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Abstract: In this paper, we present a Chebyshev pseudo—spectral dhe#ised on a Chebyshev—Gauss-Lobatto zeros with the aid
of the Kronecker product formulation for solving one—dirsi@mal parabolic advection—diffusion equation with vakeacoefficients
subject to a given initial condition and boundary conditioRirst, we introduce an approximation to the unknown fiamcby using
Chebyshev differentiation matrices and its derivativethwespect to spaceand timet. Secondly , we convert our problem to a linear
system of equations to unknowns at the collocation poihtn solve it. Finally, two examples are given to illustrdte validity and
applicability of the proposed technique with the aid-@fnorm error and_,-norm error to the exact solution. A comparison between
the presented method has been done with cubic B-Spline difiiceence method.
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1 Introduction unknown function. Note thai(x) andg(x) are considered
to be positive and smooth functions quantifying the
The combination of advection and diffusion is important diffusion and advection processes, respectively.

for mass transport in fluids. It is well known that the One—dimensional version of the partial differential
volumetric concentration of a pollutant(x,t), at a point  oqations  which describe  advection—diffusion  of
x(a<x<b)in a one-dimensional moving fluid with a 4 antities such as mass, heat, energy, vorticist, B&.[
speedy(x) and diffusion coefficienp(x) in x direction at  £qyation () has been used to describe heat transfer in a
time t (t > 0) is given by the one-dimensional g aining film [3], water transfer in soils4], dispersion of
time—dependent advection—diffusion equation of the form 5 cers'in porous medi] the intrusion of salt water into
ou ou 22U fresh water aquifers, the ;pread of'poIIutants in rivgrs gnd
— +a(X) 5= — p(X) == = f(x1), (1) streams ], the dispersion of dissolved material in
ot ox ox estuaries and coastal sed$, [contaminant dispersion in
shallow lakes §], the absorption of chemicals into beds

ith (xt b] x [0, T], subject to the initial diti : - .
with (x,t) € [a,b] x [0,], subject to the initial condition [9], the spread of solute in a liquid flowing through a tube,

u(x,0) = up(x), xe€ [ab], (2)  long-range transport of pollutants in the atmosph&@ [
forced cooling by fluids of solid material such as
and the boundary conditions windings in turbo generatordsl]], thermal pollution in
river systems 12], flow in porous media I3 and
u(at) = qut), dispersion of dissolved salts in groundwated][
U(b,t) = gZ(t)7 te [OaT]a (3)

Many authors deal with equatiod)(numerically, but
where f (x,t), up(X), g1(t) andgz(t) are known functions  with constant coefficients, in whiclg(x) = 8 and
and assumed to be smooth functions. Wheneas the  p(x) = a . For example, in 15 the authors used cubic
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B-spline collocation method to find numerical solution to [46] pseudo-spectral methods used in Quantum and
problem () with constant coefficients(8,a). The  Statistical Mechanics.
method of the fourth-order compact finite difference  The organization of this article is as follows. In
scheme was presented ibg]. For the nonlinear case, the Section 2, we present some preliminaries about
newell wightehead segel type equatiodd]] they also  Chebyshev polynomials and drive some tools for
use cubic B-spline collocation method. discretizing the introduced problem. In section 3, we

In recent years there has been a high level of interessummarize the application of Chebyshev pseudo—spectral
of employing spectral methods for numerically solving method to the solution of the problerh){(3). As a result
many types of integral and differential equations, due toa set of algebraic linear equations are formed and a
their ease of applying them for finite and infinite domains solution of the considered problem is discussed. In
[18,19,20,21,22]. The speed of convergence is one of the Section 4, we present some numerical examples to
great advantages of spectral method. Besides, spectrdemonstrate the effectiveness of the proposed method. To
methods have exponential rates of convergence; they alsflustrate the validity and applicability of the proposed
have high level of accuracy. From the overview of technique, A comparison between the presented method
spectral approximation to differential equations, thehas been obtained with cubic B-Spline finite difference
spectral methods have been divided to four types, namelynethod in L7,47].
collocation R3,24], tau [25,26], Galerkin [27,28], and
Petrov Galerkin29,30] methods.

In the present contribution, which is an extension to 2 Preliminaries and Notations
the work uses Legendre basis i81], we construct the

solution using the pseudo-spectral techniqu833]  |n this section, we give some notations about most
with Chebyshev basis. Pseudo—spectral methods ar%mmomy used set of Orthogona| po|ynomia|s,
powerful approach for numerical solution of partial Chebyshev polynomial€,49] which are defined on the
differential equations 34,35,36], which can be traced jnterval [-1,1] and can be determined with the aid of the
back to 1970s 37]. In pseudo—spectral method8g, following.

there are basically two steps to obtaining a numerical  The Chebyshev polynomiaf(x), n=0,1,..., are the

approximation to a solution of differential equation. Eirs  Eigenfunctions of the singular Sturm-Liouville problem
an appropriate finite or discrete representation of the ,

solution must be chosen. This may be done by d ( 7 5dT(X)Y _ n
polynomial interpolation of the solution based on some dx dx V1—x2

iuitable nqdes. Il-IO\_Never, Iit is 'Wle"b kn(()jwn that thlf They are mutually orthogonal with respect ltg inner
agrange interpolation polynomial based on e.qua.y';])roduct on the interval—1,1) with the weight function
spaced points does not give a satisfactory approximatio — 1/v/I32. This impl
to general smooth functions. In fact, as the number ofw(x) = 1/v1—x2 This imply
collocation points increases, interplant polynomials 1 dnrt
typically diverge. This poor behavior of the polynomial _1Tn(x)Tm(X)w(X)dX: Téﬂmv
interpolation can be avoided for smoothly differentiable ,
functions by removing the restriction to equally spacedWherédmis the Kronecker deltalo = 2 andd, = 1Vn >
collocation points. Good results are obtained by relatingl- The Chebyshev polynomials satisfy the following three-
the collocation points to the structure of classical €M recurrence relation
gr;hct))goRal Cgaolynolinitz;ds, such e}l_sh the ngl-known To(x) =1, Ti(X)=x,
ebyshev-Gauss-Lobatto points. The second step is t _ -~
obtain a system of algebraic equations from discretization nt1() = 2M(X) ~Tn-a(x), n=1, ()
of the original equation. In the case of differential and
equations, this second step involves finding an - _ /
approximation for the differential operator (s&g). To(x) = Tl(xl)’ 2T(x) = 0'5T21(X)’
Many authors have considered this technique to solver, (y) ! (X) — /. (x), n>1 (5)

Ta(x) =0.

many problems. In39,40], pseudo—spectral scheme to 2(n+1) "1t 2(n—1)

approximate the optimal control problems. Also, aThe Rodrigues’ formula for Chebyshev polynomials is
Legendre pseudo-spectral Penalty scheme used fQ§hiained directly by normalizing appropriately;
solving time—-domain Maxwells equationstl]. The

method of Hermite pseudo—spectral scheme is used for —1)"(nH2" dan

Dirac equation 42], and nonlinear partial differential Tn(x) = %V _de_w{(l_xz)n—o.s}.
equations 43], respectively. In 44], multidomain '

pseudo—spectral method for nonlinear convectionA unique feature of the Chebyshev polynomials is their
diffusion equations was presented. Nonlinear Schrodingeexplicit relationship with a trigopnometric function:
equation was discussed in4§ by Time Space

pseudo—spectral method with Chebyshev basis. Finally, Tn(X) = cognarccogx)). (6)
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In this work, we will use the Chebyshev-Gauss—LobattowhereDy 1 is the so—called differentiation matrix with

(CGL) points as

nrm
Xn = —cos(—) )

N
Let Tn(z) denote the Chebyshev polynomial of order
N, then CGL nodes) will bezéN),...,z&N), as defined in

(7). Now, Iet{qq<N> (2}, be the Lagrange polynomials
based onCGL) nodes, that are expressed 45,50]:

(7)

N (N)
(N) -z
(p' (Z): 7J:07"'7N7 (8)
) |:Q¢j ZEN) _ ;<N>
with the Kronecker property
0, j#k,
oV (@) = oy = { 1 j i

It is more convenient to consider
(Christoffel-Darboux) formula32,45], for j =0, ..., N,

—1ia-2
ciN4(z—z")
where
o 2, i=0,N,
711, 1<i<N-1L

Any defined functionf on the interval[—1,1] may be
approximated by Lagrange polynomials as

f(z) ~ i fig" (), (10)

wheref; = {f(zi(N)) N ,- Equation ¢0) will be exact when
f(z) is a polynomial of degree at mokk Equation 10)
can be expressed in the following matrix form

f(z2) ~ dNF,
where o = [qgm 2N (2) and
F= [f(zém), .. 1(Z")]T. The first derivative to equation

(10) can be expressed as

f'(2) i fig™ (2), (11)

Whereqq’(N) (z) is a polynomial of degred — 1, which can
be written as

N
™2 = grn’“ @"aN @), |
k=

N.

=0,.,N. (12

Equation (2) can be expressed in the following matrix
form: d

dZ(D(N) (Z) = (D(N) (Z)DN+17

(13)

an alternative

dimensionN + 1. From the last two equation$Z,13) we

get Dniaix = qVE@Y). The entries of the
differentiation matrix can be defined foCGL) points

(cf. [51]) as the following

) _1\i+k

E—k;fN%)zkm) £k

_2N2+1’ k-0,
[Dn+1lik = GZi(N)

_72(1_2‘2(N)), 1<i=k<N-1,

2N26+1’ S

(14)
Now, we introduce the second order differentiation matrix
asD, , which is the derivative to differentiation matrix
Dny1. The entries to the second order differentiation
matrix can be defined forQGL) points (cf. b2]) as the
following

1 .
2[DN+l]i7k([DN+1]i,i - m)a i #k
[D12\1+1]i7j = N
- Oz [DR+ali s i=k
i=07k
(15)

Also, any defined functionh(x) on an arbitrary
interval [a,b] may be approximated by making
transformation fronz € [—1,1] tox € [a,b] as:

h(x) = _ih(xi(mm(”) (g5 x-2-1,  (9)

where XV = {b;za(;(N) +1) +a}N, are the shifted
(CGL) nodes associated with intervé, b]. Equation
(16) can be expressed in the following matrix form:

~ oM

h(x) ab| (X)H. (17)

In view of equationsX3) and (L6), we conclude that

)
o Plab)

For an arbitraryN andM, any function of two variables
u:[a,b] x [c,d] — R may be approximated by

2 .
N (X)Di1s

(x) = (m)l (D[a,b] (18)

=z
<

2

N
U™

u(x,y):_ _ (x—a)—1)

i=0]j a
2
—C

(M)(
d

X (y—c)-1), (19)

where

b—a d—c
Uij = u(T(q(N) +1) +a,T(z§M> +1) +c). (20)
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Equation (9 can be expressed based on KroneckerNow, by substituting from the previous equations in

product in the following matrix form: equation L), we obtain
uixy) = (@ @ e m)u, (21) [% (000 © @G (0Dw.1)
whereU is the (N +1)(M + 1) vector as the following f)q—(a)l((p[ )]( )Dns1 ® (D[( )]( ))
form: - o (0 (9D 8 0) U= 100 29)

_ T
U=[Uoo,--.Uom [ .. |Uno; -, Unm] (22) Now, for 1< i< N—1and 1< j < M, we collocate

the above equation at the collocation poif{s;,t;)}i ;.
Note that these collocation points are the |nter|or points
not lie in initial or boundary conditions. After collocatin
equation 29) becomes:

The previous representations that are based on Kroneck
product, provide some simplification in calculations when
we deal with our original problem. Also by using first and
second differentiation matrices we can approximate
relative derivatives of any function from its expansion as [ (ql\rrll(@ eM+1DM+1)

we can see next. For example lebe approximated as in I+l
(22), now we can write the first derivative ta with ( qN 1Dy 1 M 1)
respect tox as the following: +1 INFLEE 41
4p( i)
d _ +1 — fix 1
Ux(X,y) = (&‘D{(a y @ ¢[(M>](y)) U (b—a)? ( Di-1 @€l )} 1= 00t),
2 (M) i:]-a"'7N_17 J:17"'7M7 (30)
“ b a((p X)Dni1® Peg (y)) U whereef is thek row of p x p identity matrix. Equation
2 (30) can be represented in the following matrix form using
ﬁ(‘” }(y)) identity matrix:
2 L
.(DN+1® |M+1) u. (23) [ ([l] 2l ]M+1DM+1) n % ([l]QDNH@ [I]2M+2)
In a similar way, we can conclude that the first derivative _ _4P(Xi) M+1 _
to u with respect toy as the following: (b—a)2 ([I] DR @ 17 )}Ul Fu, (31)
5 which can be formed as
~ (N) (M)
Uy(X,y) =~ ic (da[a’b] (X) @ P g (y)) (I M+1® DM+1) u. AU; = Fq, (32)

(24) whereF; andU; are the(N — 1)(M) vectors they take the

following forms:

L Fi=[fi1,....fam || fncadseos Ineam] s

3 Chebyshev Pseudo—spectral Approximation R ] .

Up = [Urg,.,Uim |- [Un-2,2,-Un—am] s
In order to solve problemij—(3), we approximatei(x,t) ~ andAs is a matrix of dimensiol(N — 1) x (M + 1)?, that
as: can be defined as

2
u(t) = (@400 9 1)U, 25) A= [N D)

where the positive and integer numbéd¥sand M are 2q(xi) ([I] Dy ®[|]M+2)
discretization parameters corresponding to space and time b—a 1
dimensions, respectively. Also we will considgx }N 4p(x;) IND M+
and {tJ} "o as theCGL nodes corresponding to the - (b—a)? (H N @[ )}
mtervals[a b and[0, T}, respectively. For discretization the initial condition, we substitusy

By using @5 and differentiation matrices, we can in (2) getting the following
write the derivatives tai(x,t) as the following

(P 0@ DY (0))U=to(x), a<x<b,

2 (o) M) !
Ux(X,t) =~ —— (@[ (X) D1 @ D, t))U, 26 ] )
Ot) = 5 a( an) (X)Pn+1 @ P )) (26) Now, for 0< i < N, we collocate the above equation at the
.4 (N) 2 (M) collocation pointg(x;,0) }. After collocating, the previous
Uex(X,1) = (b—a)2 ((D[a’b] (})DN 41 ® (D[O-,T] (t)) U, (@0 equation becomes:
2
w(xt) = = (004 0@ BT D1 )U. (28) (et @) Up = wo(x), (33)
(@© 2016 NSP
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then in matrix form using identity matrix

(¥ o eht)u, = Us, (34)
which can be formed as
AzUz = U, (35)

whereUp and U, are the(N + 1) vectors, they can be
described as the following forms:

Uo = [Uo(X0), --., Uo(Xn)] T,
Uz = [Uo, ~-~,UN,0]T,

andA; is a matrix of dimensioriN + 1) x (N + 1)2, that
has the following form

Az _ ([I]T+1®e¥+1).

Finally, to discrete the boundary conditions, we

substitute 29) in (3). First, we deal with the left boundary U—
to find the reduced form, then doing the same with the™ —

right boundary. Equatior8j will be

N M
((D[(a’g] (@)@ (D[(o,T)] (t)) U=oa(t), (36)
Now, for 1< j < M, we collocate the above equation at
the collocation points{(a,t;)} for the first boundary
condition. After collocating, the previous equation
becomes:

@ dli)Us = auy), (37)
then in matrix form using identity matrix
(e ny s =6, (38)
which can be formed as
AsUz =Gy, (39)

where G; and Uz are the (M) vectors, they can be
described as the following forms:

G = [a(ta), ..., Ga(tm)],
Us = [Uo1,....Uom],

andAgz is a matrix of dimensioiM) x (M + 1)?, that has
the following form

Az = (elil+1® [|]2A+1).

Similarly, we can write the equation of the second
boundary condition as the following form

(Nde i )us=c,, (40)
which can be formed as
A4Us =Gy, (41)

where G, and U, are the (M) vectors, they can be
described as the following forms:

Gz = [g2(ta), -, G2(tm)] T,
Us = [Un1, -, Unm]T,

andA, is a matrix of dimensioiM) x (M + 1)?, that has
the following form

Ag=(ite ).

The resulting system of equations can be described,
from collecting equations3@), (35), (39) and @1), as the
following

AU =F, (42)

whereA is a matrix of dimensior{N + 1)? x (M + 1),
that has the formA = [A1 | A2 | Az | A4]. ForU andF,
each one is a vector with dimensitM 4 1)2, and take the
following form

[Ug | Uz [ Uz | Ug]T,
F=[F1|Ug|G1|Gy".

After solving the linear system described #2), we can
find the approximated solution to our problef).(

4 Numerical Examples

In order to test the utility of the proposed method, we
apply the new scheme to the following examples whose
exact solutions are provided in each case. For both
examples, we takbl = M and to show the efficiency of
the presented method for our problems in comparison
with the exact solution. Also, to study the convergence
behavior of the presented method, we applied the
following laws for different values ol and fort = T:

—The||E||. error norm of the solution is defined by
[Eleo = [IU (X,t) = u(x,t)[|eo = Madg<i<n—1[Uim — U(Xi,tm)|

~The||E||2 error norm of the solution is defined by
N—-1

Zi (Ui,M - U(Xi,tM))Z] 1/27

—The condition numbeiy(A) of the coefficient matrix
A is given by

IEll2= U (xt) —u(x t) 2= l

Kg(A) = [Allg|A" g, g=2,00.

All the computations are carried out in double
precision arithmetic using Matlab 7.9.0 (R2009b). To
obtain sufficient accurate calculations, variable aritticne
precision (vpa) is employed with digit being assigned to
be 32. The code was executed on a second generation
Intel Core i52410M, 2.3 Ghz Laptop.
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Example 115] Consider the problem1j—(3) with the
initial condition u(x,0) = sin(rx), 0<x < 1, and the
boundary conditions are given as

{ u(o,t)
u(1,t)

0,
0,

0o<t<1,

and the exact solution(x,t) = sin(nx)e‘"zt, in this case
the forcing function will be

f(x,t) =e [nzsin(nx) (P(xX) — 1) + q(x) rrcog 1x) |

Table 1: ||E||« error,||E||2 error, condition number of =
oo, g = 2 with different values oN for Examplel.

N JElo_ IE _ Ke(A) Ka(A) __CPUE

6 2.55E-04 3.90E-04 7.67e+02 3.91e+02 2.065
8 9.72E-06 1.31E-05 2.21e+03 1.27e+03 3.218
10 2.61E-07 4.76E-07 5.12e+03 3.29e+03 4.122
12 8.45E-09 1.75E-08 1.07e+04 7.25e+03 4.874
14 2.34E-10 4.81E-10 1.97e+04 1.42e+04 6.754
16 4.64E-12 1.03E-11 3.37e+04 2.57e+04 8.073
18 7.71E-14 1.91E-13 5.41e+04 4.32e+04 11.30
20 6.66E-14 1.19E-13 8.27e+04 6.89e+04 21.49

Exact solution

(a) Exact solution

Numerical approximation

(b) Numerical solution

x € [0,1] andt € [0,1] atN = 20 for Examplel.

In “Table 1", we take p(x) = x/(1+x?) and  Table 2:||E|. error,|

q(x) = €. In Comparing with cubic B-Spline finite o, g= 2 with different values oN for Example2.

difference method 17,47], the maximum error was

Fig. 1: Exact and Numerical solutions f@(x), q(x) with

E|| error, condition number af =

444E — 05 atT =1 for Ax = 0.01 and At = 0.001, N

, , El-__ JEz __ KalA) _Ka(A) _ CPUE)
making CPU-time equal to 12226459 sec. 6 1.06E-03 1.35E-03 3.61e+02 1.70e+02 3.201
8 2.19E-05 3.12E-05 9.56e+02 5.27e+02 4.635
Example 4.15,16] Consider the problen}—(3) with the 10 2.66E-07 4.12E-07 2.15e+03 1.34e+03 6.569
initial condition 12 2.70E-09 4.22E-09 4.30e+03 2.91e+03 7.215
o o o 14 2.06E-11 3.88E-11 7.80e+03 5.68e+03 9.656
ux,0)=e (COS(EX) +0.25 S"(EX)) , 0<x<1, 16 5.40E-12 7.62E-12 1.32e+04 1.02e+04 12.12
18 181E-12 2.90E-12 2.10e+04 1.71e+04 16.94

and the boundary conditions given by

u(0,t) = e <ot
{ u(1,t) = 0.25e>Cot| 0st=2

and the exact solution

In “Table 2’, we take p(x) = xe*/(1+ x?) and

q(x) = €/(1+x?). In Comparing with cubic B-Spline
finite difference methodl]7,47], the maximum error was
145197 — 03 atT = 2 for Ax = 0.01 andAt = 0.001,
making CPU-time equal to 2B21 sec.

— ooX—Cot i in
u(x,t) =e (Cos( 2x) +0.25sin 2x)),
in this case the forcing function will be
I s
() = { cog5X) [~ Co-+ Cal(X) ~ P(X)(SC1 + 5Cp)]

+sin D) [ 22 +Coafx) — p()(8C o)}

2
'e5x—Cot7
where
™ 5 T 5 1
CO_4_O+§’ C1—5+§, CZ—Z—E-
(@© 2016 NSP
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