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1 Introduction

Integral equations and differential equations play an
important role in many social, biological, physical and
engineering problems, as can be seen from the attached
references ([1]-[15]). Analytical methods for the solution
of nonlinear Integro-differential equations are usually
hard ([16]-[17]), if not impossible, consequently exact
solutions are rather difficult to be obtained. Therefore,
several numerical methods are used for the solution of
such types of equations such as the finite differences [18],
Tau method [19], He’s homotopy perturbation method
([20]-[25]), Legendre polynomials and Block-pulse
functions approach [26], Haar Wavelet Series Technique
[27], differential transform ([28]-[29]) and the Adomian
decomposition method ([30]-[31]). For the solution of
integral equations, Adomian presented the so-called
Adomian decomposition method (ADM) ([32]-[33]).
Wazwaz extended the method to include the solution of
Volterra integral equation [34] and the boundary value
problems for higher order integro-differential equations.
In recent years, much work has been concentrated on the
solutions of Volterra-Fredholm integro-differential
equation, in general, ([35]-[39]).

Adomian’s decomposition method (ADM), as a
powerful method, can be used to solve all types of
nonlinearity. At the same time, this method reduces the
size of computation, while increasing the accuracy of the
solutions. The ADM separates the equation to be solved

into two portions: linear and nonlinear. The solution
generated by this method is in a series form whose terms
are determined by a recursive relation using Adomian
polynomials

An =
1
n!

[

dn

dλ n N
( ∞

∑
i=0

λiui

)

]

λ=0

, n ≥ 0. (1)

WhereAn denotes the Adomian polynomials of degree
n andu = ∑∞

i=0 ui(x, t) is the solution of the problem and
N(u) is the nonlinear term in the equation.

Recently, a new modification of Adomian
decomposition method (NMADM) for finding exact
solutions of nonlinear integral equations is presented by
Hossein Jafari, et al. [40]. A new reliable modification of
the ADM is proposed and applied for the solution of the
Volterra and Fredholm integral equations. In this paper,
the (NMADM) is applied for the solution of nonlinear
integro-differential equations (NIDE). Some examples are
given to illustrate the ability and reliability of this new
modified method. The results reveal that the presented
modified method is very simple and effective.
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2 Adomian decomposition method for solving
(NIDE)

The nonlinear Volterra integro-differential equations ofthe
second kind are given by

u′′(x) = f (x)+
∫ x

a
K(x, t) [R(u(t))+N(u(t))]dt,

u(x0) = a1, u′(x0) = a2, (2)

and the nonlinear Fredholm integro-differential equations
the second kind are given by

u′′(x) = f (x)+
∫ b

a
K(x, t) [R(u(t))+N(u(t))]dt,

u(x0) = a1, u′(x0) = a2. (3)

Where u
′′

(x) is the second derivative of the unknown
functionu(x) that will be determined,K(x, t) is the kernel
of the integral equation,f (x) is an analytic function,
R(u(t)) andN(u(t)) are linear and nonlinear function of
u, respectively. Equation (1) and (2) can be rewritten in an
operator form

L(u(x)) = f (x)+
∫ x

a
K(x, t) [R(u(t))+N(u(t))]dt, (4)

L(u(x)) = f (x)+
∫ b

a
K(x, t) [R(u(t))+N(u(t))]dt. (5)

The inverse operatorL−1 is therefore considered an
n−fold integral operator defined byL−1

x (.) =
∫ x

0 (.)dx.
Operating withL−1

x to both sides of (4) and (5) and using
the initial condition, we have

u(x) = g(x)+L−1
x

(

∫ x

a
K(x, t) [R(u(t))+N(u(t))]dt

)

,

(6)
and

u(x) = g(x)+L−1
x

(

∫ b

a
K(x, t) [R(u(t))+N(u(t))]dt

)

,

(7)
where g(x) included the L−1

x ( f (x)) and the initial
conditions.

The standard Adomian decomposition method defines
the solutionu(x) by the decomposition series

u(x) =
∞

∑
n=0

un(x), (8)

whereun(x) has to be determined sequentially upon
the following algorithm

u0(x) = g(x) (9)

um+1(x) = L−1
x

(

∫ b

a
K(x, t) [R(um(t))+Am(u(t))]dt

)

,

m ≥ 0, (10)

whereAm, m ≥ 0 are the Adomian polynomials.

3 A new Adomian decomposition method for
solving (NIDE)

The modified Adomian decomposition method
(NMADM) provides the exact solution by using a single
iteration. Only u0 and u1, which give one exact
solution(s) after one iteration, are discussed. The solution
is usually a unique solution, but in the present work, an
example that gives two solutions is presented. In this
method, the rate of convergence is accelerated. The ADM
usually gives one solution among other solutions.
However, as will be seen in an example below, the
presented method can give more than one solution”. To
achieve this goal, Equations (6) and (7) are rewritten as:

u(x) =
N

∑
m=0

amvm(x)−
N

∑
m=0

amvm(x)+ g(x)+

+ L−1
x

(

∫ x

a
K(x, t) [R(u(t))+N(u(t))]dt

)

, (11)

and

u(x) =
N

∑
m=0

amvm(x)−
N

∑
m=0

amvm(x)+ g(x)+

+ L−1
x

(

∫ b

a
K(x, t) [R(u(t))+N(u(t))]dt

)

, (12)

where am, m = 0,1,2, ...,N are called the accelerating
components of the parameter, andvm(x), m = 0,1,2, ...,N
are selective functions. Furthermore, the number of the
terms in u0, namely N, is small in many practical
problems. Recall that the modified decomposition method
is established based on the assumption that the function

f (x) =
N

∑
m=0

amvm(x)−
N

∑
m=0

amvm(x)+ g(x), (13)

can be divided into two parts, namelyf1(x) and f2(x).
Under this assumption we set

f (x) = f1(x)+ f2(x),

where

f1(x) =
N

∑
m=0

amvm(x),
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and

f2(x) =−

N

∑
m=0

amvm(x)+ g(x).

Accordingly, a slight variation was proposed only on
the componentsu0 and u1. It is suggested that only the
part f1(x) be assigned to the zeroth componentu0,
whereas the remaining partf2(x) be combined with the
other terms given in (11) and (12) to define u1.
Consequently, the modified recursive relation:

u0(x) =
N

∑
m=0

amvm(x), (14)

u1(x) = −

N

∑
m=0

amvm(x)+ g(x)

+ L−1
x

(

∫ b

a
K(x, t) [R(u0(t))+A0(u(t))]dt

)

, (15)

um(x) = L−1
x

(

∫ b

a
K(x, t) [R(um−1(t))+Am−1(u(t))]dt

)

,

m ≥ 2. (16)

was developed.

4 Numerical illustrations

In this section, several examples are solved to illustrate
this method for Linear and Nonlinear Integro-differential
equations.

4.1 Linear integro-differential equations

Example 1.Consider the linear Fredholm
integro-differential equation

u′(x) = xex + ex
− x+

∫ 1

0
xu(t)dt, u(0) = 0, (17)

with the exact solutionu(x) = xex. u0(x) is chosen as:

u0(x) =
1

∑
m=0

amxmex = a0ex + a1xex.

In view of Eq. (15) we have

u1(x) =−a0ex
− a1xex

−1/2x2+ xex+

+

∫ x

0

(

∫ 1

0
xu0(t)dt

)

dx = 0

Now, am, m = 0,1 are found such thatu1(x) = 0. If
u1(x) = 0 thenu2(x) = u3(x) = u4(x) = · · · = 0, and the

exact solution will be obtained asu(x) = u0(x). Hence for
all values ofx we have

exx−
1
2

x2
− exa0−

1
2

x2a0+
1
2

ex2a0− exxa1+
1
2

x2a1 = 0

−a0 = 0
a1 = 1
So, the solutions will beu(x) = xex, which is the same as
the exact solution.

Example 2.Consider the linear Volterra integro-differential
equation

u′′(x) = 1+ x+
∫ x

0
(x− t)u(t)dt,u(0) = 1,u′(0) = 1. (18)

u0(x) are chosen as:

u0(x) =
1

∑
m=0

amxm = a0+ a1x

In view of Eq. (15) we have

u1(x) =−a0− a1x+1+ x+
1
2!

x2+
1
3!

x3+

+
∫ x

0

∫ x

0

(

∫ x

0
(x− t)u0(t)dt

)

dxdx = 0,

which means that:

−a0− a1x+
x4a0

24
+

x5a1

120
+1+ x+

x2

2!
+

x3

3!
= 0

Now, am, m = 0,1 are found such thatu1(x) = 0.
Hence, a0 = 1, a1 = 1, for all values of x. So, the
solutions will be u(x) = 1 + x, which satisfies the
conditions, but does not satisfy the equation, by
substituting this solution in the right hand side of equation
(18) we get;
R.H.S.= 1+ x+ x2

2! +
x3

3! So, we increaseN and letu0(x)
to be

u0(x) =
2

∑
m=0

amxm = a0+ a1x+ a2x2

In view of Eq. (15) we have

u1(x) =−a0− a1x− a2x2+1+ x+
x2

2!
+

x3

3!
+

+

∫ x

0

∫ x

0

(

∫ x

0
(x− t)u0(t)dt

)

dxdx = 0

which means that

−a0− a1x− a2x2+1+ x+ x2+
x3

2
+

x4a0

24
+

x5a1

120
+

+
x6a2

360
= 0
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Now, am, m = 0,1,2 are found such thatu1(x) = 0.
Hence for all values ofx we havea0 = 1, a1 = 1, a2 =

1
2.

So, the solutions will beu(x) = 1+ x + x2

2 , which also
satisfies the conditions, but does not satisfy the equation,
by substituting this solution in the right hand side of
equation (18) we get
R.H.S.= 1+ x+ x2

2 + x3

6 + x4

12. So, we increaseN and let

u0(x) =
∞

∑
m=0

amxm,

u1(x) =−

∞

∑
m=0

amxm +1+ x+
x2

2!
+

x3

3!
+

+

∫ x

0

∫ x

0

(

∫ x

0

(

(x− t)
∞

∑
m=0

amtm
)

dt
)

dxdx.

Therefore, the exact solution is suggested to beu(x) = ex,
which satisfies both the conditions, and the equation.

4.2 Nonlinear integro-differential equations

Example 3.Consider the nonlinear Fredholm
integro-differential equation

u′ =
5
4
−

1
3

x2+

∫ 1

0
(x2

− t)
(

u(t)
)2

dt,u(0) = 0, (19)

with the exact solutionu(x) = x. u0(x) is chosen to be:

u0(x) =
1

∑
m=0

amxm = a0+ a1x

In view of Eq. (15) we have

u1(x) =−a0− a1x+
5x
4
−

x3

9
+

+

∫ x

0

(

∫ 1

0
(s2

− t)A0(t)dt
)

ds = 0

whereAm are the well-known Adomian polynomials. The
first term of Adomian polynomials that represents the
nonlinear operatoru2(x) is A0(x) = u2

0(x). Now we find
am, m = 0,1. Hence for all values ofx we have

5x
4
−

x3

9
− a0−

xa2
0

2
+

1
3

x3a2
0− xa1−

2
3

xa0a1+

+
1
3

x3a0a1−
xa2

1

4
+

1
9

x3a2
1 = 0,

which means that
a0 = 0,
5
4 −

a2
0
2 − a1−

2
3a0a1−

a2
1
4 = 0 or a1 = 1,−5.

So, the solution, which is the same as the exact solution
and satisfies both the equation and the conditions, will be
u(x) = x, while, the solutionu(x) =−5x does not.

Example 4.Consider the nonlinear Volterra
integro-differential equation

u′ =−1+
∫ x

0
u(t)2dt, u(0) = 0, (20)

with the exact solutionu(x) =−x. We can chooseu0(x) to
be

u0(x) =
1

∑
m=0

amxm = a0+ a1x.

In view of Eq. (15) we have

u1(x) =−a0− a1x− x+
∫ x

0

(

∫ x

0
A0(t)dt

)

dx = 0,

whereA0 is the Adomian polynomial. Now,am, m = 0,1
are found from the relation:

−a0− a1x− x+
1
2

x2a2
0+

1
3

x3a0a1+
1
12

x4a2
1 = 0,

which gives:
a0 = 0,
a1 =−1.
So, the solution will beu(x) =−x.

4.3 Nonlinear system of integro-differential
equations

Example 5.Consider the nonlinear system of Fredholm
integro-differential equations

u′1 = ex
−12+

∫ Ln2

0

(

u1(t)
2+ u2(t)

2
)

dt,u1(0) = 1,

u′2 = 3e3x +9+
∫ Ln2

0

(

u1(t)
2
− u2(t)

2
)

dt,u2(0) = 1,

(21)
with the exact solutionu1(x) = ex, u2(x) = e3x. u0(x) is
chosen as:

u10(x) =
2

∑
m=0

ame(m+1)x = a0ex + a1e2x + a2e3x,

u20(x) =
2

∑
m=0

bme(m+1)x = b0ex + b1e2x + b2e3x.

In view of Eq. (15) we have

u11(x) =−a0ex
− a1e2x

− a2e3x + ex
−12x+

+

∫ x

0

(

∫ Ln2

0
(A0[t]+B0[t]

)

dt)ds = 0

u21(x) =−b0ex
− b1e2x

− b2e3x + e3x +9x+

+

∫ x

0

(

∫ Ln2

0
(A0[t]−B0[t]

)

dt)ds = 0
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whereA0 andB0 are the Adomian polynomials. Now,
am, m = 0,1,2 are found from the relation:

ex
−12x+(

3
2

a2
0+

14
3

a0a1+
15
2

a0a2+

+
15
4

a2
1+

62
6

a1a2+
21
2

a2
2+

3
2

b2
0+

+
14
3

b0b1+
15
2

b0b2+
15
4

b2
1+

62
5

b1b2+

+
21
2

b2
2)x− a0ex

− a1e2x
− a2e3x = 0

as:
a0 = 1,
a1 = a2 = 0.
Similarly, bm, m = 0,1,2 are found from the relation:

e3x +9x+(
x3

2
a2

0+
14
3

a0a1+
15
2

a0a2+

+
15
4

a2
1+

62
6

a1a2+
21
2

a2
2−

3
2

b2
0−

−
14
3

b0b1−
15
2

b0b2−
15
4

b2
1−

62
5

b1b2−

−
21
2

b2
2)x− b0ex

− b1e2x
− b2e3x = 0

as
b0 = b1 = 0,
b2 = 1.
So, the solution will beu1(x) = ex andu2(x) = e3x which
is the same as the exact solution.

Example 6.Consider the nonlinear system of Volterra
integro-differential equations

u′1 = 1− x+
x2

2
−

x4

12
+

+

∫ x

0

(

(x− t)u1(t)
2+ u2(t)

2
)

dt,u1(0) = 1

u′2 =−1− x−
3x2

2
−

x4

12
+

∫ x

0

(

u1(t)
2+(x− t)u2(t)

2
)

dt,u2(0) = 1, (22)

with the exact solutionu1(x) = 1+ x, u2(x) = 1− x. u0(x)
is chosen to be

u10(x) =
1

∑
m=0

amxm = a0+ a1x

u20(x) =
1

∑
m=0

bmxm = b0+ b1x

In view of Eq. (15) we have

u11(x) =−a0− a1x+1+ x−
x2

2
+

x3

6
−

x5

60
+

+

∫ x

0

(

∫ x

0

(

(x− t)A0[t]+B0[t]
)

dt
)

ds = 0

u21(x) =−b0− b1x+1− x−
x2

2
−

x3

2
−

x5

60
+

+
∫ x

0

(

∫ x

0

(

A0[t]+ (x− t)B0[t]
)

dt
)

ds = 0,

whereA0 andB0 are the Adomian polynomials.
Now am, m = 0,1 are found from the relation:

1+ x−
1
2

x2+
1
6

x3
−

x5

60

+
1
60

a2
1x5+

1
4

(1
3

a0a1+
1
3

b2
1

)

x4

+
1
3

(1
2

a2
0+ b0b1

)

x3

+
1
2

b2
0x2

− a0− a1x = 0

as
a0 = 1,
a1 = 1.
Similarly, bm, m = 0,1 are found from the relation:

1− x−
1
2

x2
−

1
2

x3
−

x5

60

+
1
6

b2
1x5+

1
4

(1
3

b0b1+
1
3

a2
1

)

x4

+
1
3

(1
2

b2
0+ a0a1

)

x3+
1
2

a2
0x2

− b0− b1x = 0

as
b0 = 1
b1 =−1.
So, the solution will beu1(x) = 1+ x andu2(x) = 1− x
which is the same as the exact solution.

5 Conclusion

In this paper, the new modification of Adomian
decomposition method is employed to solve linear and
nonlinear integro-differential equation. It is evident from
the numerical examples that the proposed method gives
the exact solution after a single iteration. In this method
the rate of convergence is accelerated. The method needs
much less computational work compared with traditional
methods. We recommend apply the method to other types
of integral equations.
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