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Abstract: Composition of distribution functions is considered on¢haf methods that generate new distributions. In this papeew
distribution is obtained by composing a log-logistic dtmition with a Weibull distribution. The new distributiora decreasing and
unimodal shapes of the hazard rate function which make tilslai to fit several real data. Some properties of the newildlision are
investigated. Based on progressive type-Il censoringri@weémum likelihood, moments and probability weighted matsesstimation
methods for the involved parameters are studied and comhplar@ugh a simulation study. The asymptotic confidencemats for the
parameters are also obtained based on asymptotic variawveetance matrix. Finally, real data are used to compareéiw distribution
with four lifetime distributions based on five comparisoitenia. The comparison shows that the new distribution tsebbeo fit the
data than the other four distributions.

Keywords: Composition of distributions, progressive type-Il cemsgy log-logistic and Weibull distributions, maximum likeood
estimation, moments and probability weighted momentsnedions, simulation.

1 Introduction

Generation of new distributions may be of great importanbemthe known classical distributions are unable to give
a good fit to some real data. It could be achieved by some methuch as: (i) Compounding of distributions, see for
example, 1]-[6]. (i) Adding one or more parameters to a cumulative disititn function (CDF) or a survival function
(SF), for example by exponentiating the CDF to a new paramt®ée, for examplez8,9]. (iii) Composition of CDF {H)
with another CDFG to obtain a CDH-, given by

F(x) =H(G(x), (1)

(iv) Composition of a symmetric probability density furani (PDF) with transformation of scale. Joné§|[generated a
PDF f by composing a symmetric POfwith transformation of scalgXx), in such a way that

f(x) =2g[t(x)], —o0 < X< co.
Baker [L1] suggested two of such transformations:
ti(x) =x—b/x, b>0,x>0,

and 1
tr(X) = aln(eax— 1), a>0,x>0.

More transformations were suggested by JoAék [
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(v) Composition of a CDF with a function of another CDF. Thisgedure could be achieved by composthwith n
to getF or H with n to getRg(x), see L2, as follows

F(x) =H(n(x)) or Re(x) =H(n(x)), )
whereRs = 1—F is the SF ofF,

n(x) = =In(G(x)), n(x) = —IN(Rs(x))- (©)
More parameters in the generated distribution make it mexébile to analyzing data in the sense of having better fit

and more shapes of hazard rate function (HRF).
If H andG are absolutely continuous CDFs, thd) énd @) can be written as

G(x)
FO)=H(G00)= [ hiy)dy @

and
—In(Rg(x)) —In(G(x))

h(y)dy or Re( =H(n() = [~ hiy)ay, ©)

0

F(9 =H([T00) = |

0

whereh(.) is the PDF that corresponds CIBH.).
If, in (4), h subjects to beta, b) distribution on the interval0, 1), then @) becomes

G(x)
FO =g YAy ©

CDF () is called the bet&s distribution, which was studied by several authors throsjggcifying different forms o6.
Among others, Eugene et all3] specifiedG to be normal to obtain the beta-normal distribution. Sontéa@ns such as
Nadarajah and Guptd {], Nadarajah and Kotzl[], Barrito-Souza et al.]6] and Cordeiro and Britol[7] considered the
beta-Frechét, beta-exponential, beta-exponentiatedrential and beta-power distributions, respectively:HAlssaini
and Abdel-Hamid 12] introduced a new distribution called half-logistic geated Weibull distribution (HLGWD) and
studied some of its properties.

In this paper, we introduce a new distribution called logistic generated Weibull distribution (LLGWD) by
composing log-logistic CDFH) with Weibull CDF G. The new distribution has decreasing and unimodal failatesr
which make it more suitable to fit several real data.

The rest of the paper is organized as follows: The LLGWD isveerin Section 2. Some properties of the LLGWD
are investigated in Section 3. Maximum likelihood (ML), memts and probability weighted moments (PWM)
estimation methods are studied in Section 4. Simulatiodystsi worked done in Section 5. Finally, Section 6 presents
some concluding remarks.

2 Formulation of the Model

The log-logistic distribution (LLD) (known as the Fisk digution in economics) is used in survival analysis as a
parametric model for events whose rate increases init@ily decreases later, for example mortality rate from cancer
following diagnosis or treatment. It has been used also irdlpgy to model stream flow and precipitation, and in
economics as a simple model of the distribution of wealthnaome. The LLD is similar in shape to the log-normal
distribution but has heavier tails. Unlike the log-nornital CDF can be written in closed form.

The PDF, CDF and HRF of the LLD are given, respectively, by

o
h(X) = m7 X> 07 (y> O)a (7)
4
HO) = e x>0, (y>0) ®)
y—1
M) =, )

HRF (9) is unimodal (decreasing) whem> 1 (y < 1).
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The Weibull distribution (WD) is considered one of the mogpplar distributions in analyzing skewed data. The PDF,
CDF and HRF of the WD with scale and shape parameteasdf3 are given, respectively, by

gx) = apxfle®® x>0, (a,8>0), (10)
G(x) = 1—e*°’XB, x>0, (a,B8>0), (11)
X)) =aBxPt, x>0, (a,B>0). (12)

It can be easily seen that HREZ) is increasing (decreasing) [constant] whp- 1 (8 < 1) [B =1].
By substitution from 11) in (3), thenn (x) = ax®. Using PDF {), thenF in Equation 2) becomes

axP ur-1
F(X) = V/O mdu

1
[ —
1+ (axB)Y

(13)
x>0, (a,B,y>0).

We will call CDF (13) as the CDF of LLGWD. The closed form of CDRJ) is considered one of the advantages of
LLGWD, since many distributions that arise from compositad CDFs do not have CDFs in closed forms.
The PDF corresponding td §) is given by

YRyxBY—1
£lx) — a’Byx

_— 14
L+ ()P -
From (13) and (4), the HRF and proportional reversed HRF are given, resgygtiby
f0  avBydrt
A = = 1
F(X) 1—F(X) 1—|—(GXB)V’ X>07 ( 5)
A =10 By x> 0. (16)

CF(X) X1+ (axB)y)’

Different shapes of PDFL#) and HRF (5) are plotted in Figures 1 and 2, respectively, for diffenaities ofa, 3 andy.
AL-Hussaini and HusseirlB| showed that any CDF could be written in terms ofg (x) andAg(x) as follows

The corresponding PDF is given by

3 Properties of LLGWD

Theorem 3.1.HRF (15) is
(i) decreasing i3y < 1,

By—1 1/(By)
(i) unimodal with mode aky = ( o ) if By > 1.

Proof. The first derivative of HRFX5) with respect tocis given by

YByxBY—2
N(x) = 7(ifﬁxﬁy)2[ﬁy—l—ayxﬁy]. 17)
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It is easy to see that By < 1, thenA’(x) < 0 and hence HRFLE) is decreasing. This proves (i).

By—-1
aY

1/(By)
Now, suppose thg®y > 1. Sincex > 0,A’(x) = 0 at uniquex = xg = ( ) . The second derivative df(x)

atx = xg is given by
M) — (a"By)>e"®
(1+arg")
which is always negative. Thereforg, maximizes Equationls) and hence the unimodality o1%) is achieved at mode

_ 1\ Y/(By)
= (B);—yl> . This proves (ii) .

Corollary 3.1. PDF (14) is decreasing iBy < 1 and unimodal with mode at

A\ Y6y
XO:<BV 1) it By>1

aY

Proof. The proof is simple and hence it is omittéd.
Proposition 3.1.The p-th quantile of LLGWD 13) is given by

1/B
1 1/y
Xp = <E L:| ) , O<p<l

1-p
The median (second quartile) is achievegat 1/2.
Proof. The proof arises directly frorf (xp) = p, whereF(.) is CDF (13). O
Proposition 3.2.1f X is a random variable with PDA4), then ther-th moment oiX is given, forr = 1,2,..., by

1+ZZ 1+ZZ
Z Hi-z)y Zz (1 Zz) f<1—2z>’

wherez;, w; are the zeros and the corresponding Christoffel numbeiseof ¢gendre-Gauss quadrature formula on the
interval (-1, 1).

Proof.

u;=E<><f>=/°°xf< X)ax,

_/ 1+z f 1+z 4z (18)
1 22\1-z 1-z)
The integral in 18) can be approximated by using Legendre-Gauss quadratumef®mas
= 2 1+7\", [1+z
r_
u'_gz (1-7)? (1 Zz) f<1—zz>’ 49
wherew; = 2 andLy, 4(z) = M atz=z;. andLp(.) is the Legendre polynomial of degree

(1-B)Lh (7)) dz
0, see 9. O

The skewness¥’) and kurtosis.¢¢) of the LLGWD can be computed as

U3 Ha
T2/ f 37
' 1

y:

where o, 3 and py denote the second, third and fourth central moments, régplc Table 1 displays the first six
moments oX in addition to the skewness and kurtosis o= 2.0, 3 = 3.0 andy = 5.0.
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Table 1: The first six moments, skewness and kurtosisafet 2.0, f = 3.0 andy = 5.0.
r 1 2 3 4 5 6 5 H
E(X") | 0.7995| 0.6487 | 0.5344 | 0.4473| 0.3808 | 0.3303 || 0.5989 | 3.1411

f(x)
f(x)

Fig. 1: Left panel: PDF of LLGWD for fixedx, y and different values o8. Right panel: PDF LLGWD for fixedr, B and different
values ofy.

1 T e e e NS =

3.0r b

251

A(X)
A(X)

Fig. 2: Left panel: Hazard rate of LLGWD for fixed, y and different values g8. Right panel: Hazard rate of LLGWD for fixea, 3
and different values of.

4 Estimation Methods Under Progressive Type-Il Censoring

Censoring is considered in reliability experiments. It alsuapplies when the experimenter is unable to get total
information on lifetimes for each unit or reducing the tdtdt time and the associated cost. Type-I and type-Il cergor
schemes are most commonly used, see for exar@fleRProgressive type-ll censoring is considered a genextidiz of
type-Il censoring. It gives flexibility to the experimentr remove units from a life test at several stages during the
experiment. Live units removed early on can be readily usedher tests.

Progressive type-1l censoring can be applied as followpp8se tham(< n) andRy, Ry, ..., Ry, are fixed before the
experimentR; surviving units are randomly removed from the test when tist failure time occurs anB, surviving
units are randomly removed from the test when the secondréafime occurs. The test continues in the same manner
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until the m-th failure at which all the remaining surviving uni&, = n — m — 2?‘;1 R; are removed from the test,

thereby terminating the life test. The data from progredgitype-Il censored samples are as follows:n(n;R1), .. .,

(Xmemen; Rm) wherexymn < ... < Xmmen denote then ordered observed failure times aRg . . ., Ry, denote the number of

units removed from the experiment at failure timxeg.n, - . . , Xmmn. FOr more details on progressive censoring, 24g [
In the following three subsections, some estimation mettawd considered.

4.1 Maximum likelihood estimation

If (X1mniRL), - - -, &memen;Rm)) is a progressively type-Il censored random sample froropufation with CDF 13) and
PDF (14), then the likelihood function is given by

L(a,B,y;x) 0 I_Lf(xj:m:n)[l—F(Xj:m:n)]Rja (20)
|=

wherex = (X1,...,Xm)-
Based on Equationd8) and (L4), logarithm of 0), ¢(a, 3,y;X) = In(L(a, B,y;X)), is given by

m m
(. B,v:x) =min(@¥By) + (By—1) 3 In(xj) — 3 (R +2)in [1+ (@x})Y]. 1)
=1 =1
The maximum likelihood estimates (MLES), B and y of a, B andy could be obtained by solving the likelihood
equations,g—ﬁ =0, % =0 andZ—i =0, with respect tax, 8 andy. These MLEs can not be obtained in closed forms

and hence a numerical iteration method for the likelihoogbgigns should be used.

4.2 Approximate confidence interval

The observed Fisher information matrk, for MLEs (&,B, ¥) is the 3x 3 symmetric matrix of negative second partial
derivatives of’(a, 3, y) with respect tax, 8 andy, see R2].

9% 3% 9%

da2 ~ 9adp ~ dady

F—| — 0% 3% 9%
- oBoa 9Bz IBdy |-

%0 9% 9%

dyoa ~ 0ydp ay?

where the caret”indicates that the derivative is calcdlatéq, B, ¥). The elements of the matrfcan be easily obtained.
The inverse of is the local estimat® of the asymptotic variance-covariance matriX af 3, ¥). That is

var(@) cov(alﬁ) cov(a, y)
V=F1= (cov(ﬁ,&) var(B) cov(B, A)) . (22)
a B

G-a B-p -y
Vvar(a) \/var( B) var(y)
can be approximated by a standard normal distribution wisiciseful in constructing confidence intervals (Cls) for the

unknown parameters.
A two-sided(1 — a)100% normal approximation Cls for the parametey$ andy can then be constructed as

&:I:Za*/zx/var(&), ﬁ:l:za*/z\/var(ﬁ) and V:l: Za*/Z\/ Var(V)'

wherez, , is the percentile of standard normal distribution with tigsle probability ofa /2 and./var(&), \/var(ﬁ)
and./var(y) can be obtained fron2Q).

Following the general asymptotic theory of MLEs, the sampldistribution of
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4.3 Method of moments

One of the oldest methods for estimating the parametersvefaleunivariate continuous distributions is the method of
moments (MOM). Based on progressively type-1l censoredsaiix,, ..., xm) and according to MOM, the parameters
(a,B,y) are estimated by equating the first three sample momentsthatlirst three populatign moments and then
solving the resulting three equations with respectriq3 andy to get the moment estimatéd, 3, y). The first three
sample moments are given by

L
= aizixh r= 17 27 37 (23)

wherem=n—-3y",R.

The first three population moments can be obtained froghlfy puttingr =1,2,3.

In spite of the simplicity of MOM, cubing of the sample obsatiens can increase the sampling errors in the case of
heavy-tailed situations. Outliers (extreme observa)iomsy also exist in the sample causing considerable distodf
the results.

4.4 Probability weighted moments

Greenwood et al.Z3] proposed a class of moments called probability weightecheras (PWM). This class seems to be
of interest as a method for estimating parameters and deswofidistributions which can be written in inverse formcBu
distributions include the Gumbel, Weibull and logistic,@mg others.

One of the main advantages of using PWM is that their higheéerovalues can be accurately estimated from small
samples. Also, PWM are shown to be fairly insensitive toietglin the data, because they are linear combinations of the
observed data values.

The PWM of random variabl¥ with CDF F(x) are defined as

Mab.c = E[X?(F (X))°(1 - F(X))°], (24)
wherea, b, andc are nonnegative integers and #xéh moment ofX is assumed to be finite.
For many distributions, it is most useful to consider the raata

Mioc =% =E[X(1-F(X)). (25)

The number of parameters of the distribution that need tsbmated governs the number of PWM to be used.
Based on13) and (L4), Equation 25) takes the form

W= /oo X(1—F())°f()dx, c=0,1,2
/1 2(1+2) { F(g)Tf(itZ)dz 25
et ()

wherez; , w; are as defined in Proposition 3.2.
The quantitiesty, ¥, and¥, are then replaced by suitable estimates denoted by

(L v
¢C: agl)(j:m(l_':j:m)a C:07 17 27

Wherelfj;m is the empirical CDF which can be written as, s24||

o J
Fim=1-T11-9), j=1,...,m
1

b = 1 L
- _[zikzszfl}—i_Fl’ =1,....m

where

wherey_,Ry_1 is equal zero ik > i.
The estimatesd, 3, §/) due to PWM can be obtained by solving numerically the thepeagions included in26) (after
replacing¥; by ¢, c = 0,1,2) with respect tax, 3 andy.
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5 Simulation Study

In this section, the MLEs, moments and PWM estimates of tmsidered parameters are determined through a Monte
Carlo simulation study. The performance of the estimatesvisstigated through the mean squared errors (MSEs) and
relative absolute biases (RABs). The following steps magiygied to generate progressively type-Il censored sample
from CDF (13) and calculate the estimates of the parameters:

1.For given values of, B8, y, n andm (1<m< n), generate a random sample of sizfom Uniform(0,1) distribution,
say Uy, ..., up).

2.Apply the algorithm presented i25] to Step 1 to generate progressively type-Il censored nanskmple of sizen,
(ug, ..., up).

3.Generate progressively type-ll censored random saRplgn, - - - , Xmmn) from CDF (13) where, fori =1,...,m

a-v 1/(By)
Ximn =X = (1_Ui*> .

4.The MLEs, moments and PWM estimates of the parametgBsandy are computed as shown in Section 4.
5.Repeat the above stel$= 1000 times.

6.Calculate the averages of estimates, MSEs and RABs éfandf/over theN samples as follows:

= 1 N = _ 1 N
a=52,0 b= ziﬁ., =N
1 L 5 1 N . 1 N
MSE(a) = N _;(ﬁ. —a)?, MSEB)= N_;(Bi _ B2 MSE() = s G- y2.
RAB(&) = |E; a|, RAB(B’\) = m,%m7 RAB(V) _ W_ Yl

7.Calculate the Cls of the parameters and then calculatvérage interval lengths (AILs) of them. Calculate also the
coverage probabilities (COVPSs) of the parameterg andy.

The following three CSs are applied in the generation of émydes:

—CS1:

R=n-m, i=1,
R =0, otherwise

which means that we remowve- munits after the first observed failure.
—CS2:

R =1, i=1...,n—m,
R =0, otherwise

which means that we remove one unit after each observeddaifithe firsm — mfailures.

-CS3:
. m
Rl =NnN-— ma I = 57
R =0, otherwise

which means that we remowve- munits after the middle observed failure.

Through the simulation procedure, the values bfave been taken to be 25, 50 and 100 while the sizes of progrlyss

type-1l censored samples), have been chosen to represent 80% of the sample size inoaddithe complete sample
case.
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Table 2: MLEs for (a,,y) with their MSEs and RABs in addition to the COVPs (in 100%) @its of 95% Cls based on 1000
repetitions. Population parameter values: 3.50, 8 = 3.50, y = 1.50.

a | MSE(@) | RAB(a@) | AlL (a) | COVP(a)

B | MSE(B) | RAB(B) | AIL(B) | COVR(B)

n | m|cs| ¥y | MSEp | RAB()) | AIL(y) | COVPy)
25 | 20 | 1 | 3.6250| 1.2645 | 0.0643 | 8.4196 | 99.9
3.4237| 0.3930 | 0.0353 | 6.7464 | 97.7

1.4303| 0.0593 | 0.0122 | 2.9922 | 953

2 | 3.7579| 1.2893 | 00737 | 84730 | 99.9

3.6445| 0.6210 | 0.0413 | 6.7266 | 98.4

1.4077| 0.0726 | 0.0135 | 2.8863 | 95.4

3 [ 3.6698| 1.3522 | 0.0771 | 8.7710 | 99.9

3.4779| 0.6263 | 0.0508 | 7.0306 | 99.1

1.2861| 0.0609 | 0.0173 | 2.9622 | 96.2

25 3.6041| 1.2037 | 0.0569 | 7.8519 | 996
3.3006| 0.3037 | 0.0252 | 6.7784 | 98.4

1.2609| 0.0391 | 0.0096 | 3.6405 | 95.7

50 | 40 | 1 | 3.5584| 05225 | 0.0167 | 9.6935 | 99.9
3.4879| 0.3394 | 0.0034 | 82540 | 99.9

1.3139| 0.0814 | 0.0493 | 3.8042 | 99.7

2 | 35878| 04829 | 0.0249 | 9.8345 | 999

3.5114| 0.3266 | 0.0032 | 8.3003 | 99.9

1.4046| 0.0515 | 0.0344 | 3.7300 | 99.4

3 | 3.6370| 0.6537 | 0.0392 | 10.0769| 99.8

3.5020| 0.4930 | 0.0206 | 8.4814 | 99.9

1.4111| 0.0785 | 0.0441 | 3.7133 | 98.9

50 3.4065| 04315 | 0.0097 | 7.3721 | 99.6
3.2573| 0.2539 | 0.0015 | 6.5397 | 98.0

1.2001| 0.0248 | 0.0207 | 2.4601 | 95.9

100 | 80 | 1 | 3.4054| 0.4924 | 0.0556 | 10.7545| 99.7
3.1924| 0.2882 | 0.0309 | 9.8145 | 99.9

1.3692| 0.0952 | 0.0260 | 4.5176 | 99.7

2 | 3.3568| 0.4677 | 0.0523 | 10.6224| 994

3.4346| 0.3786 | 0.0187 | 9.8127 | 99.9

1.3014| 0.0777 | 0.0143 | 4.4176 | 99.7

3 | 3.3250| 0.3809 | 0.0541 | 11.0452| 99.7

3.3672| 0.1988 | 0.0379 | 9.9622 | 99.9

1.2291| 0.0647 | 0.0327 | 4.6246 | 99.9

100 3.2416| 0.2955 | 0.0307 | 7.0366 | 99.2
3.0147| 0.1863 | 0.0205 | 6.2462 | 95.0

1.1563| 0.0211 | 0.0158 | 2.2089 | 91.6

5.1 Simulation results

A Monte Carlo simulation study is carried out, based on 108Qktions, in order to calculate the MLEs, moments and
PWM estimates. The performance of the estimates is studiad the MSEs and RABs. The COVPs and AlLs of 95% Cls
for the parameter&x, 3, y) are also calculated based on different sample sizes, mahsample sizes and three different
CSs. Table 2 displays the MLEs with their MSEs and RABs of tiametersa, 3, y) in addition to the COVPs and AlLs
of 95% Cls of them. Table 3 displays the estimate$aff3, y) with their MSEs and RABs using the MOM and PWM
method fom = 25,50,100. The population parameter values have been takendo-5b8.50, 8 = 3.50 andy = 1.50.

From the numerical results presented in Tables 2 and 3 welzsaree the following:

1.For fixed values of, by increasingnthe MSEs, RABs and AlLs decrease.
2.By increasingn the MSEs, RABs and AlLs decrease.
3.The estimates using the PWM method are better than thosgM©OM through the MSEs and RABs, while the MLEs

are better than those using MOM and PWM method.
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Table 3: Average moments and PWM estimates af 8, y) with their MSEs and RABs for different sample sizes and @&sgd on
1000 repetitions. Population parameter values: 3.50, 8 = 3.50, y = 1.50.

MOM PWM

&  MSE@) RAB(d) &  MSE(@) RAB(@)

B MSE(B) RAB(B) B MSE(B) RAB(B)
n m Ccs v MSE®[) RAB() y MSE®j) RAB())
25 20 1 46940 5.3364  0.4503| 4.1148 24172  0.2654

3.6778  1.4944 0.1951|] 3.5043  0.7242 0.1676
1.4325 0.1676 0.1778|| 1.7388  0.2088 0.1407
2 47737  4.8333 0.4382|| 4.3614  2.4438 0.3003
3.6959  1.4614 0.1717|| 3.5749  0.6425 0.1378
1.7559  0.1424 0.1569(] 1.5162  0.1340 0.1158
3 45692  3.9808 0.3547|| 4.4986  2.6782 0.3384
3.5674  1.4537 0.1464|| 3.5663  0.7183 0.1218
14951 0.1434 0.1153|] 1.3946  0.1260 0.1048
25 43508 3.1769 0.2692|| 4.0639  1.5613 0.2419
3.5277  1.4418 0.1756|| 3.4360 0.3796 0.1537
1.6021  0.1505 0.1434|| 1.4563  0.1395 0.1229
50 40 1 4.4039  2.4657 0.3563(| 3.6198  1.6926 0.1142
4.5209  1.7975 0.3166|| 3.6184  0.3712 0.1947
2.3005 0.8423 0.5470|| 1.4724  0.0910 0.1562
2 4.3224  2.4815 0.3431|] 3.7608  0.5149 0.1452
44955 1.7761 0.3151|| 3.7273  0.4524 0.1745
2.2909  0.8279 0.5544| 1.4221  0.0622 0.1443
3 4.3568  1.7087 0.2898|| 3.7709  0.9641 0.1221
4.4670  1.4479 0.2908|| 3.5019  0.5310 0.1646
2.3340  0.8255 0.5972|| 1.4301 0.1504 0.1302
50 41198  2.3742 0.2275|| 3.8203  1.2511 0.1068
3.4921  1.2465 0.1476|| 3.3178  0.2936 0.1314
1.3838 0.0911 0.1207|| 1.3543 0.0714 0.1151
100 80 1 47274  4.3176 0.4293|| 3.8428 1.7134 0.2061
4.0379  1.2236 0.2084|| 3.7482  0.7677 0.1578
15909 0.1515 0.1692|| 1.4358 0.1261 0.1472
2 49361  4.6677 0.4604| 3.7231  1.8212 0.1546
4.1889  1.1906 0.2347|| 3.6341  0.7171 0.1067
15315 0.1041 0.1488|| 1.3127  0.0868 0.1210
3 4.6378  2.8811 0.3729|] 3.6831  1.6437 0.1896
3.9752  1.3729 0.1990|| 3.6452  0.4801 0.1343
1.6094  0.5729 0.1772|| 1.2437  0.4081 0.1554
100 4.0564  2.0787 0.2067|] 3.6193  1.1607 0.0992
3.3988  1.0268 0.1348|| 3.2934  0.2550 0.1198
1.2456  0.0833 0.1078|| 1.2064  0.0507 0.0933

5.2 Application of LLGWD to a real data set

Consider deep groove ball bearings. The ball bearings gngeadf rolling-element bearings which use balls to maintain
the separation between the moving parts of the bearingsthéthpurpose of reducing rational friction and supporting
radial and axial loads. The number of revolutions in a badirivey endurance test is usually measured before failuteeof t
ball bearings, see)].

As indicated in Lawless 2], p. 98), the following data arise in tests on the endurarickeep groove ball bearings.
The observations are the number of million revolutions befailure for each one of 23 ball bearings. The 23 failure
times are
17.88, 2892, 33.00, 4152, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12,
98.64, 10512, 10584, 127.92, 12804, 17340.

We compare the fit of the LLGWD with the WD, LLD, Burr-Xll (BURR and half-logistic generated Weibull
distribution (HLGWD) due to AL-Hussaini and Abdel-HamitlZ. For each distribution, the unknown parameters are
estimated using the ML method. The validity of these distiitns to fit the above data is checked using
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Table 4: Comparison among LLGWD, WD, LLD, BURR, and HLGWD based on fieenparison criteria.

Model a B 1% K-S P-value AIC CAIC BIC
LLGWD(a,B,y) | 0.00061 1.77642 0.851390.21931 0.21857 248.361 249.621 251.768
WD(a, B) 0.06066 0.63808 — 1031798 0.01910 264.279 264.879 266.550
LLD(y) - - 0.37062| 0.70088 0.00000 327.486 327.676 328.622
BURR(a, B) 0.69821 0.33855 - 0.47532 0.00006 309.911 310.511 312.182
HLGWD(a,B,y) | 0.06948 0.64309 1.54669 0.37546 0.00305 262.750 264.250 266.157

LOFT T

—=
==
=

0.8

==

e —-"

l Empirical CDF

Fitted CDF of LLGWD

Fitted CDF of WD
.......... Fitted CDF of LLD
....... Fitted CDF of BURR
———————- Fitted CDF of HLGWD

04f: !

0.2

0.0t N S S H I R R R b

0 50 100 150 200 250 300

Fig. 3: Empirical CDF versus CDFs of LLGWD, WD, LLD, BURR and HLGWD.

Kolmogorov-Smirnov (K-S) statistic and the correspondtigalue. The model selection is carried out by inspection of
the Akaike information criterion (AIC), @— 2 In(L(0O)), consistent AIC (CAIC)[2qn/(n—q—1)]—2In(L(O)) and
Bayesian information criterion (BIC} In(n) — 2 In(L(O)). whereO is the vector of parameter values that maximizes
likelihood functionL, qis the number of parameters in the model arslthe sample size. The best choice for a model is
the one with smallest criterion. This is done graphicallypbytting the empirical distribution versus the fitted CDFs o
LLGWD, WD, LLD, BURR and HLGWD, see Figure 3.

Table 4 lists the MLEs of the parameters for the fitted LLGWDDW.LD, BURR and HLGWD in addition to the
values of the following statistics: AIC, CAIC, BIC and K-Sasistics. The P-value that corresponds the K-S statistic is
also included in Table 4. These results indicate that the \MOGrepresents a better fit to the data than the other four
distributions through the lowest value of the K-S statistic largest value of the corresponding P-value. It can aso b
noted that the LLGWD has the lowest values for the AIC, BAI@ &hC criteria among the fitted distributions. Therefore,
it could be chosen as the best distribution.

6 Concluding Remarks

Generation of a new distribution is needed if the new digtidn is more flexible to analyzing data in the sense of having
better fit, more shapes of HRFs, etc. One of the methods thabmased to generate new distributions is the composition
of a CDF with another cumulative distribution or functionsafch distribution. This technique can add at least an extra
parameter to the distribution and hence makes it more flexdfitting data.

In this paper, we have generated a new distribution (LLGWIDEbdmposition of LLD with WD and obtained the
conditions under which the HRF is decreasing or unimodaloAgithe advantages of the LLGWD are (i) the CDF is
obtained in closed form and (ii) the monotonic and non-moniatshapes of the HRF make it more flexible to fitting
data. Moreover, real data have been used to compare the LLGWDWD, LLD, BURR and HLGWD through K-S
test, P-value, AIC, CAIC and BIC. The comparison has showattLGWD is better to fit the data than the other four
distributions. Based on a simulation study, the ML, momemtd PWM estimation methods have been performed to
estimate the considered parameters under progressivéltypesoring.
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The simulation results have showed that the estimates B3y are better than those using MOM while the MLEs
are better than those using PWM and MOM.
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