
J. Stat. Appl. Pro.5, No. 1, 43-51 (2016) 43

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/050104

Bayesian Prediction Based on General Progressive
Censored Data from Generalized Pareto Distribution
Rashad M. El-Sagheer∗

Mathematics Department, Faculty of Science, Al-Azhar University, Nasr city (11884), Cairo, Egypt

Received: 16 Dec. 2015, Revised: 6 Jan. 2016, Accepted: 10 Jan. 2016
Published online: 1 Mar. 2016

Abstract: This paper deals with the construct and compute in a Bayesiansetting, point and interval predictions based on general
progressive type II censored data from generalized Pareto distribution. Prediction bounds for the future observations (two sample
prediction) based on this type of censored will be derived. Bayesian predictions are obtained based on a continuous–discrete joint prior
for the unknown parameters. Bayesian point prediction under symmetric and asymmetric loss functions is discussed. As application,
the total duration time in a life test and the failure time of ak-out-of-m system may be predicted. Finally, a real data sethas been
analyzed for illustrative purposes.

Keywords: Generalized Pareto distribution, General progressive type II censored, Bayesian predictions, Symmetric and asymmetric
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1 Introduction

A random variableX is said to have generalized Pareto(GP) distribution, if its probability density function(pdf) is given
by

f(ζ ,µ,σ) =
1
σ

(
1+ ζ

x− µ
σ

)−(1/ζ+1)

, (1)

whereµ ,ζ ∈ R andσ ∈ (0,+∞). For convenience, we reparametrized this distribution by definingσ/ζ = λ ,1/ζ = α
andµ = 0. Therefore,

f (x) = αλ (1+λ x)−(α+1), x > 0. (2)

The cumulative distribution function (cdf) and hazard function are given by

F(x) = 1− (1+λ x)−α, x > 0, (3)

and
h(x) = αλ (1+λ x)−1, x > 0, (4)

for α > 0 andλ > 0. Hereα andλ are the shape and scale parameters, respectively. It is alsowell known that this
distribution has decreasing failure rate (DFR) property. This distribution is also known as Pareto distribution of the
second type or Lomax distribution. [25] used generalized Pareto distribution to estimate the sizeof the maximum
inclusion in clean steels and application of this distribution to reinsurance is discussed by [19]. The Pareto distribution of
the second type has been widely used in economic studies and to analyse business failure data. The Pareto distribution
has been studied by several authors. According to [4] the Pareto distribution is well adapted for modelling reliability
problems, since many of its properties are interpretable inthat context and could be an alternative to the well-known
distributions used in reliability. This distribution was used for modelling size spectra data in aquatic ecology by [27]. [3]
used the Pareto distribution as a mixing distribution for the Poisson parameter and obtained the discrete Poisson–Pareto
distribution. [9] considered order statistics from non-identical right-truncated Lomax distributions and provided
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applications for this situation. [16] investigated the Bayesian estimation of the Pareto survival function. [15] determined
the optimal times of changing stress level for simple stressplans under a cumulative exposure model using the Pareto
distribution. [14] discussed the estimation of parameters of a Pareto distribution by generalized order statstics. [1]
discussed some Bayesian inferences based on censored samples from the Pareto distribution. [10] considered
progressively type II censored competing risks data from Pareto distributions.

In many life testing and reliability studies, the experimenter may not always obtain complete information on failure
times for all experimental units. Data obtained from such experiments are called censored data. Saving the total time ontest
and the cost associated with it are some of the major reasons for censoring. Therefore, the test is considered to be censored
in which data collected are the exact failure times on those failed units and the running times on those non-failed units.
The most common censoring schemes are type-I and type-II censoring, but the conventional type-I and type-II censoring
schemes do not have the flexibility of allowing removal of units at points other than the terminal point of the experiment.
For example, some products have to be withdrawn for more thorough inspection or saved for use as test specimens in
other studies. Different inferential procedures based on progressively censored samples have been discussed by several
authors, including [5,6,7,12,21,23] and [11]. This paper considers a general progressive type II censoring scheme, this
scheme can be described as follows: at timeX0 = 0, n randomly selected units were placed on a life test. The failure
times of the firstr units to fail, X1, ...,Xr were not observed. At the time of the(r + 1)th failure Xr+1:n, Rr+1 number
of surviving units are removed from the test randomly and so on. At the time of the(r + i)th observed failure,Xr+i:n,
Rr+i number of surviving units are removed from the test randomly. finally, at the time of the mth failure, the remaining
Rm = n−m−Rr+1−Rr+2− ·· ·−Rm−1 are removed from the test. Suppose thatXr+1:m:n ≤ Xr+2:m:n ≤ ·· · ≤,Xm:m:n are
the lifetimes of the completely observed units to fail and thatRr+1,Rr+2, ...,Rm are the number of units removed from the
test at these failure times, respectively. TheRi’s, m, andr are prespecified integers such that 0≤ r < m ≤ n, 0≤ Ri ≤ n− i
for i = r+1, ...,m−1, andRm = n−m−∑m−1

i=r+1 Ri. The resulting(m− r) ordered valuesXr+1:m:n,Xr+2:m:n, ...,Xm:m:n are
appropriately referred to as general progressively type IIcensored order statistics, it should be noted that

(i)If r = 0, this scheme is reduced to the progressive type II right censoring.
(ii)If r = 0 andRi = 0, for i = r + 1, ...,m− 1, thenRm = n−m, the general progressively type II censoring scheme is

reduced to conventional type II one-stage right censoring,where just the firstm usual order statistics are observed.
(iii)If r = 0 andRi = 0, for i = r+1, ...,m, thenm = n, the general progressively type II censoring scheme is reduced to

complete sample case (the case of no censoring ), where alln usual order statistics are observed.
(iv)If r 6= 0 andRi = 0, for i = r+1, ...,m−1, thenRm = n−m− r, the general progressively type II censoring scheme is

reduced to the doubly type II censoring scheme.

[18] discussed the estimation problem for Rayleigh distribution based on a general progressive censored schemes. [17]
investigated the estimating Burr XII parameter based on general type II progressive censoring. [24] discussed the problem
of Bayesian estimation and prediction based on multiply type II censored samples of sequential order statistics from
one and two-parameter exponential distributions. This paper focuses, via Bayesian approach, on two-sample predictive
inferences for the generalized Pareto distribution based on a general progressively type II censored data.

The layout of the paper is as follows: The likelihood function, prior and posterior distributions are presented in Section
2. Section 3 presents the different types of the loss functions. The details of our main results along with the derivationof
all Bayes predictive functions based on general progressive censored data are given in Section 4. In the same section, the
predictive functions were used to derive both point prediction and prediction intervals for the future observations from
the same distribution. Numerical example using real data set is presented in Section 5. Finally, Section 6 provides some
concluding remarks.

2 The Likelihood Function and Posterior Distribution

Let X
¯
= Xr+1:m:n,Xr+2:m:n, ...,Xm:m:n denote the general progressively type II censored sample from the generalized Pareto

distribution, with(Rr+1,Rr+2, ...,Rm) being the general progressive censoring scheme, andr is the number of the first
failures which are not observed. For simplicity of notation, we usexi instead ofXi:m:n with i = r+1, ...,m. The likelihood
functionℓ(α,λ |x) for the parametersα andλ is then

ℓ(α,λ |x) = al {F (xr+1)}
r

m

∏
i=r+1

f (xi) [1−F (xi)]
Ri , (5)

where

al =

(
n
r

)
(n− r)

m

∏
j=r+2

[
n−

j−1

∑
i=r+1

Ri − j+1

]
, (6)

c© 2016 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.5, No. 1, 43-51 (2016) /www.naturalspublishing.com/Journals.asp 45

and the functionsf (x) andF (x) are given respectively by (2) and (3). Substituting (2) and (3) into (5) the likelihood
function is

ℓ(α,λ |x) = al
[
1− (1+λ xr+1)

−α]r
m

∏
i=r+1

αλ (1+λ xi)
−α(Ri+1)−1 . (7)

By using the binomial expansion wherer is a positive integer, one can rewrite the likelihood function (7) as follows

ℓ(α,λ |x) = al
r

∑
s=0

(−1)s
(

r
s

)
(αλ )m−r ue−αTs , (8)

where

u =
m

∏
i=r+1

(1+λ xi)
−1 , Ts = s ln(1+λ xr+1)+

m

∑
i=r+1

(Ri +1) ln(1+λ xi) . (9)

Now, we first describe the prior information needed for the Bayesian analysis of the unknown parameters. When the
parametersλ and α, are assumed to be unknown, we assume that the parameterλ has a discrete prior distribution,
while α has a conjugate prior distribution. Suppose that the parameter λ is restricted to a finite number of values, say
λ1,λ2, ...,λN , with prior probabilitiesη1,η2, ...,ηN , respectively, where 0≤ η j ≤ 1 and∑N

j=1 η j = 1. i.e.

π(λ j) = Pr(λ = λ j) = η j. (10)

Under the conditionλ = λ j, j = 1,2, ...,N, suppose thatα has a natural conjugate gamma prior with parametersa j and
b j

π(α|λ = λ j) =
b

a j
j

Γ (a j)
αa j−1e−b jα , α; a j, b j > 0. (11)

Using the likelihood function (8) and the prior density (11), the conditional posterior density ofα givenλ = λ j is

π∗(α|λ = λ j;x) = k1

r

∑
s=0

(−1)s
(

r
s

)
αA j−1e−αB j , α > 0, (12)

where

A j = m− r+ a j, B j = Ts + b j, k−1
1 =

r

∑
s=0

(−1)s
(

r
s

)
Γ (A j)B

−A j
j . (13)

The joint posterior ofα andλ is

π∗(α,λ |x) = k2

r

∑
s=0

(−1)s
(

r
s

)
D jαA j−1e−αB j , (14)

where

D j =
b

a j
j

Γ (a j)
η jλ m−ru j, u j =

m

∏
i=r+1

(1+λ jxi)
−1 ,

k−1
2 =

N

∑
j=1

r

∑
s=0

(−1)s
(

r
s

)
D jΓ (A j)B

−A j
j

(15)

3 The Loss Functions

For Bayesian approach, in order to select a single value as representing our “best” estimator of the unknown parameter, a
loss function must be specified. A wide variety of loss functions have been developed in literature to describe various types
of loss structures. The symmetric square-error loss (SE) isone of the most popular loss functions. It is widely employed
in inference, but its application is motivated by its good mathematical properties, not by its applicability to representing a
true loss structure. A loss function should represent the consequences of different errors. There are situations whereover-
and under-estimation can lead to different consequences. For example, when we estimate the average reliable working
life of the components of a spaceship or an aircraft, over-estimation is usually more serious than under-estimation than
an underestimation. Being symmetric, the SE loss equally penalizes over- and under-estimation of the same magnitude.
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A useful asymmetric loss known as the LINEX loss function, was introduced by [26]. This function rises approximately
exponentially on one side of zero, and approximately linearly on the other side. Under the assumption that the minimal
loss occurs at̃u = u, the LINEX loss function foru can be expressed as

L(∆) ∝ ec∆ − c∆ −1, c 6= 0, (16)

where∆ = (ũ− u) andũ is an estimate ofu .
It is easy to verify that the value of̃u that minimizesEu (L(ũ− u)) in (16) is

ũBL =−
1
c

log(Eu[exp(−cu)]). (17)

Another useful asymmetric loss function is the general entropy (GE) loss

L1(ũ,u) ∝
(

ũ
u

)q

− q log

(
ũ
u

)
−1. (18)

whose minimum occurs at̃u = u. The Bayes predictive estimatẽuBL of u under GE loss (18) is

ũBG = (Eu[u
−q])−1/q. (19)

For more details about these loss functions see [2] and [13].

4 Bayesian Prediction

Suppose thatXr+1,Xr+2, ...,Xm is general progressively type II censored sample drawn froma population whose density
function is GP(α,λ ) defined in (2), and thatY1,Y2, ...,Yn1 is a second independent random sample of sizen1 of the
future observations from the same distribution. It is further assumed that the two samples are independent and each of
their corresponding random samples is obtained from the same distribution function. Our aim is to develop a method to
construct a prediction interval for a number of future observations (two-sample prediction). LetYk (1≤ k ≤ n1), be thekth

ordered lifetime in the future sample of sizen1. The density function ofYk for givenα andλ is

g(yk|α,λ ) = k

(
n1

k

)
[1−F (yk|α,λ )]n1−k [F (yk|α,λ )]k−1 f (yk|α,λ ) , α,λ > 0, (20)

where f (.|α,λ ) is given in (2) andF (.|α,λ ) denotes the corresponding cumulative distribution function of f (.|α,λ ) as
given in (3), substituting (2) and (3) in (20),we obtain

g(yk|α,λ ) = G(k)
k−1

∑
i=0

(−1)i
(

k−1
i

)
(1+λ yk)

−1αλ e−αn∗ ln(1+λ yk), (21)

where

G(k) = k

(
n1

k

)
, n∗ = n1− k+ i+1. (22)

Bayes predictive density function ofYk givenx is

g1(yk|x) =
∫ ∞

0

N

∑
j=1

g(yk|α,λ )π∗(α,λ |x)dα, (23)

whereπ∗(α,λ |x) is the joint posterior density ofα andλ as given in (14). Substituting (14) and (21) in (23), Bayes
predictive density function ofYk can be written as

g1(yk|x) =
N,k−1,r

∑
j,i,s

k2G(k)λ jD j (1+λ jyk)
−1 Γ (A j +1)

[B j + n∗ ln(1+λ jyk)]
(A j+1)

, (24)

where
N,k−1,r

∑
j,i,s

=
N

∑
j=1

k−1

∑
i=0

r

∑
s=0

(−1)i+s
(

k−1
i

)(
r
s

)
. (25)
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Thus the predictive survival functionPr[Yk ≥ t|x] can be written as

Pr[Yk ≥ t|x] =
∫ ∞

t
g1(yk|x)dyk,

=
N,k−1,r

∑
j,i,s

k2G(k)D j
Γ (A j +1)

n∗A j [B j + n∗ ln(1+λ jt)]
A j
.

(26)

4.1 Interval prediction

The predictive bounds of a two-sided interval with coverγ , for the future observationYk, can be obtained by solving the
following two equations for lowerL and upperU bounds

Pr[Yk ≥ L|x] =
1+ γ

2
, Pr[Yk ≥U |x] =

1− γ
2

(27)

Special cases:

(i)Settingk = 1 in (26), yields

Pr[Y1 ≥ t|x] =
N

∑
j

r

∑
s
(−1)s

(
r
s

)
k2D j

Γ (A j +1)

A j [B j + n1 ln(1+λ jt)]
A j
. (28)

This case is of particular interest; for instance, a lower limit for the first failure in a fleet ofn1 items is called a safe
warranty life or an assurance limit for the fleet.

(ii)Settingk = n1 in (26), yields

Pr[Yn1 ≥ t|x] =
N,n1−1,r

∑
j,i,s

k2D j
Γ (A j +1)

(i+1)A j [B j +(i+1) ln(1+λ jt)]
A j
. (29)

A 100γ Bayesian prediction interval forY1 andYn1 can be easily obtained numerically using (27)–(29).

4.2 Point prediction

Using (17), (19) and (24) Bayes point predictor ofYk under LINEX and GE loss functions are given, respectively, by

Ỹk(BL)
=−

1
c

Log

[∫ ∞

0
e−cyk g1(yk|x)dyk

]

=−
1
c

Log

[
N,k−1,r

∑
j,i,s

k2G(k)D jλ jΓ (A j +1)I1 (n
∗)

]
,

(30)

Ỹk(BG)
=

[∫ ∞

0
y−q

k g1(yk|x)dyk

]−1
q

=

[
N,k−1,r

∑
j,i,s

k2G(k)D jλ jΓ (A j +1)I2(n
∗,k)

]−1
q

,

(31)

where

I1 (n
∗) =

∫ ∞

0

e−cyk (1+λ jyk)
−1

[B j + n∗ ln(1+λ jyk)]
(A j+1)

dyk,

I2 (n
∗,k) =

∫ ∞

0

y−q
k (1+λ jyk)

−1

[B j + n∗ ln(1+λ jyk)]
(A j+1)

dyk.

(32)

One can use a numerical integration technique to compute theintegrals in (32). It may be noted that the Bayes point
predictorỸk(BS)

for yk under squared error loss can be obtained by settingq =−1 in (31).
Special cases:
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(i)Whenk = 1, the point prediction will be for the first failure time of the future sample of sizen1. Settingk = 1 in (30)
and (31), respectively, we obtain

Ỹ1(BL)
=−

1
c

Log

[
N,0,r

∑
j,i,s

n1k2D jλ jΓ (A j +1)I1 (n1)

]
, (33)

Ỹ1(BG)
=

[
N,0,r

∑
j,i,s

n1k2D jλ jΓ (A j +1)I2 (n1,1)

]−1
q

. (34)

(ii)Whenk = n1, the point prediction will be for the last failure time of the future sample of sizen1. Settingk = n1 in (30)
and (31), respectively, gives

Ỹn1(BL)
=−

1
c

Log

[
N,n1−1,r

∑
j,i,s

n1k2D jλ jΓ (A j +1)I1 (i+1)

]
, (35)

Ỹn1(BG)
=

[
N,n1−1,r

∑
j,i,s

n1k2D jλ jΓ (A j +1)I2 (i+1,n1)

]−1
q

. (36)

5 Numerical Computations

To illustrate the application of the prediction results to the analysis of survival data, we consider the data set in [29] which
was analyzed also in [20]. These data are the duration of remission of 20 leukemia patients which are treated by one drug.
The ordered duration of remission (in years) are:

1.013 1.034 1.109 1.169 1.226 1.509 1.533 1.563 1.716 1.929
1.965 2.061 2.344 2.546 2.626 2.778 2.951 3.413 4.118 5.136

Before progressing further, the 20 values were used to verify that the data set follow generalized Pareto distribution
GP(α,λ ), We have examined the goodness of fit of the previous data to generalized Pareto distribution. We have computed
the Kolmogorov-Smirnov test. it is 0.0942 and the corresponding p-value is 0.886. Since the p-value is quite high, we
cannot reject the null hypothesis that the data is coming from the generalized Pareto distribution.

In this example, the following 6 censoring schemes (C.S) areconsidered:
(1) General progressive type II censored sample (r = 1, n = 20, m = 9) can be generated by algorithm given by [8]. In that
sample, the first time to breakdown is lost and the vector of observed failure times and the progressive censoring scheme
are given by

x = (�, 1.034, 1.109, 1.169, 1.533, 1.563, 2.061, 2.344, 2.546)
andRi = (0, 2, 0, 0, 3, 0, 0, 6), i = r+1, ...,m.

(2) Usual progressive type II censored sample (r = 0, n = 20, m = 9 ) generated by [28]. In that sample the vector of
observed failure times and the progressive censoring scheme are

x = (1.013, 1.034, 1.109, 1.169, 1.533, 1.563, 2.061, 2.344, 2.546)
andRi = (0, 0, 2, 0, 0, 3, 0, 0, 6), i = r+1, ...,m.

(3) Another usual progressive type II censored sample (r = 0, n= 20, m= 9) generated by [22] using the optimal censoring
plan. The observed failure times and the progressive censoring scheme are

x = (1.013, 1.034, 1.169, 2.061, 2.546, 2.778, 2.951, 3.413, 4.118)
andRi = (0, 11, 0, 0, 0, 0, 0, 0, 0), i = r+1, ...,m.

(4) Doubly type II censored sample (r = 4, n = 20, m = 14). In this case we suppose that 20 specimens were put on a
test, but for reasons of economy it was decided to terminate the test on the 14-th failure. Moreover, due to experimental
difficulties, the failure times of the first four specimens tofail were missing. The ten observed failure times and the
progressive censoring scheme are as follows

x = (�, �, �, �, 1.266, 1.509, 1.533, 1.563, 1.716, 1.929,1.965, 2.061, 2.344, 2.546,�, �, �, �, �, �)
andRi = (0, 0, 0, 0, 0, 0, 0, 0, 0, 6), i = r+1, ...,m.

(5) Usually type II censored sample (r = 0, n = 20, m = 9).
x = (1.013, 1.034, 1.109, 1.169, 1.266, 1.716, 1.929, 1.965, 2.061)
andRi = (0, 0, 0, 0, 0, 0, 0, 0, 11), i = r+1, ...,m.

(6) Complete sample (r = 0, n = m = 20).

c© 2016 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.5, No. 1, 43-51 (2016) /www.naturalspublishing.com/Journals.asp 49

x = (1.013, 1.034, 1.109, 1.169, 1.266, 1.509, 1.533, 1.563, 1.716, 1.929,1.965, 2.061, 2.344, 2.546, 2.626, 2.778,
2.951, 3.413, 4.118, 5.136) andRi = (020), i = r+1, ...,m.
The values of the parametersa j andb j are obtained numerically for each givenλ j, andη j, j = 1,2, ...,10 using the
Newton–Raphson method. Table 1 summarized the values ofa j andb j for each givenλ j andη j. The estimation of the
parametersc andq would require considerable information about the true losses for the producer. However, for purposes
of this study, we choose some different values forc andq. Now assume that thirteen (n1 = 13) new insulation specimens
are to be tested. On the basis of the preceding sets of datax, Bayes point prediction, under SE, LINEX, and GE loss
functions, of the future failure timesY1, Y13 and the corresponding 95 Bayes prediction intervals are shown in Tables 2
and 3.

Table 1: Prior information and hyper parameter values.
j 1 2 3 4 5 6 7 8 9 10

η j 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
λ j 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
a j 0.6992 0.5965 0.5183 0.4570 0.4077 0.3674 0.3339 0.3056 0.2814 0.2605
b j 1.4646 1.3745 1.3034 1.2456 1.1977 1.1573 1.1227 1.0928 1.0665 1.0433

Table 2: Point prediction and 95 prediction interval forY1 .
C.S Point Prediction Interval Prediction

BS BL BG LL UL
c = 0.5 c = 1 q =−0.6 q = 0.9

(1) 1.3245 1.3123 1.2889 1.2544 1.2458 0.0615 3.2415
(2) 1.3056 1.2945 1.2837 1.2456 1.2366 0.0422 3.1923
(3) 1.3333 1.2921 1.2754 1.2369 1.2310 0.0343 3.7169
(4) 1.3161 1.2544 1.2733 1.2354 1.2155 0.0406 3.2111
(5) 1.4002 1.3923 1.2824 1.2844 1.3041 0.0397 3.6251
(6) 1.3770 1.3642 1.3122 1.2937 1.2862 0.0238 3.2477

Table 3: Point prediction and 95 prediction interval forY13.
C.S Point Prediction Interval Prediction

BS BL BG LL UL
c = 0.01 c = 0.5 q =−0.1 q = 0.4

(1) 37.1245 31.1245 33.4358 37.3341 31.0840 6.9547 88.8415
(2) 39.5521 31.6540 32.7451 36.5487 31.6652 9.2354 87.3642
(3) 42.3258 41.2547 45.6984 41.1124 40.1347 12.1139 99.3210
(4) 32.2261 28.2457 33.8686 31.5479 27.9687 12.6982 102.8547
(5) 47.2587 50.0025 48.2105 55.6478 51.5784 14.5421 111.5694
(6) 38.1458 41.1147 42.6391 44.0124 39.1502 13.6317 95.8563

6 Conclusions

In this paper, Bayesian prediction problem of the generalized Pareto distribution based on general progressively censored
sampling are obtained. The prior belief of the model is represented by a continuous-discrete joint prior for the unknown
parameters. Using the predictive distribution approach, the methods are derived for constructing either point and interval
predictions for thekth smallest future observations from the same failure process. All of the results obtained in this
paper can be specialized to: usual progressive type II censored sample, type II right censored sample, doubly type II
censored sample and complete sample. Bayesian approach provides a unified structure for computing prediction intervals
to one out ofm, k out of m, andm out of m sample values with a desired probability. It also, providesa convenient
computational setting for actual calculations of the prediction intervals. Such calculations can be accomplished easily
using widely available computing facilities. Bayesian approach allows prior knowledge as well as experimental data
to be incorporated into the inferential procedure, thus avoiding the well known difficulties of the classical approach
in analyzing censored data. The application examples presented in this paper illustrate the procedure of using a real
general progressively censored data as a past sample to predict future samples from the same population. Bayes point
prediction under asymmetric loss (LINEX and GE) is more general, which includes point prediction based on symmetric
loss functions as a special cases. So, the analytical ease with which results can be obtained using asymmetric loss functions
makes them attractive for using in applied problems, and in assessing the effects of departures from assumed symmetric
loss functions. From Tables 2 and 3 Bayes point prediction relative to asymmetric loss functions are sensitive to the value
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of the parametersc andq. These results establish that for optimum decision making,importance should be given to the
choice of loss function and not just the choice of prior distribution only.
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