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Abstract: In this present study, we aim to use of the new extension of thegeneralized and improved homogeneous balance method for
constructing new structure of rich class of exact travelingwave solutions of nonlinear evolution equations by using the Maple package.
To demonstrate the novelty and motivation of the proposed method, we implement it to the coupled nonlinear system of Schrodinger
equations.It is shown that the method provides a powerful mathematical tool for solving nonlinear evolution equationsin mathematical
physics.
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1 Introduction

The importance of obtaining the exact solutions, if
available, of those nonlinear equations facilitates the
verification of numerical solutions and aids in the stability
analysis of solutions. The investigation of exact solutions
of nonlinear equations plays an important role in the
study of nonlinear physical phenomena. Recently, many
approaches have been suggested to solve the nonlinear
equations, such as the spectral collocation method [1,2,3,
4,5], the homogeneous balance method [6,7], the
F-expansion method [8]. It provides the generalized
solitary solutions and periodic solutions, as well. Taking
advantage of the generalized solitary solutions, we can
recover some known solutions obtained by existing
methods.
In this paper we extend the homogeneous balance method
to a class of nonlinear evolution equations with imaginary
number and modulus. We consider the coupled (2+1)-
dimensional nonlinear system of Schrodinger equations
as

{

iEt −Exx +Eyy + |E|2 E −2NE = 0,

Nxx −Nyy −
(

|E|2
)

xx
= 0,

(1)

whereE (x,y, t)and N (x,y, t)are complex-valued
functions. Nonlinear partial differential equation systems

of the type given by (1) play an important role in atomic
physics, and the functionsE (x,y, t) and N (x,y, t)have
different physical meanings in different branches of
physics [9,10,11,12,13,14,15,16] Well-known
applications are, for instance, in fluid dynamics [9]and
plasma physics [11]. In the context of water waves,
E (x,y, t)is the amplitude of a surface wave packet while
N (x,y, t) is the velocity potential of the mean flow
interacting with the surface waves [10]. However, in the
hydrodynamic context,E (x,y, t) is the envelope of the
wave packet andN (x,y, t) is the induced mean flow [9].
In addition, equations (1) are relevant in a number of
different physical contexts, describing slow modulation
effects of the complex amplitudeN (x,y, t), due to a small
nonlinearity, on a monochromatic wave in a dispersive
medium.

2 Basic definitions for the homogeneous
balance method

For a given partial differential equation

G(u,ux,ut ,uxx,utt , ....), (2)

Our method mainly consists of four steps:
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Step 1: We seek complex solutions of Eq. (2) as the
following form:

u = u(ξ ), ξ = ik(x− ct), (3)

Where k and c are real constants. Under the transformation
(3), Eq. (2) becomes an ordinary differential equation

N(u, iku′,−ikcu′,−k2u′′, .....), (4)

Whereu′ = du
dξ .

Step 2: We assume that the solution of Eq. (4) is of the
form

u(ξ ) =
n

∑
i=0

aiφ i(ξ ), (5)

Whereai(i = 1,2, ..,n) are real constants to be determined
later andφsatisfy the Riccati equation

φ ′ = aφ2+ bφ + c (6)

Eq. (6) admits the following solutions:
Case1:Let φ = ∑n

i=0 bi tanhi ξ ,Balancing φ ′with φ2 in
Eq.(6) givesm = 1so

φ = b0+ b1 tanhξ , (7)

Substituting Eq. (7) into Eq. (6), we obtain the following
solution of Eq. (6)

φ =− 1
2a

(b+2tanhξ ) , ac =
b2

4
−1. (8)

Case2:whena = 1,b = 0,the Riccati Eq. (6) has the
following solutions

φ =−√−c tanh
(√−cξ

)

, c < 0
φ =− 1

ξ , c < 0
φ =

√
c tan(

√
cξ ) , c > 0.

(9)

Case3:We suppose that the Riccati Eq. (6) have the
following solutions of the form:

φ = A0+

∑n
i=1sinhi−1 (Ai sinhω +Bi coshω) ,

(10)

Where dω
dξ = sinhω ordω

dξ = coshω . It is easy to find that

m = 1by Balancingφ ′withφ2. So we choose

φ = A0+A1sinhω +B1coshω , (11)

Where dω
dξ = sinhω , we substitute (11) and dω

dξ = sinhω ,
into (6) and set the coefficients of
sinhi ω ,coshi ω (i = 0,1,2; j0,1) to zero. We obtain a set
of algebraic equations and solving these equations we
have the following solutions

A0 =− b
2a

,A1 = 0,B1 =
1
2a

(12)

Wherec = b2−4
4a and

A0 =− b
2a

,A1 =±
√

1
2a

,B1 =
1
2a

(13)

Wherec = b2−1
4a . To dω

dξ = sinhω we have

sinhω =−cschξ ,coshω =−cothξ (14)

From (12)–(14), we obtain

φ =−b+2cothξ
2a

(15)

Wherec = b2−4
4a and

φ =−b± cschξ + cothξ
2a

(16)

Wherec = b2−1
4a .

Step3.Substituting (7-16) into (4) along with (6), then the
left hand side of Eq. (4) is converted into a polynomial
inF (ξ ); equating each coefficient of the polynomial to
zero yields a set of algebraic equations.
Step4.Solving the algebraic equations obtained in step 3,
and substituting the results into (5), then we obtain the
exact traveling wave solutions for Eq. (2).
Remark 1: Ifc = 0 , then the Riccati Eq. (6) reduces to the
Bernoulli equation

φ ′ = aφ2+ bφ , (17)

The solution of the Bernoulli Eq. (17) can be written in the
following form [23]:

φ = b×
[

cosh[b(ξ+ξ0)]+sinh[b(ξ+ξ0)]
1−acosh[b(ξ+ξ0)]−asinh[b(ξ+ξ0)]

] (18)

Whereξ0is integration constant.
Remark 2: Ifb = 0, then the Riccati Eq. (6) reduces to the
Riccati equation

φ ′ = aφ2+ c

Which the equation aboveis the special case of the Riccati
Eq. (6).

Remark 3: Also, the Riccati Eq. (6) admits the following
exact solution [?]:

φ =− b
2a− θ

2a tanh
( θ

2 ξ
)

+
sech( θ

2 ξ)
Ccosh( θ

2 ξ)− 2a
θ sinh( θ

2 ξ)
,

(19)

Whereθ 2 = b2−4ac andC is a constant of integration.
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3 Application to the coupled nonlinear
system of Schrodinger equations:

To obtain the exact solutions of (1), we use the
transformations

E (x,y, t) = u(ξ )exp(iη) ,
N (x,y, t) = v(ξ )
ξ = k (x+ ly+2(α −β l)t) ,
η = αx+β y+ γt,

(20)

Wherek, l,αand βare constants to be determined. Note
that ξ and ηare travellingwave variables, not necessarily
in the same direction. That is,ξ and ηare independent
linear functions ofx,yandt. Thenuandv are assumed to
be rational functions ofexp(ξ ). When uis positive real,
uis the modulus of the complex functionE, and Nis the
argument. The modulus and argument are travelling
waves but the two waves may be in different directions.
From (1), we may obtain the system of ordinary
differential equations

k2l2u′′+
(

α2−β 2− γ
)

u+ u3−2uv = 0, (21)

(

1+ l2)v′′−
(

u2)
′ ′
= 0. (22)

Integrating (22) with respect toξ and setting the constants
of integration equal to zero yields

v =
u2

1+ l2 (23)

Substituting (23) into (21), we obtain

k2
(

l2−1
)

u′′+
(

α2−β 2− γ
)

u+ l2−1
l2+1

u3 = 0.
(24)

For the solutions of Eq. (24), with the aid of homogeneous
balance method we make the following ansatz

u(ξ ) =
n

∑
i=0

aiφ i(ξ ), (25)

where aiare all real constants to be determined,n is a
positive integer which can be determined by balancing the
highest order derivative term with the highest order
nonlinear term, then givesn = 1. Therefore, we may
choose

u(ξ ) = a1φ + a0 (26)

Substituting (26) along with (6) in Eq. (24) and then
setting the coefficients ofφ j( j = 0,1,2,3,4,5)to zero in
the resultant expression, we obtain a set of algebraic
equations and solving these equations with the aid of

Maple we have

a1 =
√

2
4

√

−k2(l2+1)×
[

k2b2l6−11k2b2l4+11k2b2l2

ck2(l2+1)2(l2−1)
−

k2b2+2α2l4+4α2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]

,

(27)

a = 1
4

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

4ck2(l2+1)2(l2−1)
2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

(28)

a0 =
−k2(l2−1)b

√

−2k2(l2+1)
, (29)

Case 1:By substituting (27-29) in (26) along with (8) we
have

u(x,y, t) =−
√

2
2

√

−k2(l2+1)×
(b+2tanhk (x+ ly+2(α −β l)t))+
−k2(l2−1)b√
−2k2(l2+1)

.

And from (23) vobtained as follow

v(x,y, t) = 1
1+l2

×
[

−
√

2
2

√

−k2(l2+1)×
(b+2tanhk (x+ ly+2(α −β l)t))

+ −k2(l2−1)b√
−2k2(l2+1)

]2

So from (20) we obtain solutions of Eq. (1)

E (x,y, t) =
[

−
√

2
2

√

−k2(l2+1)×
(b+2tanhk (x+ ly+2(α −β l)t))

+ −k2(l2−1)b√
−2k2(l2+1)

]

×
exp(i(αx+β y+ γt)) .

And

N (x,y, t) = 1
1+l2

×
[

−
√

2
2

√

−k2(l2+1)×
(b+2tanhk (x+ ly+2(α −β l)t))

+ −k2(l2−1)b√
−2k2(l2+1)

]2

Case 2:
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By substituting (27-29) in (26) along with (9) we have
solution of the Eq. (1) as follows:

E (x,y, t) =
[

−
√
−2c
4

√

−k2(l2+1)×
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

+2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]

×
tanh

(√
−ck (x+ ly+2(α −β l)t)

)

+

−k2(l2−1)b√
−2k2(l2+1)

]

exp(i(αx+β y+ γt)) ,

And

N (x,y, t) = 1
1+l2

[

−
√
−2c
4

√

−k2(l2+1)×
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
2β 2+2γl4+4γl2+2γ +

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]

×
tanh

(√−ck (x+ ly+2(α −β l)t)
)

+

−k2(l2−1)b

(1+l2)
√

−2k2(l2+1)

]2

Case 3:

E (x,y, t) =

[

−
√

2
4

√
−(l2+1)

x+ly+2(α−β l)t ×
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]

+ −k2(l2−1)b√
−2k2(l2+1)

]

×
exp(i(αx+β y+ γt)) ,

and

N (x,y, t) = 1
1+l2

×
[

−
√

2
4

√
−(l2+1)

x+ly+2(α−β l)t ×
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]

+

−k2(l2−1)b√
−2k2(l2+1)

]2

Case 4:

E (x,y, t) =
[√

2c
4

√

−k2(l2+1)×
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

+2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]

×
tanh(

√
ck (x+ ly+2(α −β l)t))+

−k2(l2−1)b√
−2k2(l2+1)

]

×
exp(i(αx+β y+ γt)) ,

And

N (x,y, t) = 1
1+l2

×
[√

2c
4

√

−k2(l2+1)×
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]

×
tanh(

√
ck (x+ ly+2(α −β l)t))

+ −k2(l2−1)b√
−2k2(l2+1)

]2

Case 5:By substituting (27-29) in (26) along with (15) we
have

E (x,y, t) =
[

− 1
2

√

−2k2(l2+1)×
(b+2cothk (x+ ly+2(α −β l)t))×
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]

×
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]−1
+

−k2(l2−1)b√
−2k2(l2+1)

]

×
exp(i(αx+β y+ γt)) ,
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And

N (x,y, t) = 1
l2+1

×
[

1
2

√

−2k2(l2+1)×
(b+2cothk (x+ ly+2(α −β l)t))×
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]

×
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]−1
+

−k2(l2−1)b√
−2k2(l2+1)

]2

Case 6:By substituting (27-29) in (26) along with (16) we
have

E (x,y, t) =
[

1
2

√

−2k2(l2+1)×
(b± cschk (x+ ly+2(α −β l)t)+
cothk (x+ ly+2(α −β l)t))
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

]

×
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]−1
+

−k2(l2−1)b√
−2k2(l2+1)

]

×
exp(i(αx+β y+ γt)) ,

And
N (x,y, t) = 1

l2+1
×

[

1
2

√

−2k2(l2+1)×
(b± cschk (x+ ly+2(α −β l)t)+
cothk (x+ ly+2(α −β l)t))
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]

×
[

k2b2l6−11k2b2l4

ck2(l2+1)2(l2−1)
+

11k2b2l2−k2b2−2α2l4−4α2l2

ck2(l2+1)2(l2−1)
+

2β 2+2γl4+4γl2+2γ
ck2(l2+1)2(l2−1)

+

2β 2l4−2α2+4β 2l2

ck2(l2+1)2(l2−1)

]−1
+

−k2(l2−1)b√
−2k2(l2+1)

]2

,

4 Conclusions

In summary in this paper, the homogeneous balance
method is employed along with a computerized symbolic
computation to obtain the single and combined
generalized solutions of coupled (2+1)-dimensional
nonlinear system of Schrodinger equations. We have also
constructed the extremum point and points of inflection in
order to address the general description of the solutions
obtained. The results show that the homogeneous balance
method is a powerful and promising new method to solve
nonlinear evolution equations.
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