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1 Introduction into two portions: linear and nonlinear. The solution
generated by this method is in a series form whose terms
are determined by a recursive relation using Adomian

Integral equations and differential equations play an !
g g d Pay polynomials

important role in many social, biological, physical and
engineering problems, as can be seen from the attached
references ([J-[15]). Analytical methods for the solution

of nonlinear Integro-differential equations are usually
hard ([L6]-[17)), if not impossible, consequently exact
solutions are rather difficult to be obtained. Therefore, 1] dn o

several numerical methods are used for the solution of =9 WN('Z))\M) , nz0. (1)
such types of equations such as the finite differentgs [ ' = A=0

Tau method 19|, He’s homotopy perturbation method

([20)-[29]), Legendre polynomials and Block-pulse

functions approach2p], Haar Wavelet Series Technique

[27], differential transform @8]-[29]) and the Adomian WhereA, denotes the Adomian polynomials of degree
decomposition method 30J-[31]). For the solution of nandu= y®,ui(xt) is the solution of the problem and
integral equations, Adomian presented the so-calledN(u) is the nonlinear term in the equation.

Adomian decomposition method (ADM) 38-[33).

Wazwaz extended the method to include the solution of Recently, a new modification of Adomian
\olterra integral equation34] and the boundary value decomposition method (NMADM) for finding exact
problems for higher order integro-differential equations solutions of nonlinear integral equations is presented by
In recent years, much work has been concentrated on thielossein Jafari, et al4Q]. A new reliable modification of
solutions of \olterra-Fredholm integro-differential the ADM is proposed and applied for the solution of the
equation, in general, 35-[39)). Volterra and Fredholm integral equations. In this paper,

Adomian’s decomposition method (ADM), as a the (NMADM) is applied for the solution of nonlinear
powerful method, can be used to solve all types ofintegro-differential equations (NIDE). Some examples are
nonlinearity. At the same time, this method reduces thegiven to illustrate the ability and reliability of this new
size of computation, while increasing the accuracy of themodified method. The results reveal that the presented
solutions. The ADM separates the equation to be solvednodified method is very simple and effective.
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2 Adomian decomposition method for solving
(NIDE)

The nonlinear Volterra integro-differential equationstod
second kind are given by

+/th )+ N(u(t))] dt,

uxo)=a1,  U(x)= ()

and the nonlinear Fredholm integro-differential equagion
the second kind are given by

a,

+/th )+ N(u(t))] o,

u(x)=ai, U(x)= 3)

Where u’(x) is the second derivative of the unknown
functionu(x) that will be determined (x,t) is the kernel
of the integral equationf(x) is an analytic function,
R(u(t)) andN(u(t)) are linear and nonlinear function of
u, respectively. Equatiorlj and @) can be rewritten in an
operator form

ap.

L(u +/ K(x,t) [R(U(t)) + N(u)]dt, (4)

+/ K (x,t) [R(U(t)) = N(u(t))] dt. (5)

The inverse operatdc~?! is therefore considered an
n—fold integral operator defined by 1(.) = [5(.)dx
Operating withL; * to both sides of4) and 6) and using
the initial condition, we have

) = 900 + L ([ Kxt) [Rw) + Nl k).

(6)

and

) = 000+ L [ K6t Reue) +N(uie) ).

()
where g(x) included the L;1(f(x)) and the initial

conditions.

The standard Adomian decomposition method defines

the solutionu(x) by the decomposition series

00

u(x) = nZoun(x),

(8)

whereun(x) has to be determined sequentially upon

the following algorithm

9)

10 = G ([ K060 [Retn(0) + An(ut)] o),

m> 0, (20)

whereAy,, m> 0 are the Adomian polynomials.

3 A new Adomian decomposition method for
solving (NIDE)

The modified Adomian decomposition method
(NMADM) provides the exact solution by using a single
iteration. Only up and u;, which give one exact
solution(s) after one iteration, are discussed. The soiuti

is usually a unique solution, but in the present work, an
example that gives two solutions is presented. In this
method, the rate of convergence is accelerated. The ADM
usually gives one solution among other solutions.
However, as will be seen in an example below, the
presented method can give more than one solution”. To
achieve this goal, Equation6)(and (/) are rewritten as:

% amVim(X % amVim(X) +9(x) +
bt / K(x,t) FNu)d), (D)
and
N N
Z amVim(X Z amVim(X) +9(x) +
Lt / K(x.t) FNuO)d), (1)
wheream, m=0,1,2,....N are called the accelerating

components of the parameter, angdx), m=0,1,2,...,N

are selective functions. Furthermore, the number of the
terms in up, namely N, is small in many practical
problems. Recall that the modified decomposition method
is established based on the assumption that the function

N N

z amVm(X Z amVm(X) +9(X), (13)

can be divided into two parts, namefly(x) and fa(x).
Under this assumption we set

f(x) = f1(x) + f2(x),
where

N

%)= 3 ann(x),
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and
N

B0 =—3 amvm(X) +9(x).
m=0

Accordingly, a slight variation was proposed only on
the componentsp and u;. It is suggested that only the
part fi(X) be assigned to the zeroth component
whereas the remaining paf§(x) be combined with the
other terms given in 1) and (2) to define uj.
Consequently, the modified recursive relation:

N
Uo(X) = 3 amVm(x), (14)
m=0
N
Ww(X) = — 5 amvm(x)+9(x)
m=0

([ Ko IRuo() + Aouter), as)

b
() = L (|06 [Rem-2(1)) + An-a(u(t))] o),
m> 2. (16)

was developed.

4 Numerical illustrations

In this section, several examples are solved to illustrate

this method for Linear and Nonlinear Integro-differential
equations.

4.1 Linear integro-differential equations

Example 1.Consider the linear Fredholm
integro-differential equation
1
U(X) = X + & — x+ / xut)dt, u(0)=0, 17)
0

with the exact solutiomi(x) = xe*. up(x) is chosen as:
1
= z anXe" = age + apxe*.
m=0

In view of Eq. (L5) we have

exact solution will be obtained agx) = up(x). Hence for
all values ofx we have

12 12 1 2 12 .
eXx—ix —e"ao—ix ao+§ex ao—exxa1+§x a;=0
_a0:0
a=1

So, the solutions will bei(x) = xe*, which is the same as
the exact solution.

Example 2.Consider the linear Volterra integro-differential
equation

u’(x) = 1+x+/ox(x—t)u(t)dt,u(0) =1,u(0)=1. (18)

Up(X) are chosen as:

1
Up(X) = z anX™ = ag + aiX
m=0

In view of Eq. (L5) we have

1
uy(X) = —ag— a1x+1+x+§x+ x3+

/// X—)Uo(t)dt ) dxx = 0,

which means that:

X*ay xPay 2 3
e e
~80— A1X+ 2 + oo+ 14Xt o+

3l

Now, am, m= 0,1 are found such that;(x) = O.
Hence,ag = 1, &y = 1, for all values ofx. So, the
solutions will be u(x) = 1+ x, which satisfies the
conditions, but does not satisfy the equation, by
substituting this solution in the right hand side of equatio
(18) we get;

R.H.S=1+x+ é—z. + § So, we increas&l and letup(x)

to be
2

z amX" = ap+ aix+ a2x2

m=0

In view of Eq. (L5) we have

Uo(X) =

X2

ui(X) = —agp— agx — ax? +1+x+ +3

+// /x t)to(t)dt ) dxdx = 0

i

U (X) = —age’ — apxe’ — 1/2x% + xe*+ which means that
X — ) + 1+ X+ X0+ 3+x4ao+x5a1+
+/ / Ko(t)dt ) dx =0 oA A 2 " 24 T 120
Now, am, m= 0,1 are found such thai;(x) = 0. If x8a,
uz(x) = 0 thenuy(x) = uz(x) = ug(x) = --- =0, and the +% =0
(@© 2017 NSP
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Now, am, m= 0,1,2 are found such that;(x) = O.
Hence for all values of we haveag =1,a; =1, ap = l

So, the solutions will bei(x) = 1+ x+ %, which also

satisfies the conditions, but does not satisfy the equation, = —1+/
by substituting this solution in the right hand side of

equation 18) we get
R.H.S=1+x+ X—22 + X—g + 1% So, we increashl and let

0

X2  x3
2! +3'+

+/OX/OX(/OX((x—t)miamtm)dt)dxdx.

Therefore, the exact solution is suggested tapg = €%,
which satisfies both the conditions, and the equation.

uz(X) Z amXM+ 14X+ =

4.2 Nonlinear integro-differential equations

Example 3.Consider the nonlinear Fredholm
integro-differential equation
u ———x2+/ (@ —t)( dt u0)=0, (19)

with the exact solutiomi(x) = x. Up(x) is chosen to be:

1
Ug(X) = Z anX" = ag+ aix
m=0

In view of Eq. (L5) we have

5x X3
Ui(X) = —80—ax+ 7 — 5+
+// DAo(t)dt)ds=0

whereAn, are the well-known Adomian polynomials. The
first term of Adomian polynomials that represents the

nonlinear operatou?(x) is Ag(x) = u3(x). Now we find
am, m= 0, 1. Hence for all values of we have

5 x3 xa§ 2
xOoxX ﬁ _ <
79 ap— > + =X"ag—Xay 3xaoaﬁ—
1s xa; 1go_
+3x aody —T+§x3a1_0,
which means that
ap =0,

2 2
§_®_a1_ aga —Tl—Ooral_l —5.

So the squt|on which is the same as the exact solution
and satisfies both the equation and the conditions, will be

u(x) = x, while, the solutioru(x) = —5x does not.

Example 4.Consider the nonlinear \olterra

integro-differential equation

(t)2dt, u(0)=0, (20)

with the exact solutiom(x) = —x. We can choosep(X) to
be

1
Ug(X) = Z amX™ = ap + agx.
m=0

In view of Eq. (L5) we have

ui(X) = —ag— alx—x+/ox(/0XAo(t)dt)dx: 0,

whereAy is the Adomian polynomial. Nowg,,, m= 0,1
are found from the relation:

—ag— X — x+ x2ad+ = x3a0a1+ 2x“af =0,
which gives:
a =0,
a;=—1

So, the solution will bei(x) = —x.

4.3 Nonlinear system of integro-differential
eguations

Example 5.Consider the nonlinear system of Fredholm
integro-differential equations

Ln2

Uy — & — 12+/ 4 Ua(t)? )t g (0) = 1.

u, = 3e>+9+ an(u )2 — uy(t)?) dt, up(0) = 1
o= A (1) —uz(t)” ) dt,ux(0) = 1,

(21)
with the exact solutionu; (x) = €, u(x) = €*. up(x) is
chosen as:

U10(X Z ame™ X = goe¥ 4 2,6 + ae™
Upo(X Z bm glm+1)x = bp€* + ble'zx+ b2

In view of Eq. (L5) we have

up1(x) = —age’ — aye™ — ae™ + e — 12x+

(e

Up1(X) = —boe* — ble2x bze + e3x+ Ox+

(e

[t] + Bolt ])dt)ds: 0

Bo[t])dt)ds: 0

(@© 2017 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett6, No. 1, 15-21 (2017) www.naturalspublishing.com/Journals.asp NS = 19

X X
whereAg andBg are the Adomian polynomials. Now, +/ (/ ((x—t)Ao[t] + Bo[t])dt)ds: 0

am, m=0,1,2 are found from the relation: 0 o
3, 14 15 2 3 38

& — 12+ (580 + 5 8081 + — a0l + Up1(X) = —bo —bax+1—x— = — = — =+

1_5 2 6_2 ﬂ' 2 § 2 X, X

tgat gadt Sat oot +/ (/ (Aolt] + (x—t)Boft]) it )ds = O,
o \Jo

14 15 15, 62
—|—§bob1+ ?bobz + Zb1+ €b1b2+ whereA; andBy are the Adomian polynomials.

21 Now am, m= 0,1 are found from the relation:
+?b§)x —agef — a1 —ae® =0

: 1, 145 X
as: 14+x— X4+ 23— —
a0=1, TETE 6o
a;=ay=0.
Similarly, by, m= 0,1,2 are found from the relation: 1, 1 1
) 9= el )CF, - - 2 X4
+g%0°+ 3 (3008 + 300)

x3 14 15
e+ Ox + (56%4— 5 808+ 202+

15 , 62 21, 3.,
+Zal+ €a1a2+ 7a2—§b0— .
14 15 15, 62 +Zbgx% —ag—ax=0
3 boby > bobo 2 bl 5 biby 2
21 as
—7b§)x— boe* — by —be* =0 ap=1,
as a;=1.
bo = by =0, Similarly, bm, m= 0,1 are found from the relation:
b2 =1 5
So, the solution will bai; (x) = € anduy(x) = e which 1—x— }Xz _ }Xs _x
is the same as the exact solution. 2 2 60
Example 6.Consider the nonlinear system of \olterra 1 1.1 1
integro-differential equations Zp? =(= —al
g q b+ 4(3b0b1+ 3a1)><4
X2
Up=1-X+%——+ 1,1 1
2 12 +—(—bg+aoa1)x3+—a%xz—bo—b1X=0
. 3\2 2
+ (0 DU + uelt)?) ot us (0) = 1 as
bo=1
2= 2 12 So, the solution will beu;(x) = 1+x anduy(x) = 1 — X

which is the same as the exact solution.

/O X(ul(t)2+ (- Ot d (0 =1, (22)

with the exact solutiomi; (X) = 1+ X, uz(X) = 1 —X. Up(X)

is chosen to be 5 Conclusion
1
uio(X) = amX™ = ao+aix In this paper, the new modification of Adomian
m=0 decomposition method is employed to solve linear and

1 nonlinear integro-differential equation. It is evidendrin
Upo(X) = Z bmXx™ = b + byx the numerical examples that the proposed method gives
=0 the exact solution after a single iteration. In this method
the rate of convergence is accelerated. The method needs
much less computational work compared with traditional
2 3 O methods. We recommend apply the method to other types
Uia(X) = —80 —aX+ 14X — 5 4 & — oot of integral equations.

In view of Eqg. (L5) we have
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