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Abstract: This paper deals with the construct and compute in a Bayesttimg, point and interval predictions based on general
progressive type Il censored data from generalized Paistobdition. Prediction bounds for the future observagigiwo sample
prediction) based on this type of censored will be deriveadian predictions are obtained based on a continuoasegigoint prior

for the unknown parameters. Bayesian point prediction usgemetric and asymmetric loss functions is discussed.ppiGation,

the total duration time in a life test and the failure time df-aut-of-m system may be predicted. Finally, a real datehsstbeen
analyzed for illustrative purposes.

Keywords: Generalized Pareto distribution, General progressive typensored, Bayesian predictions, Symmetric and asynunet
loss functions.

1 Introduction
A random variableX is said to have generalized Parg&®P) distribution, if its probability density functiopdf) is given

by

1 X
fee =5 (L+25E , )

o
wherep,{ € R ando € (0, +). For convenience, we reparametrized this distribution &éjnthgo/{ = A,1/{ = a
andu = 0. Therefore,

f(x) =aA(1+Ax) "D x>0 2)
The cumulative distribution function (cdf) and hazard ftioie are given by

F(x)=1—(1+Ax)~9, x>0, (3)
and

h(x) = aA(1+Ax) 1, x>0, 4)

for a > 0 andA > 0. Herea and A are the shape and scale parameters, respectively. It isvaléd&nown that this
distribution has decreasing failure rate (DFR) propertyisTdistribution is also known as Pareto distribution of the
second type or Lomax distribution2§] used generalized Pareto distribution to estimate the sfzthe maximum
inclusion in clean steels and application of this distrituto reinsurance is discussed W]. The Pareto distribution of
the second type has been widely used in economic studiesaarthtyse business failure data. The Pareto distribution
has been studied by several authors. Accordingiidie Pareto distribution is well adapted for modelling abliity
problems, since many of its properties are interpretabléan context and could be an alternative to the well-known
distributions used in reliability. This distribution wased for modelling size spectra data in aquatic ecology2@y [ 3]

used the Pareto distribution as a mixing distribution fa Boisson parameter and obtained the discrete Poissote-Pare
distribution. P] considered order statistics from non-identical righirtated Lomax distributions and provided
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applications for this situation1f] investigated the Bayesian estimation of the Pareto sarfisnction. [L5] determined

the optimal times of changing stress level for simple stpgaas under a cumulative exposure model using the Pareto
distribution. [L4] discussed the estimation of parameters of a Pareto dittyib by generalized order statsticq] [
discussed some Bayesian inferences based on censoredesafrph the Pareto distribution1(] considered
progressively type Il censored competing risks data froret@alistributions.

In many life testing and reliability studies, the experin@mmay not always obtain complete information on failure
times for all experimental units. Data obtained from sugbeginents are called censored data. Saving the total tinestn
and the cost associated with it are some of the major reasonsiiisoring. Therefore, the test is considered to be cedsor
in which data collected are the exact failure times on thaged units and the running times on those non-failed units.
The most common censoring schemes are type-l and type-dbdeng, but the conventional type-l and type-1l censoring
schemes do not have the flexibility of allowing removal oftamit points other than the terminal point of the experiment.
For example, some products have to be withdrawn for moreothgdr inspection or saved for use as test specimens in
other studies. Different inferential procedures basedrognessively censored samples have been discussed bylsever
authors, including¥,6,7,12,21,23] and [L1]. This paper considers a general progressive type Il cergsscheme, this
scheme can be described as follows: at tige= 0, n randomly selected units were placed on a life test. Therailu
times of the firstr units to fail, Xy, ..., X were not observed. At the time of tiie+ 1)th failure X 1.n, R+1 number
of surviving units are removed from the test randomly and s0Ad the time of the(r + i)th observed failureX;i:n,

R-+i number of surviving units are removed from the test randofiriglly, at the time of the i failure, the remaining
Rn=n-m-R;1—R2—--— Ry 1 are removed from the test. Suppose tKat;mn < Xri2mn < -+ <, Xmmn are
the lifetimes of the completely observed units to fail arat & 1, R 12, ..., Ry are the number of units removed from the
test at these failure times, respectively. Ryg, m, andr are prespecified integers suchthat®@ < m<n, 0< R <n-—i
fori=r+1,...,m—1,andRy=n—m-— z{iﬁle. The resultingm—r) ordered valueX 1 mn, X +2:mn; -+ Xmrmen are
appropriately referred to as general progressively typemisored order statistics, it should be noted that

()If r =0, this scheme is reduced to the progressive type Il right aamgo

(i)if r=0andR =0, fori=r+1,....m—1, thenRy = n—m, the general progressively type Il censoring scheme is
reduced to conventional type Il one-stage right censovifgre just the firsin usual order statistics are observed.

(iiflif r=0andR, =0, fori =r+1,...,m, thenm= n, the general progressively type Il censoring scheme is edite
complete sample case (the case of no censoring ), whareiallal order statistics are observed.

(VIf r£2£0andr =0, fori =r+1,....m—1, thenRy, = n—m-—r, the general progressively type Il censoring scheme is
reduced to the doubly type Il censoring scheme.

[18] discussed the estimation problem for Rayleigh distrimutiased on a general progressive censored scheliies. [
investigated the estimating Burr XII parameter based org@iype Il progressive censorin@4] discussed the problem
of Bayesian estimation and prediction based on multiphetilpcensored samples of sequential order statistics from
one and two-parameter exponential distributions. Thisepégcuses, via Bayesian approach, on two-sample predictiv
inferences for the generalized Pareto distribution baseal @eneral progressively type Il censored data.

The layout of the paper is as follows: The likelihood funntiprior and posterior distributions are presented in 8acti
2. Section 3 presents the different types of the loss funstidhe details of our main results along with the derivatibn
all Bayes predictive functions based on general progresensored data are given in Section 4. In the same sect®n, th
predictive functions were used to derive both point préalicend prediction intervals for the future observatiorgsrir
the same distribution. Numerical example using real datsg@esented in Section 5. Finally, Section 6 provides some
concluding remarks.

2 The Likelihood Function and Posterior Distribution

Let X = X 1:mn, Xr12:mens -+ Xmmen denote the general progressively type 1l censored sanmmietine generalized Pareto
distribution, with(R-;1,Rr2,...,Rm) being the general progressive censoring schemey asdhe number of the first
failures which are not observed. For simplicity of notatiae usex; instead ofX;.,,n withi =r +1,...,m. The likelihood
function/(a, A|x) for the parameterg andA is then

a A =al {F(x0)} [ fO0)L-F )T, (%)
i=r+1
where -
n m 1= )
o= <r) (n_r)jﬂrz [n_i=;1Ri_J+1 ’ ©
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and the functiond (x) andF (x) are given respectively by (2) and (3). Substituting (2) aBdirfto (5) the likelihood

function is
m

la,Ax)=al [1—(1+Ax41) )" [ oA (1+Ax) @@L @)
i=r+1

By using the binomial expansion whearés a positive integer, one can rewrite the likelihood fuowt{7) as follows

o(a,A[x) = al io(—l)s (;) (aA)™ " ue T, ®)

where " o
u=[1 @+Ax)", Te=sn(l+Ax11)+ 5 (R+1)IN(1+Ax). 9)

i=r+1 i=r+1

Now, we first describe the prior information needed for thegd3san analysis of the unknown parameters. When the
parameters\ and a, are assumed to be unknown, we assume that the parameles a discrete prior distribution,
while a has a conjugate prior distribution. Suppose that the paermeis restricted to a finite number of values, say
A1, A2, ..., AN, with prior probabilitiesns, na, ..., n, respectively, where € nj <1 andz'j\‘zlnj =1.ie.

m(Aj) = Pr(A = Aj) =n;. (10)
Under the conditiol = Aj, j =1,2,...,N, suppose thatr has a natural conjugate gamma prior with parametgesd
b.
i a
m(a|A :)\j):#aj)aai—le—bi“, a; aj, by > 0. (11)
Using the likelihood function (8) and the prior density (lthle conditional posterior density afgivenA = A; is
r
T (ald =A;;x) =k Z)(—l)s (r) ati~le B g >0, (12)
£ s
where .
Aj=m-r+aj, Bj=Ts+bj;, kit= %(—1)S (r>r (A,—)BJTAJ'. (13)
£ s
The joint posterior ofx andA is
;
m(a,A|x) = ko ZO(—l)S (r) Djafi~te @B, (14)
£ s
where
o - 1
D= niA™ "uj, uj= 1+Aix) ",
=y Y i:ul( %)
r (15)

'-35 U)o ()

=

3 The Loss Functions

For Bayesian approach, in order to select a single valuepassenting our “best” estimator of the unknown parameter, a
loss function must be specified. A wide variety of loss fuoiesi have been developed in literature to describe varigesty

of loss structures. The symmetric square-error loss (Séésof the most popular loss functions. It is widely employed
in inference, but its application is motivated by its goodineanatical properties, not by its applicability to repretseg a

true loss structure. A loss function should represent tmseguences of different errors. There are situations where

and under-estimation can lead to different consequenceseXample, when we estimate the average reliable working
life of the components of a spaceship or an aircraft, ovémesion is usually more serious than under-estimatiom tha
an underestimation. Being symmetric, the SE loss equalhalees over- and under-estimation of the same magnitude.
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A useful asymmetric loss known as the LINEX loss functionsweroduced by [26]. This function rises approximately
exponentially on one side of zero, and approximately lityean the other side. Under the assumption that the minimal
loss occurs ati = u, the LINEX loss function fou can be expressed as

L(A)Oe® —cA—1,c+#0, (16)

whereA = (U—u) andUis an estimate of .
It is easy to verify that the value @fthat minimizesE, (L(U— u)) in (16) is

T, = log(Eufexp(—cu))). (7)

Another useful asymmetric loss function is the generalagayt(GE) loss

Li(Uyu) O (g)q —qlog (g) -1 (18)

whose minimum occurs @t= u. The Bayes predictive estimaig, of u under GE loss (18) is
UG = (Eu[u™ %)Y/, (19)

For more details about these loss functions see [2] and [13].

4 Bayesian Prediction

Suppose thaX; .1, %42, ..., Xm IS general progressively type Il censored sample drawn figrapulation whose density
function is GRa,A) defined in (2), and thaYi,Ys, ..., Yy, is a second independent random sample of mizef the
future observations from the same distribution. It is fartassumed that the two samples are independent and each of
their corresponding random samples is obtained from the shstribution function. Our aim is to develop a method to
construct a prediction interval for a number of future oliations (two-sample prediction). L¥t (1 < k < ny), be thek!"
ordered lifetime in the future sample of simg The density function oYy for givena andA is

gl 1) = k() 11 F Wt A [F (.01 (. A) . > (20)

wheref (.|a,A) is givenin (2) and- (.]a,A) denotes the corresponding cumulative distribution fuomctf f (.(|a,A) as
given in (3), substituting (2) and (3) in (20),we obtain

k-1 e )
ola.) =609 5 (-3 () ey taner e @)
=
where
G(k):k<r|‘<1>, n“=m—k+ti+1l (22)

Bayes predictive density function ¥ givenx is
o N
Q1) = [ glla. M) (e, A x)da @3)
=1

wherert*(a,A|x) is the joint posterior density aif andA as given in (14). Substituting (14) and (21) in (23), Bayes
predictive density function ofi can be written as

N,k—1,r
K1 . r(A+1
GOX) = 3 keGRAD; L+ A0 " e (24)
s [Bj+n*ln(1+)\jyk)] ]
where Nkt
k—=1r N k=1 r ) _
5 22,500 () ) @
1,18 j=1i=0s= I S
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Thus the predictive survival functider Y, > t|x] can be written as

PriYi> th = | ga(om)dyk

N,kil,r oG (k) 5 r (Aj + 1) (26)
p— 2 H ~.
is . n*A;j [Bj+n*In (1+)\jt)]AJ

4.1 Interval prediction

The predictive bounds of a two-sided interval with coyeifor the future observatio¥i, can be obtained by solving the
following two equations for lowek and uppet) bounds

Prive> L = T2, Piv> U = 1Y @)
Special cases:
(Settingk = 1 in (26), yields
N r(Aj+1)
PriY; > t[x] = —1S(r>kD- j . 28
M2th=2 2 I )P By man (A 29

This case is of particular interest; for instance, a lowsitlifor the first failure in a fleet of; items is called a safe
warranty life or an assurance limit for the fleet.
(ii)Settingk = ny in (26), yields

N,n —1,r r A+1
Py, >t[x] = Y keDj- (,‘ ) Tl
s (I+DABj+ (Ii+1)In(1+A;t)]™

A 100y Bayesian prediction interval fof; andY,, can be easily obtained numerically using (27)—(29).

(29)

4.2 Point prediction
Using (17), (19) and (24) Bayes point predictoipfunder LINEX and GE loss functions are given, respectively, b

. 1 o
Y = —cLo9 [ /o e CYkgl(YK|X)dYK:|

1 Nk—1r (30)
:_ELOQ[ > kZG(k)DJ)‘J’_(AJJfl)'l(n*)]7
J,1,S
: #
Ykge) = { /0 ykqgl(YK|X)dYk]
Nk—1r 2 (31)
:[ Z sz(k)Dj)\jl_(Aj+1)|2(n*,k)‘| ’
J,1,s
where
N L e Wk (14 A -1
l1(n ):/ (1+2%) e
0 [Bj+n*In(1+Ajy )] o)

I (n*, k) :/oo Yt (L A0~
’ 0 [Bj+nin(1+ Ay At

One can use a numerical integration technique to computetegrals in (32). It may be noted that the Bayes point
predictorYkYBS) for yx under squared error loss can be obtained by sedtiag-1 in (31).

Special cases:
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()Whenk = 1, the point prediction will be for the first failure time of thatfire sample of size;. Settingk = 1 in (30)
and (31), respectively, we obtain

jrs

N 1 N,O,r
Vi, = — 109 [ > MkeDjA;I (A +1)|1(n1)] , (33)

-1
N,0,r q
Yige) = l JZS nikoDjAT (Aj+1)12(ny, 1)] . (34)

(ilWhenk = n1, the point prediction will be for the last failure time of thatfire sample of size;. Settingk = ny in (30)
and (31), respectively, gives

- 1 N,n1—21r )
Ynl(Bl_) = —ELOQ JZIS nlksz)\jI' (Aj +Dl1(i+2)], (35)
-1
. N,np—1r . q
Ynl(BG) = [ Z Nik2DjA (Aj+1) 12 (i +1,ny) (36)
ins

5 Numerical Computations

To illustrate the application of the prediction resultste ainalysis of survival data, we consider the data s&9which
was analyzed also ir2)]. These data are the duration of remission of 20 leukemiampistwhich are treated by one drug.
The ordered duration of remission (in years) are:

1.013 1.034 1.109 1.169 1.226 1.509 1.533 1563 1.716 1.929
1.965 2.061 2344 2546 2.626 2.778 2951 3.413 4.118 5.136

Before progressing further, the 20 values were used toythit the data set follow generalized Pareto distribution
GP(a,A), We have examined the goodness of fit of the previous datarterglized Pareto distribution. We have computed
the Kolmogorov-Smirnov test. it is.0942 and the corresponding p-value i8&6. Since the p-value is quite high, we
cannot reject the null hypothesis that the data is coming fitee generalized Pareto distribution.

In this example, the following 6 censoring schemes (C.Sransidered:

(1) General progressive type Il censored sample {, n =20, m= 9) can be generated by algorithm given By, [n that
sample, the first time to breakdown is lost and the vector eéoled failure times and the progressive censoring scheme
are given by

x= (0, 1.034 1.109 1.169, 1.533 1.563 2.061, 2.344, 2.546)

andR =(0,2,0,0,3,0,0,6),i=r+1,...m.

(2) Usual progressive type Il censored sample=(0, n = 20, m= 9 ) generated byZg]. In that sample the vector of
observed failure times and the progressive censoring selagen

x=(1.013 1.034, 1.109 1.169 1.533 1.563 2.061 2.344, 2.546)

andR =(0,0,2,0,0,3,0,0,6),i=r+1,...m
(3) Another usual progressive type Il censored sampie@, n= 20, m= 9) generated byZ2] using the optimal censoring
plan. The observed failure times and the progressive cemgsscheme are

x=(1.013 1.034, 1.169 2.061 2.546, 2.778 2.951 3.413 4.118)

andR =(0,11,0,0,0,0,0,0,0),i=r+1,...m.

(4) Doubly type Il censored sample £ 4, n =20, m= 14). In this case we suppose that 20 specimens were put on a
test, but for reasons of economy it was decided to termimegtéetst on the 14-th failure. Moreover, due to experimental
difficulties, the failure times of the first four specimensféadl were missing. The ten observed failure times and the
progressive censoring scheme are as follows

x=(0O,0,0, 0, 1.266 1.509 1.533 1.563 1.716 1.9291.965,2.061, 2.344, 2.546 J, O, 0, O, 0, OJ)

andR =(0,0,0,0,0,0,0,0,0, 6),i=r+1,...m
(5) Usually type Il censored sample£ 0, n =20, m=9).

x=(1.013 1.034, 1.109 1.169 1.266, 1.716, 1.929, 1.965 2.061)

andR =(0,0,0,0,0,0,0,0, 11),i=r+1,....m.

(6) Complete sampler (= 0, n=m= 20).
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x=(1.013 1.034,1.109, 1.169, 1.266, 1.509 1.533 1.563 1.716, 1.929,1.965 2.061, 2.344, 2.546, 2.626, 2.778,
2.951, 3.413 4.118 5.136) andR, = (0%°),i=r+1,....m.
The values of the parameteas andb; are obtained numerically for each givap, andnj, j = 1,2,...,10 using the
Newton—-Raphson method. Table 1 summarized the valuag afidb; for each givem; andn;. The estimation of the
parameters andqg would require considerable information about the truededsr the producer. However, for purposes
of this study, we choose some different valuesdandg. Now assume that thirteeny(= 13) new insulation specimens
are to be tested. On the basis of the preceding sets ofxd@ayes point prediction, under SE, LINEX, and GE loss
functions, of the future failure time4, Y13 and the corresponding 95 Bayes prediction intervals are/slio Tables 2
and 3.

Table 1: Prior information and hyper parameter values.
] 1 2 3 4 5 6 7 8 9 10
n; 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Aj 1.0 1.1 1.2 1.3 1.4 15 1.6 1.7 1.8 1.9
a; 0.6992 0.5965 0.5183 0.4570 0.4077 0.3674 0.3339 0.3056814.20.2605
b;j 14646 1.3745 1.3034 1.2456 1.1977 1.1573 1.1227 1.0928669.01.0433

Table 2: Point prediction and 95 prediction interval fér .

C.S Point Prediction Interval Prediction
BS BL BG LL UL
c=05 c¢c=1 q=-06 q=09
(1) 1.3245 1.3123 1.2889 1.2544 1.2458 0.0615 3.2415
(2) 1.3056 1.2945 1.2837 1.2456 1.2366 0.0422 3.1923
(3) 1.3333 1.2921 1.2754 1.2369 1.2310 0.0343 3.7169
(4) 1.3161 1.2544 1.2733 1.2354 1.2155 0.0406 3.2111
(5) 1.4002 1.3923 1.2824 1.2844 1.3041 0.0397 3.6251
(6) 1.3770 1.3642 1.3122 1.2937 1.2862 0.0238 3.2477
Table 3: Point prediction and 95 prediction interval féys.
C.S Point Prediction Interval Prediction
BS BL BG LL UL
c=0.01 c=05 g=-01 qg=04
(1) 37.1245 31.1245 33.4358 37.3341 31.0840 6.9547 88.8415
(2) 39.5521 31.6540 32.7451 36.5487 31.6652 9.2354 87.3642

(3) 42.3258 41.2547 45.6984 41.1124  40.1347 12.1139 90.321
(4) 32.2261 28.2457 33.8686 31.5479  27.9687 12.6982 1082.85
(5) 47.2587 50.0025 48.2105 55.6478 51.5784 14.5421 194.56
(6) 38.1458 41.1147 42.6391 440124  39.1502 13.6317 98.856

6 Conclusions

In this paper, Bayesian prediction problem of the genezdlRareto distribution based on general progressivelyoceds
sampling are obtained. The prior belief of the model is repnéed by a continuous-discrete joint prior for the unknown
parameters. Using the predictive distribution approaehmethods are derived for constructing either point arefvat
predictions for thekth smallest future observations from the same failure proo&iof the results obtained in this
paper can be specialized to: usual progressive type Il cedsample, type Il right censored sample, doubly type I
censored sample and complete sample. Bayesian approacdtiggra unified structure for computing prediction intesval
to one out ofm, k out of m, andm out of m sample values with a desired probability. It also, providesonvenient
computational setting for actual calculations of the pegdh intervals. Such calculations can be accomplisheilyeas
using widely available computing facilities. Bayesian aygth allows prior knowledge as well as experimental data
to be incorporated into the inferential procedure, thusding the well known difficulties of the classical approach
in analyzing censored data. The application examples pregen this paper illustrate the procedure of using a real
general progressively censored data as a past sample tictdredre samples from the same population. Bayes point
prediction under asymmetric loss (LINEX and GE) is more gehevhich includes point prediction based on symmetric
loss functions as a special cases. So, the analytical etse/hich results can be obtained using asymmetric loss iumst
makes them attractive for using in applied problems, andgessing the effects of departures from assumed symmetric
loss functions. From Tables 2 and 3 Bayes point predictitative to asymmetric loss functions are sensitive to thaeal
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of the parameters andg. These results establish that for optimum decision makingortance should be given to the
choice of loss function and not just the choice of prior disition only.
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