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Abstract: Composition of distribution functions is considered one ofthe methods that generate new distributions. In this paper,a new
distribution is obtained by composing a log-logistic distribution with a Weibull distribution. The new distribution has decreasing and
unimodal shapes of the hazard rate function which make it suitable to fit several real data. Some properties of the new distribution are
investigated. Based on progressive type-II censoring, themaximum likelihood, moments and probability weighted moments estimation
methods for the involved parameters are studied and compared through a simulation study. The asymptotic confidence intervals for the
parameters are also obtained based on asymptotic variance-covariance matrix. Finally, real data are used to compare the new distribution
with four lifetime distributions based on five comparison criteria. The comparison shows that the new distribution is better to fit the
data than the other four distributions.

Keywords: Composition of distributions, progressive type-II censoring, log-logistic and Weibull distributions, maximum likelihood
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1 Introduction

Generation of new distributions may be of great importance when the known classical distributions are unable to give
a good fit to some real data. It could be achieved by some methods such as: (i) Compounding of distributions, see for
example, [1]-[6]. (ii) Adding one or more parameters to a cumulative distribution function (CDF) or a survival function
(SF), for example by exponentiating the CDF to a new parameter. See, for example [7,8,9]. (iii) Composition of CDF (H)
with another CDFG to obtain a CDFF , given by

F(x) = H(G(x)), (1)

(iv) Composition of a symmetric probability density function (PDF) with transformation of scale. Jones [10] generated a
PDF f by composing a symmetric PDFg with transformation of scalet(x), in such a way that

f (x) = 2g[t(x)], −∞ < x< ∞.

Baker [11] suggested two of such transformations:

t1(x) = x−b/x, b> 0, x> 0,

and

t2(x) =
1
a

ln(eax−1), a> 0, x> 0.

More transformations were suggested by Jones [10].
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(v) Composition of a CDF with a function of another CDF. This procedure could be achieved by composingH with η̄
to getF or H with η to getRF(x), see [12], as follows

F(x) = H(η̄(x)) or RF(x) = H(η(x)), (2)

whereRF = 1−F is the SF ofF ,
η(x) =−ln(G(x)), η̄(x) =−ln(RG(x)). (3)

More parameters in the generated distribution make it more flexible to analyzing data in the sense of having better fit
and more shapes of hazard rate function (HRF).

If H andG are absolutely continuous CDFs, then (1) and (2) can be written as

F(x) = H(G(x)) =
∫ G(x)

0
h(y)dy, (4)

and

F(x) = H(η̄(x)) =
∫ −ln(RG(x))

0
h(y)dy or RF(x) = H(η(x)) =

∫ −ln(G(x))

0
h(y)dy, (5)

whereh(.) is the PDF that corresponds CDFH(.).
If, in (4), h subjects to beta(a,b) distribution on the interval(0,1), then (4) becomes

F(x) =
1

B(a,b)

∫ G(x)

0
ya−1(1− y)b−1dy. (6)

CDF (6) is called the beta-G distribution, which was studied by several authors throughspecifying different forms ofG.
Among others, Eugene et al. [13] specifiedG to be normal to obtain the beta-normal distribution. Some authors such as
Nadarajah and Gupta [14], Nadarajah and Kotz [15], Barrito-Souza et al. [16] and Cordeiro and Brito [17] considered the
beta-Frechét, beta-exponential, beta-exponentiated exponential and beta-power distributions, respectively. AL-Hussaini
and Abdel-Hamid [12] introduced a new distribution called half-logistic generated Weibull distribution (HLGWD) and
studied some of its properties.

In this paper, we introduce a new distribution called log-logistic generated Weibull distribution (LLGWD) by
composing log-logistic CDF(H) with Weibull CDF G. The new distribution has decreasing and unimodal failure rates
which make it more suitable to fit several real data.

The rest of the paper is organized as follows: The LLGWD is derived in Section 2. Some properties of the LLGWD
are investigated in Section 3. Maximum likelihood (ML), moments and probability weighted moments (PWM)
estimation methods are studied in Section 4. Simulation study is worked done in Section 5. Finally, Section 6 presents
some concluding remarks.

2 Formulation of the Model

The log-logistic distribution (LLD) (known as the Fisk distribution in economics) is used in survival analysis as a
parametric model for events whose rate increases initiallyand decreases later, for example mortality rate from cancer
following diagnosis or treatment. It has been used also in hydrology to model stream flow and precipitation, and in
economics as a simple model of the distribution of wealth or income. The LLD is similar in shape to the log-normal
distribution but has heavier tails. Unlike the log-normal,its CDF can be written in closed form.

The PDF, CDF and HRF of the LLD are given, respectively, by

h(x) =
γxγ−1

(1+ xγ)2 , x> 0, (γ > 0), (7)

H(x) =
xγ

1+ xγ , x> 0, (γ > 0), (8)

λ1(x) =
γxγ−1

1+ xγ . (9)

HRF (9) is unimodal (decreasing) whenγ > 1 (γ ≤ 1).
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The Weibull distribution (WD) is considered one of the most popular distributions in analyzing skewed data. The PDF,
CDF and HRF of the WD with scale and shape parametersα andβ are given, respectively, by

g(x) = αβxβ−1e−αxβ
, x> 0, (α,β > 0), (10)

G(x) = 1−e−αxβ
, x> 0, (α,β > 0), (11)

λ2(x) = αβxβ−1, x> 0, (α,β > 0). (12)

It can be easily seen that HRF (12) is increasing (decreasing) [constant] whenβ > 1 (β < 1) [β = 1].
By substitution from (11) in (3), thenη̄(x) = αxβ . Using PDF (7), thenF in Equation (2) becomes

F(x) = γ
∫ αxβ

0

uγ−1

(1+uγ)2 du

= 1−
1

1+(αxβ )γ , x> 0, (α,β ,γ > 0).

(13)

We will call CDF (13) as the CDF of LLGWD. The closed form of CDF (13) is considered one of the advantages of
LLGWD, since many distributions that arise from composition of CDFs do not have CDFs in closed forms.

The PDF corresponding to (13) is given by

f (x) =
αγβ γxβ γ−1

[1+(αxβ )γ ]2
. (14)

From (13) and (14), the HRF and proportional reversed HRF are given, respectively, by

λF(x) =
f (x)

1−F(x)
=

αγ β γxβ γ−1

1+(αxβ )γ , x> 0, (15)

λ ⋆
F(x) =

f (x)
F(x)

=
β γ

x(1+(αxβ )γ )
, x> 0. (16)

Different shapes of PDF (14) and HRF (15) are plotted in Figures 1 and 2, respectively, for differentvalues ofα, β andγ.
AL-Hussaini and Hussein [18] showed that any CDFF could be written in terms ofλF(x) andλ ⋆

F(x) as follows

F(x) =
λF(x)

λF(x)+λ ⋆
F(x)

.

The corresponding PDF is given by

f (x) = λF(x)(1−F(x)) =
λF(x)λ ⋆

F(x)
λF(x)+λ ⋆

F(x)
.

3 Properties of LLGWD

Theorem 3.1.HRF (15) is

(i) decreasing ifβ γ ≤ 1,

(ii) unimodal with mode atx0 =

(
β γ −1

αγ

)1/(β γ)
if β γ > 1.

Proof. The first derivative of HRF (15) with respect tox is given by

λ ′(x) =
αγ β γxβ γ−2

(1+αγxβ γ)2
[β γ −1−αγxβ γ ]. (17)
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It is easy to see that ifβ γ ≤ 1, thenλ ′(x)< 0 and hence HRF (15) is decreasing. This proves (i).

Now, suppose thatβ γ > 1. Sincex> 0, λ ′(x) = 0 at uniquex≡ x0 =

(
β γ −1

αγ

)1/(β γ)
. The second derivative ofλ (x)

at x= x0 is given by

λ ′′(x0) =−
(αγβ γ)2x2β γ−3

0

(1+αγxβ γ
0 )4

,

which is always negative. Therefore,x0 maximizes Equation (15) and hence the unimodality of (15) is achieved at mode

x0 =

(
β γ −1

αγ

)1/(β γ)
. This proves (ii).�.

Corollary 3.1. PDF (14) is decreasing ifβ γ ≤ 1 and unimodal with mode at

x0 =

(
β γ −1

αγ

)1/(β γ)
if β γ > 1.

Proof. The proof is simple and hence it is omitted.�.

Proposition 3.1.The p-th quantile of LLGWD (13) is given by

xp =

(
1
α

[
p

1− p

]1/γ
)1/β

, 0< p< 1.

The median (second quartile) is achieved atp= 1/2.

Proof. The proof arises directly fromF(xp) = p, whereF(.) is CDF (13). �.

Proposition 3.2.If X is a random variable with PDF (14), then ther-th moment ofX is given, forr = 1,2, . . . , by

µ ′
r =

ℵ

∑
ζ=1

ϖζ
2

(1− zζ )
2

(
1+ zζ

1− zζ

)r

f

(
1+ zζ

1− zζ

)
,

wherezζ , ϖζ are the zeros and the corresponding Christoffel numbers of the Legendre-Gauss quadrature formula on the
interval (-1, 1).

Proof.

µ ′
r = E(Xr) =

∫ ∞

0
xr f (x)dx,

=

∫ 1

−1

2
(1− z)2

(
1+ z
1− z

)r

f

(
1+ z
1− z

)
dz.

(18)

The integral in (18) can be approximated by using Legendre-Gauss quadrature formula as

µ ′
r =

ℵ

∑
ζ=1

ϖζ
2

(1− zζ )
2

(
1+ zζ

1− zζ

)r

f

(
1+ zζ

1− zζ

)
, (19)

whereϖζ =
2

(1− z2
ζ )[L

′
ℵ+1(zζ )]

2
andL′

ℵ+1(zζ ) =
dLℵ+1(z)

dz
at z= zζ . andLℵ(.) is the Legendre polynomial of degree

ℵ, see [19]. �.
The skewness (S ) and kurtosis (K ) of the LLGWD can be computed as

S =
µ3

µ3/2
2

, K =
µ4

µ2
2

−3,

whereµ2, µ3 and µ4 denote the second, third and fourth central moments, respectively. Table 1 displays the first six
moments ofX in addition to the skewness and kurtosis forα = 2.0, β = 3.0 andγ = 5.0.
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Table 1: The first six moments, skewness and kurtosis forα = 2.0, β = 3.0 andγ = 5.0.
r 1 2 3 4 5 6 S K

E(Xr) 0.7995 0.6487 0.5344 0.4473 0.3808 0.3303 0.5989 3.1411
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Fig. 1: Left panel: PDF of LLGWD for fixedα, γ and different values ofβ . Right panel: PDF LLGWD for fixedα, β and different
values ofγ .
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Fig. 2: Left panel: Hazard rate of LLGWD for fixedα, γ and different values ofβ . Right panel: Hazard rate of LLGWD for fixedα, β
and different values ofγ .

4 Estimation Methods Under Progressive Type-II Censoring

Censoring is considered in reliability experiments. It usually applies when the experimenter is unable to get total
information on lifetimes for each unit or reducing the totaltest time and the associated cost. Type-I and type-II censoring
schemes are most commonly used, see for example [20]. Progressive type-II censoring is considered a generalization of
type-II censoring. It gives flexibility to the experimenterto remove units from a life test at several stages during the
experiment. Live units removed early on can be readily used in other tests.

Progressive type-II censoring can be applied as follows: Suppose thatm(< n) andR1, R2, . . . ,Rm are fixed before the
experiment.R1 surviving units are randomly removed from the test when the first failure time occurs andR2 surviving
units are randomly removed from the test when the second failure time occurs. The test continues in the same manner
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until the m-th failure at which all the remaining surviving unitsRm = n − m − ∑m−1
j=1 Rj are removed from the test,

thereby terminating the life test. The data from progressively type-II censored samples are as follows: (x1:m:n;R1), . . . ,
(xm:m:n;Rm) wherex1:m:n < . . .< xm:m:n denote themordered observed failure times andR1, . . . ,Rm denote the number of
units removed from the experiment at failure timesx1:m:n, . . . ,xm:m:n. For more details on progressive censoring, see [21].

In the following three subsections, some estimation methods are considered.

4.1 Maximum likelihood estimation

If ((x1:m:n;R1), . . . , (xm:m:n;Rm)) is a progressively type-II censored random sample from a population with CDF (13) and
PDF (14), then the likelihood function is given by

L(α,β ,γ;x) ∝
m

∏
j=1

f (x j :m:n)[1−F(x j :m:n)]
Rj , (20)

wherex = (x1, . . . ,xm).
Based on Equations (13) and (14), logarithm of (20), ℓ(α,β ,γ;x) = ln(L(α,β ,γ;x)), is given by

ℓ(α,β ,γ;x) = m ln(αγ β γ)+ (β γ −1)
m

∑
j=1

ln(x j)−
m

∑
j=1

(Rj +2)ln
[
1+(αxβ

j )
γ
]
. (21)

The maximum likelihood estimates (MLEs)̂α, β̂ and γ̂ of α, β and γ could be obtained by solving the likelihood

equations,
∂ℓ
∂α

= 0,
∂ℓ
∂β

= 0 and
∂ℓ
∂γ

= 0, with respect toα, β andγ. These MLEs can not be obtained in closed forms

and hence a numerical iteration method for the likelihood equations should be used.

4.2 Approximate confidence interval

The observed Fisher information matrix,F, for MLEs (α̂ , β̂ , γ̂) is the 3×3 symmetric matrix of negative second partial
derivatives ofℓ(α,β ,γ) with respect toα, β andγ, see [22].

F =




− ∂ 2ℓ̂
∂α2 − ∂ 2ℓ̂

∂α∂β − ∂ 2ℓ̂
∂α∂γ

− ∂ 2ℓ̂
∂β ∂α − ∂ 2ℓ̂

∂β 2 − ∂ 2ℓ̂
∂β ∂γ

− ∂ 2ℓ̂
∂γ∂α − ∂ 2ℓ̂

∂γ∂β − ∂ 2ℓ̂
∂γ2


 ,

where the caretˆindicates that the derivative is calculated at(α̂, β̂ , γ̂). The elements of the matrixF can be easily obtained.
The inverse ofF is the local estimateV of the asymptotic variance-covariance matrix of(α̂, β̂ , γ̂). That is

V = F−1 =




var(α̂) cov(α̂, β̂ ) cov(α̂, γ̂)
cov(β̂ , α̂) var(β̂ ) cov(β̂ , γ̂)
cov(γ̂, α̂) cov(γ̂, β̂ ) var(γ̂)


 . (22)

Following the general asymptotic theory of MLEs, the sampling distribution of
α̂ −α√
var(α̂)

,
β̂ −β√
var(β̂ )

and
γ̂ − γ√
var(γ̂)

can be approximated by a standard normal distribution whichis useful in constructing confidence intervals (CIs) for the
unknown parameters.

A two-sided(1−α)100% normal approximation CIs for the parametersα, β andγ can then be constructed as

α̂ ± zα⋆/2

√
var(α̂), β̂ ± zα⋆/2

√
var(β̂ ) and γ̂ ± zα⋆/2

√
var(γ̂).

wherezα⋆/2 is the percentile of standard normal distribution with right-tale probability ofα/2 and
√

var(α̂),
√

var(β̂ )
and

√
var(γ̂) can be obtained from (22).
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4.3 Method of moments

One of the oldest methods for estimating the parameters of several univariate continuous distributions is the method of
moments (MOM). Based on progressively type-II censored sample (x1, . . . ,xm) and according to MOM, the parameters
(α,β ,γ) are estimated by equating the first three sample moments withthe first three population moments and then
solving the resulting three equations with respect toα, β andγ to get the moment estimates(α̌, β̌ , γ̌). The first three
sample moments are given by

E(Xr) =
1
m

m

∑
i=1

xr
i , r = 1,2,3, (23)

wherem= n−∑m
i=1Ri .

The first three population moments can be obtained from (19) by puttingr = 1,2,3.
In spite of the simplicity of MOM, cubing of the sample observations can increase the sampling errors in the case of

heavy-tailed situations. Outliers (extreme observations) may also exist in the sample causing considerable distortion of
the results.

4.4 Probability weighted moments

Greenwood et al. [23] proposed a class of moments called probability weighted moments (PWM). This class seems to be
of interest as a method for estimating parameters and quantiles of distributions which can be written in inverse form. Such
distributions include the Gumbel, Weibull and logistic, among others.

One of the main advantages of using PWM is that their higher order values can be accurately estimated from small
samples. Also, PWM are shown to be fairly insensitive to outliers in the data, because they are linear combinations of the
observed data values.

The PWM of random variableX with CDF F(x) are defined as

Ma,b,c = E[Xa(F(X))b(1−F(X))c], (24)

wherea, b, andc are nonnegative integers and thea-th moment ofX is assumed to be finite.
For many distributions, it is most useful to consider the moments

M1,0,c ≡Ψc = E[X(1−F(X))c]. (25)

The number of parameters of the distribution that need to be estimated governs the number of PWM to be used.
Based on (13) and (14), Equation (25) takes the form

Ψc =

∫ ∞

0
x(1−F(x))c f (x)dx, c= 0,1,2

=

∫ 1

−1

2(1+ z)
(1− z)3

[
1−F

(
1+ z
1− z

)]c

f

(
1+ z
1− z

)
dz

=
N

∑
ζ=1

ϖζ
2(1+ zζ )

(1− zζ )
3

[
1−F

(
1+ zζ

1− zζ

)]c

f

(
1+ zζ

1− zζ

)
,

(26)

wherezζ ,ϖζ are as defined in Proposition 3.2.
The quantitiesΨ0, Ψ1 andΨ2 are then replaced by suitable estimates denoted by

ϕc =
1
m

m

∑
j=1

x j :m(1− F̆j :m)
c, c= 0,1,2,

whereF̆j :m is the empirical CDF which can be written as, see [24],

F̆j :m = 1−
j

∏
i=1

(1− p̂i), j = 1, . . . ,m,

where

p̂i =
1

n−
[
∑i

k=2Rk−1
]
− i +1

, i = 1, . . . ,m,

where∑i
k=2Rk−1 is equal zero ifk> i.

The estimates (̃α, β̃ , γ̃) due to PWM can be obtained by solving numerically the three equations included in (26) (after
replacingΨc by ϕc, c= 0,1,2) with respect toα, β andγ.
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5 Simulation Study

In this section, the MLEs, moments and PWM estimates of the considered parameters are determined through a Monte
Carlo simulation study. The performance of the estimates isinvestigated through the mean squared errors (MSEs) and
relative absolute biases (RABs). The following steps may beapplied to generate progressively type-II censored samples
from CDF (13) and calculate the estimates of the parameters:

1.For given values ofα, β , γ, n andm (1<m< n), generate a random sample of sizen from Uniform(0,1) distribution,
say (u1, . . . ,un).

2.Apply the algorithm presented in [25] to Step 1 to generate progressively type-II censored random sample of sizem,
(u⋆1, . . . ,u⋆m).

3.Generate progressively type-II censored random sample(x1:m:n, . . . ,xm:m:n) from CDF (13) where, fori = 1, . . . ,m,

xi:m:n ≡ xi =

(
α−γ

1−u⋆i

)1/(β γ)
.

4.The MLEs, moments and PWM estimates of the parametersα, β andγ are computed as shown in Section 4.
5.Repeat the above stepsN(= 1000) times.
6.Calculate the averages of estimates, MSEs and RABs ofα̂, β̂ andγ̂ over theN samples as follows:

α̂ =
1
N

N

∑
i=1

α̂i , β̂ =
1
N

N

∑
i=1

β̂i , γ̂ =
1
N

N

∑
i=1

γ̂i ,

MSE(α̂) =
1
N

N

∑
i=1

(α̂i −α)2, MSE(β̂ ) =
1
N

N

∑
i=1

(β̂i −β )2, MSE(γ̂) =
1
N

N

∑
i=1

(γ̂i − γ)2,

RAB(α̂) =
|α̂ −α|

α
, RAB(β̂ ) =

|β̂ −β |
β

, RAB(γ̂) =
|γ̂ − γ|

γ
.

7.Calculate the CIs of the parameters and then calculate theaverage interval lengths (AILs) of them. Calculate also the
coverage probabilities (COVPs) of the parametersα, β andγ.

The following three CSs are applied in the generation of the samples:

–CS1:

Ri = n−m, i = 1,

Ri = 0, otherwise,

which means that we removen−munits after the first observed failure.
–CS2:

Ri = 1, i = 1, . . . ,n−m,

Ri = 0, otherwise,

which means that we remove one unit after each observed failure of the firstn−m failures.
–CS3:

Ri = n−m, i =
m
2
,

Ri = 0, otherwise,

which means that we removen−munits after the middle observed failure.

Through the simulation procedure, the values ofn have been taken to be 25, 50 and 100 while the sizes of progressively
type-II censored samples,m, have been chosen to represent 80% of the sample size in addition to the complete sample
case.
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Table 2: MLEs for (α,β ,γ) with their MSEs and RABs in addition to the COVPs (in 100%) andAILs of 95% CIs based on 1000
repetitions. Population parameter values:α = 3.50, β = 3.50, γ = 1.50.

¯̂α MSE(α̂) RAB(α̂) AIL (α) COVP(α)
¯̂β MSE(β̂ ) RAB(β̂ ) AIL (β ) COVP(β )

n m CS ¯̂γ MSE(γ̂) RAB(γ̂) AIL (γ) COVP(γ)
25 20 1 3.6250 1.2645 0.0643 8.4196 99.9

3.4237 0.3930 0.0353 6.7464 97.7
1.4303 0.0593 0.0122 2.9922 95.3

2 3.7579 1.2893 0.0737 8.4730 99.9
3.6445 0.6210 0.0413 6.7266 98.4
1.4077 0.0726 0.0135 2.8863 95.4

3 3.6698 1.3522 0.0771 8.7710 99.9
3.4779 0.6263 0.0508 7.0306 99.1
1.2861 0.0609 0.0173 2.9622 96.2

25 3.6041 1.2037 0.0569 7.8519 99.6
3.3006 0.3037 0.0252 6.7784 98.4
1.2609 0.0391 0.0096 3.6405 95.7

50 40 1 3.5584 0.5225 0.0167 9.6935 99.9
3.4879 0.3394 0.0034 8.2540 99.9
1.3139 0.0814 0.0493 3.8042 99.7

2 3.5878 0.4829 0.0249 9.8345 99.9
3.5114 0.3266 0.0032 8.3003 99.9
1.4046 0.0515 0.0344 3.7300 99.4

3 3.6370 0.6537 0.0392 10.0769 99.8
3.5020 0.4930 0.0206 8.4814 99.9
1.4111 0.0785 0.0441 3.7133 98.9

50 3.4065 0.4315 0.0097 7.3721 99.6
3.2573 0.2539 0.0015 6.5397 98.0
1.2001 0.0248 0.0207 2.4601 95.9

100 80 1 3.4054 0.4924 0.0556 10.7545 99.7
3.1924 0.2882 0.0309 9.8145 99.9
1.3692 0.0952 0.0260 4.5176 99.7

2 3.3568 0.4677 0.0523 10.6224 99.4
3.4346 0.3786 0.0187 9.8127 99.9
1.3014 0.0777 0.0143 4.4176 99.7

3 3.3250 0.3809 0.0541 11.0452 99.7
3.3672 0.1988 0.0379 9.9622 99.9
1.2291 0.0647 0.0327 4.6246 99.9

100 3.2416 0.2955 0.0307 7.0366 99.2
3.0147 0.1863 0.0205 6.2462 95.0
1.1563 0.0211 0.0158 2.2089 91.6

5.1 Simulation results

A Monte Carlo simulation study is carried out, based on 1000 simulations, in order to calculate the MLEs, moments and
PWM estimates. The performance of the estimates is studied using the MSEs and RABs. The COVPs and AILs of 95% CIs
for the parameters(α,β ,γ) are also calculated based on different sample sizes, censored sample sizes and three different
CSs. Table 2 displays the MLEs with their MSEs and RABs of the parameters(α,β ,γ) in addition to the COVPs and AILs
of 95% CIs of them. Table 3 displays the estimates of(α,β ,γ) with their MSEs and RABs using the MOM and PWM
method forn= 25,50,100. The population parameter values have been taken to beα = 3.50, β = 3.50 andγ = 1.50.

From the numerical results presented in Tables 2 and 3 we can observe the following:

1.For fixed values ofn, by increasingm the MSEs, RABs and AILs decrease.
2.By increasingn the MSEs, RABs and AILs decrease.
3.The estimates using the PWM method are better than those using MOM through the MSEs and RABs, while the MLEs

are better than those using MOM and PWM method.
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Table 3: Average moments and PWM estimates of (α,β ,γ) with their MSEs and RABs for different sample sizes and CSs,based on
1000 repetitions. Population parameter values:α = 3.50, β = 3.50, γ = 1.50.

MOM PWM
¯̌α MSE(α̌) RAB(α̌) ¯̃α MSE(α̃) RAB(α̃)
¯̌β MSE(β̌ ) RAB(β̌ ) ¯̃β MSE(β̃) RAB(β̃ )

n m CS ¯̌γ MSE(γ̌) RAB(γ̌) ¯̃γ MSE(γ̃) RAB(γ̃)
25 20 1 4.6940 5.3364 0.4503 4.1148 2.4172 0.2654

3.6778 1.4944 0.1951 3.5043 0.7242 0.1676
1.4325 0.1676 0.1778 1.7388 0.2088 0.1407

2 4.7737 4.8333 0.4382 4.3614 2.4438 0.3003
3.6959 1.4614 0.1717 3.5749 0.6425 0.1378
1.7559 0.1424 0.1569 1.5162 0.1340 0.1158

3 4.5692 3.9808 0.3547 4.4986 2.6782 0.3384
3.5674 1.4537 0.1464 3.5663 0.7183 0.1218
1.4951 0.1434 0.1153 1.3946 0.1260 0.1048

25 4.3508 3.1769 0.2692 4.0639 1.5613 0.2419
3.5277 1.4418 0.1756 3.4360 0.3796 0.1537
1.6021 0.1505 0.1434 1.4563 0.1395 0.1229

50 40 1 4.4039 2.4657 0.3563 3.6198 1.6926 0.1142
4.5209 1.7975 0.3166 3.6184 0.3712 0.1947
2.3005 0.8423 0.5470 1.4724 0.0910 0.1562

2 4.3224 2.4815 0.3431 3.7608 0.5149 0.1452
4.4955 1.7761 0.3151 3.7273 0.4524 0.1745
2.2909 0.8279 0.5544 1.4221 0.0622 0.1443

3 4.3568 1.7087 0.2898 3.7709 0.9641 0.1221
4.4670 1.4479 0.2908 3.5019 0.5310 0.1646
2.3340 0.8255 0.5972 1.4301 0.1504 0.1302

50 4.1198 2.3742 0.2275 3.8203 1.2511 0.1068
3.4921 1.2465 0.1476 3.3178 0.2936 0.1314
1.3838 0.0911 0.1207 1.3543 0.0714 0.1151

100 80 1 4.7274 4.3176 0.4293 3.8428 1.7134 0.2061
4.0379 1.2236 0.2084 3.7482 0.7677 0.1578
1.5909 0.1515 0.1692 1.4358 0.1261 0.1472

2 4.9361 4.6677 0.4604 3.7231 1.8212 0.1546
4.1889 1.1906 0.2347 3.6341 0.7171 0.1067
1.5315 0.1041 0.1488 1.3127 0.0868 0.1210

3 4.6378 2.8811 0.3729 3.6831 1.6437 0.1896
3.9752 1.3729 0.1990 3.6452 0.4801 0.1343
1.6094 0.5729 0.1772 1.2437 0.4081 0.1554

100 4.0564 2.0787 0.2067 3.6193 1.1607 0.0992
3.3988 1.0268 0.1348 3.2934 0.2550 0.1198
1.2456 0.0833 0.1078 1.2064 0.0507 0.0933

5.2 Application of LLGWD to a real data set

Consider deep groove ball bearings. The ball bearings are a type of rolling-element bearings which use balls to maintain
the separation between the moving parts of the bearings withthe purpose of reducing rational friction and supporting
radial and axial loads. The number of revolutions in a ball bearing endurance test is usually measured before failure of the
ball bearings, see [20].

As indicated in Lawless ([20], p. 98), the following data arise in tests on the endurance of deep groove ball bearings.
The observations are the number of million revolutions before failure for each one of 23 ball bearings. The 23 failure
times are
17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12,
98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

We compare the fit of the LLGWD with the WD, LLD, Burr-XII (BURR), and half-logistic generated Weibull
distribution (HLGWD) due to AL-Hussaini and Abdel-Hamid [12]. For each distribution, the unknown parameters are
estimated using the ML method. The validity of these distributions to fit the above data is checked using
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Table 4: Comparison among LLGWD, WD, LLD, BURR, and HLGWD based on fivecomparison criteria.

Model α̂ β̂ γ̂ K-S P-value AIC CAIC BIC
LLGWD(α,β ,γ) 0.00061 1.77642 0.85139 0.21931 0.21857 248.361 249.621 251.768

WD(α,β ) 0.06066 0.63808 – 0.31798 0.01910 264.279 264.879 266.550
LLD(γ) – – 0.37062 0.70088 0.00000 327.486 327.676 328.622

BURR(α,β ) 0.69821 0.33855 – 0.47532 0.00006 309.911 310.511 312.182
HLGWD(α,β ,γ) 0.06948 0.64309 1.54669 0.37546 0.00305 262.750 264.250 266.157

Empirical CDF

Fitted CDF of LLGWD

Fitted CDF of WD

Fitted CDF of LLD

Fitted CDF of BURR

Fitted CDF of HLGWD

0 50 100 150 200 250 300
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0.2

0.4

0.6
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1.0

Fig. 3: Empirical CDF versus CDFs of LLGWD, WD, LLD, BURR and HLGWD.

Kolmogorov-Smirnov (K-S) statistic and the correspondingP-value. The model selection is carried out by inspection of
the Akaike information criterion (AIC), 2q− 2 ln(L(ℜ̂ℜℜ)), consistent AIC (CAIC),[2qn/(n− q− 1)]− 2 ln(L(ℜ̂ℜℜ)) and
Bayesian information criterion (BIC),q ln(n)− 2 ln(L(ℜ̂ℜℜ)). whereℜ̂ℜℜ is the vector of parameter values that maximizes
likelihood functionL, q is the number of parameters in the model andn is the sample size. The best choice for a model is
the one with smallest criterion. This is done graphically byplotting the empirical distribution versus the fitted CDFs of
LLGWD, WD, LLD, BURR and HLGWD, see Figure 3.

Table 4 lists the MLEs of the parameters for the fitted LLGWD, WD, LLD, BURR and HLGWD in addition to the
values of the following statistics: AIC, CAIC, BIC and K-S statistics. The P-value that corresponds the K-S statistic is
also included in Table 4. These results indicate that the LLGWD represents a better fit to the data than the other four
distributions through the lowest value of the K-S statisticand largest value of the corresponding P-value. It can also be
noted that the LLGWD has the lowest values for the AIC, BAIC and BIC criteria among the fitted distributions. Therefore,
it could be chosen as the best distribution.

6 Concluding Remarks

Generation of a new distribution is needed if the new distribution is more flexible to analyzing data in the sense of having
better fit, more shapes of HRFs, etc. One of the methods that may be used to generate new distributions is the composition
of a CDF with another cumulative distribution or function ofsuch distribution. This technique can add at least an extra
parameter to the distribution and hence makes it more flexible to fitting data.

In this paper, we have generated a new distribution (LLGWD) by composition of LLD with WD and obtained the
conditions under which the HRF is decreasing or unimodal. Among the advantages of the LLGWD are (i) the CDF is
obtained in closed form and (ii) the monotonic and non-monotonic shapes of the HRF make it more flexible to fitting
data. Moreover, real data have been used to compare the LLGWDwith WD, LLD, BURR and HLGWD through K-S
test, P-value, AIC, CAIC and BIC. The comparison has showed that LLGWD is better to fit the data than the other four
distributions. Based on a simulation study, the ML, momentsand PWM estimation methods have been performed to
estimate the considered parameters under progressive type-II censoring.
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The simulation results have showed that the estimates usingPWM are better than those using MOM while the MLEs
are better than those using PWM and MOM.

Acknowledgement

The authors would like to thank the editor and referee for their helpful comments and corrections which led to
improvements of an earlier version of this article.
They also dedicate the article to the spirit of late Professor Essam K. AL-Hussaini who passed away in Aug., 2015.

References

[1] F. Louzada-Neto, V.G. Cancho, G.D.C Barrigac, Journal of Applied Statistics38, 1239-1248 (2011).
[2] F. Louzada-Neto, V. Marchi, J. Carpenter (2013), J. Probab. Statist., Article ID 502159, 12 pages (2013).
[3] E. Mahmoudi, A. Sepahdar, Mathematics and Computers in Simulation92, 76-97 (2013).
[4] V.L.D. Tomazella, V.G. Cancho, F. Louzada, Chilean Journal of Statistics4, 99-113 (2013).
[5] S.K. Singh, U. Singh, M. Kumar, Journal of Data Science12, 157-173 (2014).
[6] B. Al-Zahrani, H. Sagor, Revista Colombiana de Estadı́stica 37, 223-243 (2014).
[7] R.D. Gupta, D. Kundu, J. Statist. Plann. Inference137(11), 3537-3547 (2007).
[8] A.H. Abdel-Hamid, E.K. AL-Hussaini, Comput. Statist. Data Anal.53, 1328-1338 (2009).
[9] E.K. AL-Hussaini, M. Ahsanullah, Exponentiated Distributions. Atlantis Press, Paris, France, 2015.
[10] M.C. Jones, Statist. Sinica24, 749-771 (2014).
[11] R. Baker, Commun. Statist. Th. Meth.37, 2162-2176 (2008).
[12] E.K. AL-Hussaini, A.H. Abdel-Hamid, Commun. Statist.Th. and Meth. (2016). (To appear).
[13] N. Eugene, C. Lee, F. Famoye, Commun. Statist. Th. Meth.31, 497-512 (2002).
[14] S. Nadarajah, A.K. Gupta, Commun. Statist. Th. Meth.34, 253-256 (2005).
[15] S. Nadarajah, S. Kotz, Rel. Engin. System Saf.91, 689-697 (2006).
[16] W. Barreto-Souza, A.H.S. Santos, G.M. Cordeiro, J. Statist. Comput. Simul.80, 159-172 (2010).
[17] G.M. Cordeiro, R. Brito, Braz. J. Prob. Statist.26, 88-112 (2012).
[18] E.K. AL-Hussaini, M. Hussein, Open J. Statist.2, 28-38 (2012).
[19] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domains. Springer-Verlag, New

York, 2006.
[20] J.F. Lawless, Statistical Models and Methods for Lifetime Data. Second edition. Wiley, New York, 2003.
[21] N. Balakrishnan, Test16, 211-296 (2007).
[22] W. Nelson, Accelerated Testing: Statistical Models, Test Plans and Data Analysis. Wiley, New York, 1990.
[23] J.A. Greenwood, J.M. Landwehr, N.C. Matalas, J.R. Wallis, Water Resources Research15, 1049-1054 (1979).
[24] W.Q. Meeker, L.A. Escobar, Statistical Methods for Reliability Data. Wiley, New York, 1998.
[25] N. Balakrishnan, R.A. Sandhu, Amer. Statist.49, 229-230 (1995).

Alaa H. Abdel-Hamid received the PhD degree in Mathematical Statistics
from Cairo university, Egypt, in 2004 and obtained the Assistant Professor
degree from Beni-Suef university in 2010. His research interests are in the
areas of statistical inference (Bayesian estimation and prediction), accelerated
life tests, mixture of distribution functions, compounding of distributions
and progressive censoring. He has published research articles in reputed international
journals of mathematical statistics. He acts as a referee for some statistical journals.

Nahla A. Albasuoni got the B.Sc. in 1989 from department of statistics
Faculty of Science, University of Tripoli, Libya. She prepares now for Master
degree in mathematical statistics.

c© 2016 NSP
Natural Sciences Publishing Cor.


	Introduction
	Formulation of the Model
	Properties of LLGWD
	Estimation Methods Under Progressive Type-II Censoring
	Simulation Study
	Concluding Remarks

