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Peristaltic transport with long wavelength approximation and low Reynolds number
assumptions through a porous medium in an annulus filled with an incompressible vis-
cous and Newtonian fluid, is investigated theoretically. The inner tube is uniform, rigid,
while the outer tube has a sinusoidal wave traveling down its wall. The flow is inves-
tigated in a wave frame of reference moving with velocity of the wave. The velocities
and the pressure gradients have been obtained in terms of the dimensionless flow rate
Q, the amplitude ratio φ, permeability of the porous medium K and the radius ratio ε

(the ratio between the radius of the inner tube and the radius of the outer). The effects
of porous medium and an endoscope on the velocities, pressure gradient, pressure rise
and frictional forces on the inner and outer tubes are discussed.
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1 Introduction

Peristaltic pumping is a form of fluid transport that occurs when a progressive wave of
area contraction or expansion propagates along the length of distensible duct. Peristalsis
is an inherent property of many biological systems having smooth muscle tubes which
transports biofluids by its propulsive movements and is found in the transport of urine from
kidney to the bladder, the movement of chyme in the gastro-intestinal tract, intra-uterine
fluid motion, vasomotion of the small blood vessels and in many other glandular ducts.

∗Corresponding author



104 Kh.S. Mekheimer and Y. Abd Elmaboud

The mechanism of peristaltic transport has been exploited for industrial applications like
sanitary fluid transport, blood pumps in heart lung machine and transport of corrosive fluids
where the contact of the fluid with the machinery parts is prohibited. A number of analytical
[1-10], numerical and experimental [11-16] studies of peristaltic flows of different fluids
have been reported. there are many examples of natural porous media, such as beach sand,
rye bread, wood, filter paper, human lung, etc. A good biological example of a porous
medium is the pathological situation of gallstones when they fall down into bile ducts
and close them partially or completely. Physiologically, inflammation of the gallbladder
epithelium often results from low-grade chronic infection, and this changes the absorptive
characteristics of the gallbladder mucous. As a result, cholesterol begins to precipitate,
usually forming many small crystals of cholesterol on the surface of the inflamed mucous
membrane. These, in turn, act as nodes for further precipitation of cholesterol, and the
crystals grow larger. When such crystals fall down the common bile duct they cause loss
of hepatic secretions to the gut, and also cause severe pain in the gallbladder region as well
(Arthur and Guyton [17]).

Flow through a porous medium has been of considerable interest in recent years, num-
ber of workers employing Darcy’s law, Rapits et al. [18], and Varshney [19] have solved
problems of the flow of a viscous fluid through a porous medium bounded by a vertical
surface. Mekheimer and Al-Arabi [20], studied nonlinear peristaltic transport of MHD
flow through a porous medium and Mekheimer [6] studied nonlinear peristaltic transport
through a porous medium in an inclined planar channel. The aim of the present study is
to investigate fluid mechanics effects of peristaltic transport through a porous medium in
gap between two coaxial tubes, filled with incompressible Newtonian fluid, the inner tube
is rigid and the outer one have a wave trains moving independently. A motivation of
the present analysis is the hope that such a problem will be applicable in many clinical
applications such as the endoscope problem.

2 Formulation of the Problem

Consider creeping flow of an incompressible Newtonian fluid through coaxial tubes the
gap between them filled with an isotropic porous medium. The inner tube is rigid and the
outer have a sinusoidal wave traveling down its walls. The geometry of the wall surface is
described in Fig. 2.1, the equations for the radii are

r′1 = a1, (2.1)

r′2 = a2 + b cos
2π

λ
(Z ′ − ct′), (2.2)

where a1, a2 are the radius of the inner and the outer tubes, b is the amplitude of the wave,
λ is the wavelength, c is the propagation velocity and t′ is the time.
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Figure 2.1: Geometry of the problem

Introducing a wave frame (r′, z′) moving with velocity c away from the fixed frame
(R′, Z ′) by the transformation

z′ = Z ′ − ct, r′ = R, w′ = W ′ − c, u′ = U ′, (2.3)

where (u′, w′) and (U ′,W ′) are velocity components. After using these transformation
then the equations of motion are

∂u′

∂r′
+

∂w′

∂z′
+

u′

r′
= 0, (2.4)

ρ

[
u′

∂u′

∂r′
+ w′

∂u′

∂z′

]
= −∂p′

∂r′
+ µ

[
∂2u′

∂r′2
+

1
r′

∂u′

∂r′
+

∂2u′

∂z′2
− u′

r′2

]
− µ

K ′u
′, (2.5)

ρ

[
u′

∂w′

∂r′
+ w′

∂w′

∂z′

]
= −∂p′

∂z′
+ µ

[
∂2w′

∂r′2
+

1
r′

∂w′

∂r′
+

∂2w′

∂z′2

]
− µ

K ′ (w
′ + c), (2.6)

where u′ and w′ are the velocity components in the r′ and z′ directions, respectively, ρ

is the density, p′ is the pressure, µ is the viscosity, and K ′ permeability of the porous
medium. We introduce the following nondimensional variables

r =
r′

a2
, z =

z′

λ
, w =

w′

c
, u =

λu′

a2c
, p =

a2
2

λµc
p′, K =

K ′

a2
2

,

r1 =
r′1
a2

= ε, r2 =
r′2
a2

= 1 + φ cos(2πz),

Re =
ρca2

µ
, δ =

a2

λ
, ε =

a1

a2
,

(2.7)

where φ is the amplitude ratio, Reynolds number Re and δ is the dimensionles wave num-
ber.

To proceed, we non-dimensionalize Eqs. (2.4-2.6), this yields

1
r

∂(ru)
∂r

+
∂w

∂z
= 0, (2.8)
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Reδ3

[
u

∂u

∂r
+ w

∂u

∂z

]
= −∂p

∂r
+ δ2 ∂

∂r

(
1
r

∂(ru)
∂r

)
+ δ4 ∂2u

∂z2
− δ2

K
u, (2.9)

Reδ

[
u

∂w

∂r
+ w

∂w

∂z

]
= −∂p

∂z
+

1
r

∂

∂r

(
r
∂w

∂r

)
+ δ2 ∂2w

∂z2
− 1

K
(w + 1). (2.10)

Using the long wavelength approximation and dropping terms of order δ and higher, it
follows from Eqs. (2.8-2.10) that the appropriate equations describing the flow in the wave
frame are

1
r

∂(ru)
∂r

+
∂w

∂z
= 0, (2.11)

∂p

∂r
= 0, (2.12)

∂p

∂z
=

1
r

∂

∂r

(
r
∂w

∂r

)
− 1

K
(w + 1), (2.13)

Eq.(2.12) shows that p is not a function of r. The corresponding dimensionless boundary
conditions are

w = −1 at r = r1,

w = −1 at r = r2.
(2.14)

The expressions for the velocity profile of the fluid, obtained as the solutions of
Eqs.(2.13) subject to the boundary conditions (2.14) are given as

w(r, z) = I0(mr)
(

b11pz

m2b13

)
+ K0(mr)

(
b12pz

m2b13

)
− (m2 + pz)

m2
, (2.15)

where

m =
1√
K

, b11 = K0(mr1)−K0(mr2), b12 = I0(mr2)− I0(mr1),

b13 = I0(mr2)K0(mr1)− I0(mr1)K0(mr2).

where I0, K0 are the modified Bessel function of the first and second kind respectively of
order 0. The velocity u(r, z) can be obtained from Eq.(2.11) after using Eq.(2.15), we get

u(r, z) =
1

2m4b2
13rr2

[
2pzr

′
2

(
mr(I1(mr)K0(mr1)+I0(mr1)K1(mr))−1

)
(mr2b16−1)

+ r2p
′
zb13{2 + m(mK0(mr2)

[
r2
1I2(mr1)− r2I0(mr1)

]− 2b11rI1(mr)

− 2rI0(mr1)K1(mr) + I0(mr2)
(
mr2K0(mr1) + 2rK1(mr)

−mr2
1K2(mr1)

)
)}

]
, (2.16)

where
b14 = I0(mr2)K2(mr1)− I2(mr1)K0(mr2),

b15 = I0(mr1)K2(mr2)− I2(mr2)K0(mr1),
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b16 = I1(mr2)K0(mr1) + I0(mr1)K1(mr2),

and the prime (′) denotes differentiation w.r.t z. The corresponding stream function (u =
−(1/r)∂ψ/∂z and w = (1/r)∂ψ/∂r) is

ψ(r, z) ={m4b13(r2
1 − r2) + pz[−2 + m(2rb11I1(mr) + mK0(mr2)(r2I0(mr1)

− r2
1I2(mr1)) + 2rI0(mr1)K1(mr) + I0(mr2)(mr2

1K2(mr1)

− r(mrK0(mr1) + 2K1(mr))))]} × 1
2m4b13

. (2.17)

The instantaneous volume flow rate Q(z) is given by

Q(z) = 2
∫ r2

r1

rw(r, z)dr = (r2
1 − r2

2) +
pz

m4b13

[
m2(b14r

2
1 + b15r

2
2)− 4

]
, (2.18)

From Eq.(2.18) we get

pz =
m4b13

[m2(b14r2
1 + b15r2

2)− 4]
× (

Q(z)− (r2
1 − r2

2)
)
. (2.19)

Following the analysis given by Shapiro et al.[1], the mean volume flow, Q over a
period is obtained as

Q = Q(z) + (1 +
φ2

2
)− ε2, (2.20)

which on using Eq.(2.19) yields

pz =
m4b13

[m2(b14r2
1 + b15r2

2)− 4]
×

(
Q + ε2 − (1 +

φ2

2
)− (r2

1 − r2
2)

)
. (2.21)

The pressure rise ∆p and the friction force (at the wall) on the outer and inner tubes are
F (o) and F (i) respectively, in a tube of length L, in their non-dimensional forms, are given
by

∆p =
∫ 1

0

pzdz, (2.22)

F (o) =
∫ 1

0

r2
2(−pz)dz, (2.23)

F (i) =
∫ 1

0

r2
1(−pz)dz. (2.24)

Substituting from Eq.(2.21) in Eqs.(2.22 -2.24) with r1 = ε, r2 = 1 + φ cos(2πz),
we get the pressure rise and the friction force (at the wall) on the outer and inner tubes.

In the absence of the porous medium and the inner tube (i.e.,K → ∞, r1 = 0), the
pressure rise and the outer friction force in this case take the form

∆p =
−8

(1− φ2)7/2

{
Q

(
1 +

3
2
φ2

)
+

φ2

4
(φ2 − 16)

}
, (2.25)
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F (o) =
8

(1− φ2)3/2

{
Q− 1− φ2

2
+ (1− φ2)3/2

}
. (2.26)

The results obtained in Eqs.(2.25-2.26) are the same as those obtained by Shapiro et
al.[1].

3 Numerical Results and Discussion

In order to have an estimate of the quantitative effects of the various parameters in-
volved in the results of the present analysis we using the MATHEMATICA program. The
numerical evaluations of the analytical results obtained for ∆p, F (o), F (i), for different
parameters values [20-23]: ε = 0.32 up to 0.44, L = λ = 8.01 cm, and K = 0.05 up to
0.5.

In Fig. 3.1 the variation of dp
dz versus z is shown for different values of K and Q by

fixing the other parameters ε = 0.32 (endoscope problem) and φ = 0.4, it is notice that the
maximum amplitude of the pressure gradient dp

dz decreases as K and Q increase. The effect
of changing the amplitude ratio φ and radius ratio ε is indicated in Fig. 3.2, we observe that
there is an increase in the maximum amplitude of dp

dz when increasing φ and ε.
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Figure 3.1: The variation of pressure gradient dp
dz

with z for different values of K and Q at ε = 0.32,
φ = 0.4.
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Figure 3.2: The variation of pressure gradient dp
dz

with z for different values of ε and φ at K = 0.1,
Q = 0.1.

It is evident from Fig. 3.3 that there is linear relation between pressure rise and flow
rate, also an increase in the flow rate reduces the pressure rise and thus maximum flow
rate is achieved at zero pressure rise and maximum pressure occurs at zero flow rate. The
pressure rise decreases as K increases but it increases as ε increase.
Fig. 3.4, depicts the variation of ∆p with Q at ε = 0.32, for different values of amplitude
ratio φ and K. An interesting observation here is that the pressure rise increases with
increase φ. The pumping regions, peristaltic pumping (Q > 0 and ∆p > 0), augmented
pumping (Q > 0 and ∆p < 0) and retrograde pumping (Q < 0 and ∆p > 0) are also
shown in Figs. 3.3-3.4 and it is clear that the peristaltic pumping region becomes wider as
the radius ratio ε, amplitude ratio φ increases.

The variation of ∆p with permeability of the porous medium K for different values
flow rate Q and radius ratio ε at φ = 0.4 is presented in Fig. 3.5. It is observed that the
relation between ∆p and K is non linear relation, ∆p decreases with increase K.

Figs. 3.6 and 3.7 describe the results obtained for the inner friction F (i) versus the flow
rate Q and Fig. 3.8 depicts the variation of inner friction F (i) versus permeability of the
porous medium K.
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Figure 3.3: The variation of ∆p with Q for different values of K and ε at φ = 0.4.
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Figure 3.4: The variation of ∆p with Q for different values of φ and K at ε = 0.32.
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Figure 3.5: The variation of ∆p with K for different values of Q and ε at φ = 0.4.
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Figure 3.6: The variation of F (i) with Q for different values of K and ε at φ = 0.4.
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Figure 3.7: The variation of F (i) with Q for different values of K and φ at ε = 0.38.
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Figure 3.8: The variation of F (i) with K for different values of Q and ε at φ = 0.4.
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Figure 3.9: The variation of F (o) with Q for different values of K and ε at φ = 0.4.

Figs. 3.9 and 3.10 describe the results for outer friction force F (o) versus the flow
rate Q and Fig. 3.11 depicts the variation of outer friction F (o) versus permeability of the
porous medium K.

Furthermore, the effect of important parameters as Q, K, ε and φ on the inner and outer
friction force have been investigated.

We notice from these figures that the inner and outer friction force have the opposite
behavior compared to the pressure rise. The inner friction force behaves similar to the
outer friction force for the same values of the parameters, moreover the outer friction force
is greater than the inner friction force at the same values of the parameters.

The effect of the permeability of the porous medium K on the contour map of the
velocities w(r, z) and u(r, z) are investigated in Figs. 3.12 and 3.13. The lighter colored
regions have a higher velocity than the regions shaded darker. Fig. 3.12 shows that the
velocity w, increases as permeability of the porous medium K increases also the height
and the width of the bolus decreases. The behavior of the streamlines near the walls are
same as the walls. Fig. 3.13 shows that the velocity u. It is notice that a steepening of
the edges in the sinusoidal behavior of u. There is an increase in the size of the bolus as
permeability of the porous medium K increase.
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Figure 3.10: The variation of F (o) with Q for different values of φ and K at ε = 0.38.
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Figure 3.11: The variation of F (o) with K for different values of Q and ε at φ = 0.4.
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Figure 3.12: The contour plot for the velocity w(r, z) at Q = −1, ε = 0.32, φ = 0.2 with
(A)K = 0.001, (B) K = 0.005, (C) K = 0.5, r ∈ [ε, r2(z)] and z ∈ [0, 1].
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Figure 3.13: The contour plot for the velocity u(r, z) at Q = −1, ε = 0.32, φ = 0.2 with
(A)K = 0.001, (B) K = 0.005, (C) K = 0.5, r ∈ [ε, r2(z)] and z ∈ [0, 1].
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Figure 3.14: Graph of the streamlines for Q = 0.5, ε = 0.32, φ = 0.4 and K = 0.05.
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Figure 3.15: Graph of the streamlines for Q = 0.5, ε = 0.32, φ = 0.4 and K = 0.9.
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Figure 3.16: Graph of the streamlines for Q = 0.1, ε = 0.32, φ = 0.4 and K = 0.2.
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Figure 3.17: Graph of the streamlines for Q = 0.1, ε = 0.44, φ = 0.4 and K = 0.2.
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Figure 3.18: Graph of the streamlines for Q = 0.6, ε = 0.32, φ = 0.2 and K = 0.1.
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Figure 3.19: Graph of the streamlines for Q = 0.6, ε = 0.32, φ = 0.4 and K = 0.1.
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4 Streamlines and Fluid Trapping

The phenomenon of trapping, whereby a bolus (defined as a volume of fluid bounded
by a closed streamlines in the wave frame) is transported at the wave speed. Figs. 3.14
and 3.15 illustrate the streamline graphs for different values of permeability of the porous
medium K for other given fixed set of parameters. It is observed that the permeability of
the porous medium increases the velocities which lead to the fluid element spin forms bolus
this indicate that the bolus appears as K increases.

The effects of the radius ratio ε on the trapping are illustrated in Figs. 3.16-3.17. It is
evident that the the streamlines near the walls are parallel to the walls when radius ratio ε

is small but by increasing the radius ratio the bolus appearing. The effects of the amplitude
ratio φ on the trapping are illustrated in Figs. 3.18-3.19. It is evident that the size of
trapping bolus increases with increases φ with fixing other parameters.
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