g1,e2|− cosgtsin2gt|g1,e2〉〈e1,g2|
−cosgtsin2 gt|e1,g2〉〈g1,e2| (49)

The corresponding density matrixρA1A2(t) is given by

ρ =







cos2gtsin2gt 0 0 0
0 sin4gt −cosgtsin2 gt 0
0 −cosgtsin2gt cos2 gt 0
0 0 0 0






,(50)

in the basis|g1,g2 >, |g1,e2 >, |e1,g2 > and |e1,e2 >
states.

We compute the concurrence forρ(t)A1A2 that is

C(ρ(t)A1A2) = |2cosgtsin2 gt|. (51)

The concurrence between the two atoms is plotted versus
the Rabi anglegt in Figure 8.

In Figure 9 the negativity and logarithmic negativity
between the two atoms are plotted versus the Rabi angle
gt.

We now investigate the above study in presence of the
cavity dissipation. Like in the previous section, in the
presence of cavity dissipation the evolved state of the
systemA1A2C1 is a mixed state and is obtained with the
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Fig. 8 Atom-atom entanglement i.e., concurrence is plotted vsgt
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Fig. 9 N(ρ) (solid line) andEN(ρ)(dotted line) of atom-atom are
plotted vsgt respectively.

above approximations (see section 3.1). The reduced
density state of the pairA1A2 is

ρ(t)A1A2 = TrC1(ρA1A2C1)

= γ1|e1g2〉〈e1g2|
+ γ2|g1g2〉〈g1g2|
+ γ3|g1e2〉〈g1e2|
− γ4|e1g2〉〈g1e2|
− γ4|g1e2〉〈e1g2|, (52)

where theγi are given by

γ1 = (1− sin2 gte−κt),

γ2 = cos2gtsin2gte−2κt ,

γ3 = sin4gte−2κt ,

γ4 =

(

singte−κt/2− κ
2g

cosgte−κt/2+
κ
2g

)

cosgtsingte−κt ,

κ is the leakage constant of cavityC1. The corresponding
density matrixρA1A2(t) is

ρ =







γ2 0 0 0
0 γ3 −γ4 0
0 −γ4 γ1 0
0 0 0 0






, (53)

in the basis of|g1,g2 >, |g1,e2 >, |e1,g2 > and |e1,e2 >
states.

We compute the concurrence forρ(t)A1A2, i.e.,

C(ρ(t)A1A2) = |2sin2gte−κt
√

(1− sin2gte−κt)| (54)

ESD [28] is realized forκ = ∞.
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Fig. 10 Atom-atom entanglement i.e., concurrence is plotted vs
gt for (i) κ/g= 0.05 (solid line) (ii)κ/g= 0.1 (dashed line).

The concurrence between the two atoms is plotted
versus the Rabi anglegt in Figure 10 for different values
of the cavity dissipation parameterκ .

The entanglement reduces as we increaseκ . The
effect of κ gets more and more pronouced as time
increases. In Figure 11 Atom-atom negativity and
logarithmic negativity are plotted vsgt for cavity leakage
constantκ/g= 0.05. A similar trend has been observed.
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Fig. 11 Atom-atom negativity (solid line) and logarithmic
negativity (dotted line) are plotted vsgt for κ/g= 0.05

4.3 Cavity-cavity entanglement

Here we consider two initially separated empty cavities
C1, C2 and a two-level atom prepared in the excited state
passing throughC1 andC2 such that the times of flight of
the atom through the two cavities are the same (see Figure
12).

C C1 2

1A

Fig. 12 A two-level atom prepared in the excited state is
traversing through two separated cavities one after another.

The initial joint state of the atom and the two cavities
is

|Ψ(t)〉A1C1C2 = |e1〉⊗ |01〉⊗ |02〉. (55)

The joint state of the two cavities and the atom undergoing
the Jaynes-Cummings interaction at a later time is

|Ψ(t)〉A1C1C2 = cos2gt|e1,02,02〉+ cosgtsingt|g1,01,12〉
−singt|g1,11,02〉. (56)

The corresponding cavity-cavity-atom tripartite pure
density state is

ρ(t)A1C1C2 = |Ψ(t)〉A1C1C2 A1C1C2〈Ψ(t)|
= cos4 gt|e1,01,02〉〈e1,01,02|+cos2 gtsin2 gt|g1,01,12〉〈g1,01,12|
+sin2 gt|g1,11,02〉〈g1,11,02|+cos3 gtsingt|e1,01,02〉〈g1,01,12|
+cos2 gtsingt|e1,01,02〉〈g1,11,02|+cos3 gtsingt|g1,01,12〉〈e1,01,02|
+cosgtsin2 gt|g1,01,12〉〈g1,11,02|+cos2 gtsingt|g1,11,02〉〈e1,01,02|
+cosgtsin2 gt|g1,11,02〉〈g1,01,12|. (57)

The reduced density state of the pairC1C2 is

ρ(t)C1C2 = TrA1(ρA1C1C2)

= cos4gt|01,02〉〈01,02|+ cos2gtsin2 gt|01,12〉〈01,12|
+sin2gt|11,02〉〈11,02|+ cosgtsin2gt|11,02〉〈01,12|
+cosgtsin2 gt|01,12〉〈11,02|. (58)

The corresponding density matrixρC1C2(t) is given by

ρ =







cos4gt 0 0 0
0 sin2gtcos2 gt cosgtsin2gt 0
0 cosgtsin2gt sin2gt 0
0 0 0 0






, (59)

in the basis of|01,02 >, |01,12 >, |11,02 > and |11,12 >
states. We find that the concurrence forρ(t)C1C2 has the
form

C(ρ(t)C1C2) = |2cosgtsin2gt|. (60)

The concurrences of the two atoms (see earlier section)
and the two cavities are similar functions of the Rabi angle.
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Fig. 13 Cavity-cavity entanglement i.e., concurrence is plotted
vs gt

The concurrence between two cavities is plotted
versus the Rabi anglegt in Figure 13.
In Figure 14 the negativity and logarithmic negativity
between the two cavities are plotted versus the Rabi angle
gt.

The time evolution of the reduced density state of two
cavities in presence of dissipation is, following the method
outlined earlier,

ρ(t)C1C2 = TrA1 (ρA1C1C2)

= e−2κt cos4 gt|01,02〉〈01,02|+e−2κt cos2 gtsin2 gt|01,12〉〈01,12|

+ (1−e−κt cos2 gt)|11,02〉〈11,02|+e−
3κt
2 cosgtsin2 gt|11,02〉〈01,12|

+ e−
3κt
2 cosgtsin2 gt|01,12〉〈11,02|. (61)
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Fig. 14 N(ρ) (solid line) andEN(ρ)(dotted line) of atom-atom
are plotted vsgt respectively.

The corresponding density matrixρA1A2(t) is given by

ρ =









e−2κt cos4 gt 0 0 0

0 e−2κt sin2 gtcos2 gt e−
3κt
2 cosgtsin2 gt 0

0 e−
3κt
2 cosgtsin2 gt (1−e−κt cos2 gt) 0

0 0 0 0









, (62)

in the basis of|01,02 >, |01,12 >, |11,02 > and |11,12 >
states. We compute the concurrence forρ(t)C1C2, that is
given by

C(ρ(t)C1C2) = |2cosgtsin2 gte−
3κt
2 |. (63)

Here also we can realize ESD [28] for κ = ∞.
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Fig. 15 Cavity-cavity entanglement i.e., concurrence is plotted
vs gt for (i) κ/g= 0.05 (solid line) (ii)κ/g= 0.1 (dashed line).

The concurrence between two cavities is plotted versus
the Rabi anglegt in Figure 15 for different values of the
cavity dissipation parameterκ . The effect ofκ gradually

0 2 4 6 8 10 12 14 16 18 20
gt

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Fig. 16 Cavity-cavity negativity (solid line) and logarithmic
negativity (dotted line) are plotted vsgt for κ/g= 0.05

reduces the entanglement as it evolves in time. In Figure
15 cavity-cavity negativity and logarithmic negativity are
plotted vsgt for cavity leakage constantκ/g = 0.05. A
similar trend has been observed here also.

5 Summary

In this paper we have discussed the Jaynes-Cummings
model which consists of a two-level atom interacting with
a single mode cavity field. This is an exactly solvable
model. We have considered resonant interaction between
the atom and the cavity field. We saw that the
Jaynes-Cummings interaction Hamiltonian takes a simple
form in the rotating wave approximation. We then
discussed the time evolution of atom-field states evolving
under the Jaynes-Cummings interaction. Next we
discussed dissipative dynamics of cavity field. Here we
considered only cavity dissipation as the lifetime of
two-level atoms (we are considering two-level Rydberg
atoms) is much longer than the atom-field interaction
time. Basically, the dynamical equation of the atom-field
density state evolves under (i) the simple atom-field
interaction, and (ii) the field-reservoir interaction. We
solved the equations of motion under the secular
approximation by using the fact thatg≫ κ .

We investigated the various types of entanglement
which origines from the Jaynes-Cummings interaction
both in ideal and dissipative systems. We showed how the
atom-cavity, atom-atom, and cavity-cavity entanglement
can be generated in atom-photon interactions. We studied
quantitatively the atom-cavity, atom-atom, and
cavity-cavity entanglement as functions of the Rabi angle
gt in the ideal situation and also in presence of cavity
dissipation. We have used the entanglement measures
concurrence [22,23] and logarithmic negativity (also
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negativity) [26,25] to quantify the entanglement. We
observed that the cavity dissipation kills the entanglement
in all cases as we increase the atom-field interaction time.
And also ESD [28] in a finite time for κ = ∞ has been
realized from the expression of concurrence. In this paper
we have set up the framework of generating and
quantifying various types of entanglement in atom-photon
interactions governed by the Jaynes-Cummings model.
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