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Abstract: In many real applications in survival analysis, estimationof the distribution function and hence the survival function is
common in practice, where the problem of estimating a smoothshape-constrained distribution function has recently received some
attention. In this article an interesting proposition is built on the assumption that the distribution function of the random variable (failure
time) is a concave function. Where the concavity of the distribution function is discussed in the presence of covariatesconsidering
interval censoring model. It is shown that concavity of the distribution function is well defined under the proposed situation.
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1 Introduction

In many situations in survival analysis, one may
interested in the distribution of times to event data which
might be used to extract the distribution of event time
variable based on the incomplete or censored data sets.
Elaborations on models incorporate censoring
mechanisms can be found in the literature (See, e.g. [11]
for models that incorporating these typical mechanisms
which prevent time event times from being observed
directly). However, one of the most common censoring
models in survival analysis is right censoring, where the
observed information is whether the event time occurs
before an observed censoring point (exact failure time), or
we observe the censoring time point given the
information that the exact failure time occurred beyond a
censoring time. However, right censoring is very common
in several different applications such as cancer clinical
trials, where survival function and hence the distribution
function can be obtained through different techniques
such as Nelson-Aalen and Kaplan-Meier estimators.
Another well-known censoring model in survival analysis
is interval censoring, where, the event time is not exactly
observed, and the only observed information is that it
belongs to an available interval ([1,2,10,13]).

However, assume thatT1,T2, ...,Tn be independent
random event times with unknown distribution function
F ∈ (0,∞), hereF(T) = 0 means that the event of interest
will never occur at all. Note thatF(T) = 0 equivalent to
S(T) = 1 sinceF(T) = 1−S(T). In interval censoring,
the set of event times is not observed and instead of that,
we only have finitely m inspection points
0 < τi1 < τi2 < ... < τim < ∞, i = 1, ...,n, and each uniti
inspected at each of the assigned inspection points and
determining if the interested event occurred at that point
or not. More formally, the observed information is:

Xi j = 1{τi, j−1 < Ti < τi, j}, for 16 j 6 (mi +1), where
τi,0 = 0 andτi,(mi+1) = ∞

Under various censoring models, one of the main interests
is estimation of the distribution function which might be
obtained parametrically or nonparametrically. Where in
parametric approach it is assumed that the distribution of
survival data is known and some common distributions
can be used to represent this function such as Weibull and
Gompertz functions. On the other hand, the
nonparametric approach is also common in practice,
where, the non-parametric estimation of the survival
function is mostly concerned with detecting the trend in
the data set without strong parametric assumptions on its
form ([4,5]). However, some techniques is suited to
estimate the survival function and hence the distribution
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function under various censoring models such as
Kaplan-Meier estimator which is suitable for right
censoring case and Turnbull estimator which is suited for
interval censoring case ([8]).

Another way of constructing adaptive tools to obtain the
nonparametric maximum likelihood estimator of the
distribution function is well-understood with respect to
the distribution function computation as well as its
asymptotic properties, where this function can be
obtained by deriving the convex minorant of a suitable
function depending on the data set ([6,7]).

Furthermore, Inference under shape constraints has been
considered for recent activities. Where in survival
analysis researchers have paid more attention on the
estimation of a smooth distribution function under
constraints that this function satisfies certain qualitative
properties, such as concavity and monotonicity on certain
subsets of its domain. [4] considered three nonparametric
estimators of the distribution function based on
mixed-case interval censored data when the covariates are
excluded from the data set, they assumed that the
distrbition function of event times is concave or unimodal
and they proposed some algorithms for the computation
of the derived estimators. Furthermore, [12] proposed two
methods to find shape-constrained density estimates,
where these methods can be used for univariate or
higher-dimensional kernel density estimation with shape
constraints. So, this approach is appealing for a main
reason which is that extraction of alternative
nonparametric estimators of the distribution function is
typically require such properties ([3]). However, this
article gives an overview for one of the most important
shape constraints which is concavity of the distribution
function estimator in case of interval censored data when
some covariates are available. In section 2 the likelihood
function in case of interval censoring with covariates is
constructed and in section 3, it will be shown that the
concave maximum likelihood estimators are well defined
in the interval censoring model.

2 The Likelihood Function

In interval censoring model and for a group of data set
consists ofn observations then, the exact failure time is
not fully observed and the only known information is that
it belongs to an observed interval such that
Ti ∈ [l i , r i ],∀i = 1, ...,n, where l i and r i are the left and
right endpoints of the observed interval respectively.
Therefore, the general form of the likelihood function for
interval censoring model is given as follows:

L(F) =
n

∏
i=1

[F(r i)−F(l i)]

However, since the covariates involved in the analysis
then, a link function might be employed to investigate the

effect of covariates on the proposed procedure, where in
such situation the Cox model can be used as a result of
the direct combination between hazard and survival
functions. Where for a given covariates vector
Z = (z1,z2, ...,zn) then the hazard functionλ (t) can be
defined as follows:

λ (t) = lim
dt→0

P(t 6 T 6 t +dt/T > t)
dt

= lim
dt→0

P(t 6 T 6 t +dt)
dtP(T > t)

=
f (t)
S(t)

(1)

The Cox hazard model given the covariates vectorZ is
defined as

λ (t) = λ◦(t/Z)exp(β TZ) (2)

whereλ◦(t) is the baseline hazard function andβ T is the
parameters vector. Thus, based on the expressions in
(1)and(2) then the survival function can be defined as

λ (t) =
f (t)
S(t)

=−
d
dt

logS(t)

S(t) = exp
(

−

∫ t

0
λ (x)dx

)

= exp
(

−
∫ t

0
λ◦(x/Z)exp(β TZ)dx

)

= exp
(

−Λ◦(t/Z)exp(β TZ)
)

(3)

whereΛ◦(t/Z) is the baseline cumulative hazard function.

The cumulative baseline hazard function is need to be
estimated using a reasonable technique such as Breslow
or Scheik and Zhang estimators. Recently [2] has
proposed the Taylor approximation to estimate the
baseline hazard function which is most attractive since it
may produce more accurate and smooth estimation of the
underlined function and hence, this technique will be
employed in this article as it will shown in the sequel.
Thus, the log-likelihood function when the survival
function is replaced by the expression in equation(3) can
be written as follows:

l(β ) =
n

∑
i=1

log
[

exp(−Λ◦(l i)exp(β TZ))−

exp(−Λ◦(r i)exp(β TZ))
]

(4)

2.1 Taylor Approximation

The Taylor series, which is more general case of the Maclaurin
series is mainly used for approximation functions. However, this
technique is proposed to estimate the cumulative baseline
hazard function even though several specifications for this
function are common, such as in the parametric settings some
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well known distributions can be used such as Weibull function.
On the other hand, alternative semi-parametric approach can be
used considering that the baseline hazard function to be
piecewise constant which leads to the iterative convex minorant
(ICM) technique proposed by [14]. But this approach has a main
drawback which is that it may produce the baseline hazard
function as a step function and hence not continuous, [2]. Thus,
and to overcome the drawbacks of some of the proposed
techniques for baseline hazard function, the Taylor
approximation will employed and the likelihood ratio test can be
used as a model selection tool to obtain the optimal order for
Taylor series. However, let’s consider the Taylor series ofthe
baseline hazard function withqth order as

λ◦(t/φ) =
q

∑
m=0

λm

m!
tm (5)

where φ is the Taylor series parameters vector such that
φ = (λ◦,λ1, ...,λq).

In order to ensureλ◦(t/φ) > 0, the log-hazard function is
considered such that

log
(

λ◦(t/φ)
)

=
q

∑
m=0

λm

m!
tm (6)

Then, the cumulative baseline hazard function can be definedas

Λ◦(t/φ) =
∫ t

0
λ◦(y/φ)dy

=
∫ t

0
exp
( q

∑
m=0

λm

m!
ym
)

dy (7)

Therefore, the baseline cumulative hazard function at the left
and right endpoints of the observed intervals can be defined
respectively as follows:

Λ◦(l i/φ) =
∫ l i

0
exp
(

q

∑
m=0

λm

m!
ym
)

dy

Λ◦(r i/φ) =
∫ r i

0
exp
( q

∑
m=0

λm

m!
ym
)

dy, ∀i = 1, ...,n (8)

Likelihood ratio test:

The likelihood ratio principle can be used in order to obtainbest
order of this Taylor approximation. Where this technique can be
employed by fitting the log likelihood function consideringonly
one parameter(i.e. θ = λ◦) as well as the covariates vectorβ ,
and denote the fitted value asl0 = max[l(β̂ , θ̂ )]. Then, the log
likelihood function can be fitted again based on two Taylor
parameters(i.e. θ = (λ◦,λ1)) and the covariates vectorβ and
denote this new fitted value byl1 = max[l(β̂ , θ̂)]. Then if
−2× (l0 − l1) < χ2

d f,1−α for d f = 1 and a typical value of the
significance levelα such as 0.05 then the Taylor approximation
can be hold based on one parameter only. This procedure can be
repeated consequently based on one more variable in each
iteration and so on until the optimal order obtained.

3 Concavity of the Distribution Function

To investigate the concavity of the distribution function
estimator based on the log likelihood function given in(4), then

the Hessian matrix should be constructed and investigate the
negative semi-definite property of this matrix. Thus, letH
denotes the Hessian matrix of the log likelihood function based
on an(n+m) parameters which is defined as follows:

H =
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Evaluation the Hessian matrix in its general form is not
applicable since the number of covariates unspecified, so to
avoid this problem and to investigate the negative semi-definite
property of the Hessian matrix, a nice trick can be used whichis
basically depends on the Taylor approximation theorem thatcan
be used to re-formalize the functions based on the gradients.

Theorem 1(Taylor Theorem).
Let f : [x,y] → R, f , f ′, f ′′, ..., f n−1 be continuous on[x,y] and
suppose f(n) exists on(x,y). Then there exists c∈ (x,y) such that

f (c) = f (x)+∇ f (x)(c−x)+∇2 f (x)
(c−x)2

2
+ ...+

∇(n−1) f (x)
(c−x)(n−1)

(n−1)!
(9)

which is equivalent to

f (x+δ ) = f (x)+∇ f (x)δ +
1
2

∇2 f (x)δ 2+O(‖ δ ‖)3 (10)

whereδ is real number andO(‖ δ ‖)3 is the error term.

When f (x) is scalar function with parameters vector
x = (β1, ...,βn,λ◦,λ1, ...,λm) with length ω = n+ m, then the
first derivative∇ f (x) is a 1×ω matrix, which can be viewed as
an ω-dimensional vector-valued function of theω-dimensional
vector x. For the second derivative∇2 f (x), we can take the
matrix of partial derivatives of the functions∇ f (x). We could
write it as∇2 f (x) for the moment. Note that∇2 f (x) is anω ×ω
matrix which representH such that

H = ∇2 f (x)

Now the main task is to verify the negative semi definite property
for this matrix based on the defined parameters vectorx.

Definition 1.The square matrix N is negative semi-definite if∀z∈
ℜn, then ZNZT 6 0. If the inequality is strict for all z6= 0, then
N is negative definite.
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Based on Taylor theorem and for the parameters vectorx, then
the log likelihood function given in(4) can be expressed as
follows:

l(x+δ ) = l(x)+∇l(x)δ +
1
2

δ T∇2l(x)δ +O(‖ δ ‖)3 (11)

where∇2l(x) is the Hessian matrix and by definition(1) this
matrix is negative semi definite ifδ THδ 6 0, ∀δ ∈ ℜd.
Therefore, it is sufficient to consider∇2l(x) and follow to show
that:δ T∇2l(x)δ 6 0.

The log likelihood function is:

l(x)=
n

∑
i=1

log
[

exp(−Λ◦(l i)exp(β TZ))−exp(−Λ◦(r i)exp(β TZ))
]

where−Λ◦(l i) and−Λ◦(r i) are the cumulative baseline hazard
function at the left and right endpoints of the observed intervals
which can be estimated using Taylor approximation given in
equation(8) and for simplicity these values will replaced byLi
and Ri respectively. Therefore, the log-likelihood function can
be written as:

l(x) =
n

∑
i=1

log
[

exp(−Liexp(β TZ))−exp(−Riexp(β TZ))
]

(12)

The two components of the log-likelihood function can be
simplified based on the following power series for exponential
function such that:

exp(ax) = 1+ax+
1
2
(ax)2+

1
3!
(ax)3+

1
4!
(ax)4+ ...

= 1+ax+
1
2
(ax)2+O(‖ a ‖)3

Therefore, the expressionexp
(

− Liexp(β TZ)
)

,∀i = 1,2, ...,n

can be rewritten as follows:= exp(−L)

[

1−L(β T Z)− L(β TZ)2

2

exp
(

−Lexp(β TZ)
)

= exp

[

−L(1+β T Z+
1
2
(β TZ)2+

O(‖ β ‖)3)

]

= exp(−L)exp

[

−L(β TZ+
(β TZ)2

2
)+

O(‖ β ‖)3

]

= exp(−L)

[

1−L(β T Z)−
L(β TZ)2

2

+
1
2

(

−Lβ TZ−
L(β TZ)2

2

)2
+O(‖ β ‖)3)

]

(13)

Note that 1
2

(

−Lβ TZ−
L(β T Z)2

2

)2
converges to1

2

(

L2(β TZ)2
)

and hence equation(11) can be written as:

exp
(

−Lexp(β TZ)
)

= exp(−L)
[

1−L(β T Z)−
L(β TZ)2

2
+

1
2
(L2−L)β TZZTβ +O(‖ δ ‖)3)

]

(14)

and in the same mannerexp
(

−Riexp(β TZ)
)

,∀i can be written

as follows:

exp(−Rexp(β TZ)) = exp(−R)
[

1−R(β T Z)− R(β TZ)2

2 +

1
2(R

2−R)β TZZTβ +O(‖ δ ‖)3)
]

(15)

However the log likelihood function can be written as follows:

l(x) =
n

∑
i=1

log

[(

exp(−Li)−Liexp(−Li)β TZ+

exp(−Li)

2
(L2

i −Li)β TZZTβ +O(‖ δ ‖)3

)

−

(

exp(−Ri)−Riexp(−Ri)β TZ+

exp(−Ri)

2
(R2

i −Ri)β TZZTβ +O(‖ δ ‖)3

)]

=
n

∑
i=1

log

[

exp(−Li)−exp(−Ri)+
(

Riexp(−Ri)−

Liexp(−Li)
)

β TZ+
1
2

(

(L2
i −Li)exp(−Li)−

(R2
i −Ri)exp(−Ri)

)

β T ZZTβ +O(‖ δ ‖)3)

]

An attractive property of rewriting the logarithm expressions is
that for any positive random variablea and for any small value
δ ∈ ℜ then

log(a+δ ) = log(a)+ log
(

1+
δ
a

)

= log(a)+
δ
a
−

δ 2

2a2

+O(‖ δ ‖)3 (16)

Based on this property, and considering that
a = exp(−L)− exp(−R) which is greater thanzero since the
hazard function is an increasing function, then the
log-likelihood function can be rewritten as follows

l(x) =
n

∑
i=1

[

log
(

exp(−Li)−exp(−Ri)
)

+ log
[

1+
(Riexp(−Ri)−Liexp(−Li)

exp(−Li)−exp(−Ri)

)

β TZ

+
1
2

( (L2
i −Li)exp(−Li)− (R2

i −Ri)exp(−Ri)

exp(−Li)−exp(−Ri)

)

β TZZTβ
]

+O(‖ δ ‖)3

]
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Let

a= exp(−L)−exp(−R)

b=
Rexp(−R)−Lexp(−L)

exp(−L)−exp(−R)

c=
(L2−L)exp(−L)− (R2−R)exp(−R)

exp(−L)−exp(−R)

then the log likelihood function is:

l(x) =
n

∑
i=1

[

log(ai)+ log
(

1+bi β TZ+
1
2

ciβ TZZTβ +O(‖ δ ‖)3
)

]

Note that
(

biβ TZ+ 1
2ciβ TZZTβ

)2
converges to(biβ TZ)2 and

hence based on the property in(15) and after simplification this
function can be written as:

l(x) =
n

∑
i=1

[

log(ai)+bi β TZ+
1
2

ci(β TZZβ T)−
1
2

b2
i β TZZβ T +

O(‖ δ ‖)3
]

=
n

∑
i=1

[

log(ai)+biβ TZ+
1
2
(ci −b2

i )β
TZZTβ +O(‖ δ ‖)3

]

(17)

Comparing the log likelihood function given in(19) with the
general expression given in Theorem 1, then it is easy to notice
that

∇l(x) =
n

∑
i=1

biZ

D2l(x) =
n

∑
i=1

(ci −b2
i )ZZT

whereD2l(x) is the Hessian matrix and to verify the negative
semi-definite property of this matrix it is sufficient to showthat
∑n

i=1(ci − b2
i ) 6 0 or the equivalent inequality∑n

i=1(b
2
i − ci) >

0,∀i = 1, ...,n.

Lemma 1.For any two real numbers such that06 L <R, and for

b=
Rexp(−R)−Lexp(−L)

exp(−L)−exp(−R)

c=
(L2−L)exp(−L)− (R2−R)exp(−R)

exp(−L)−exp(−R)

Then b2 > c,∀L,R∈ ℜ

proof:
Let ∆ = R−L which is greater than zero. Then

b=
Rexp(−∆ )−L
1−exp(−∆ )

c=
(L2−L)− (R2−R)exp(−∆ )

1−exp(−∆ )

and it follows for 1−exp(−∆ )> 0 thatb2 > c is equivalent to:

(

Rexp(−∆ )−L
)2

>
(

1−exp(−∆ )
)(

(L2−L)−

(R2−R)exp(−∆ )
)

and hence it can be easily conclude that

Rexp(−2∆ )+L+
(

R2−2LR+L2−L−R
)

exp(−∆ )> 0

Rexp(−2∆ )+L+∆ 2exp(−∆ )− (L+R)exp(−∆ )> 0

Lexp(−2∆ )+L−2Lexp(−∆ )+∆exp(−2∆ )+∆ 2exp(−∆ )

−∆exp(−∆ )> 0

L
(

1−exp(−∆ )
)2

+∆exp(−∆ )
(

∆ +exp(−∆ )−1
)

> 0

The first term of the inequality is always positive and it is
sufficient to show that the other term is also positive. Therefore,
assume that:

f (∆ ) = ∆ +exp(−∆ )−1

where∆ is a random variable∈ ℜ+ then

d f
d∆

= 1−exp(−∆ ) = 0=⇒ ∆ = 0

Thus, the functionf (∆ ) is always positive for all∆ since∆ ∈
ℜ+, and therefore

L
(

1−exp(−∆ )
)2

+∆exp(−∆ )
(

∆ +exp(−∆ )−1
)

is positive

for all L andR.

4 Conclusion

In this article, the concavity of the distribution functionwhen
covariates involved in the analysis using interval censoring
model has been investigated using some well known
mathematical techniques especially Taylor approximationwhich
is considered to represent the baseline hazard function. Based on
the results shown in this article we can consider estimatorsof
survival function under the shape constraint that the distribution
function of event times is concave or unimodal.
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