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Abstract: We study the information complexity of the numerical inggggn on the Holder-Nikolskii cIasseMH{, in the randomized
setting. We adopt classical Monte Carlo method to approténthis integration and derive the corresponding convergemate.
Comparing our results with the previous known results indéerministic setting, we see that the randomized algosthave faster
convergence rates.
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1 Introduction exponentially ong™! or d, we say the problem is
intractable. This intractability is also called the curde o
dimensionality, cf. [1,4,6,9]. It is well-known that the

The calculation ofd-dimensional integrals occurs in . : X
9 integration problem defined on the usual Sobolev classes

numerous applications including physics, chemistry, : ) : o
finance, and the computational sciences, wherel tivay of functions suffers from the curse of dimensionality in
be in ’the hundreds or even in the’thousands seéhe deterministic setting. It is also known that the
[1,6,7,8,9]. For most integrands we could not comput'e th andomization can break the intractability, that is, the

; lexity in the randomized setting depends
integral utilizing the fundamental theorem of the calculus COMP!EX! | ;
since there is no closed form expression of thePOlynomially one * andd, cf. [5,6,7, 9]. This shows the

antiderivatives. We have to approximate the integrala?‘:jant?r?e Ofﬁt.h.e randorlplzed det.hogS' lnttr:"% papetrhwe
numerically. Algorithms for solving this problem are StU@y the einciency of randomized method in-he

given by using function values on finite points. The computation of the high dimensional'integration.' We
information complexity is the minimal number of the consider Holder-Nikolskii class of functions with mixed

function values, needed to solve the problem to within asmoqthness. cf. [3,5,14]. This C'?SS plays an Important
threshold . It is a lower bound of computational role in the study of the complexity of many numerical

complexity which is defined as the minimal number of Probléms, ~such —as integration and function
information operations and combinatory operations to2PProximation, since the bounds of deterministic
obtain a solution to withirg. However it is proved that for cpmple?qty of these problems depend weakly on 'ghe
the integration problem the information complexity is dimension, cf. [2,4,10,11,12,13]. In what follows, we will

proportional to the computational complexity, cf. [15]. use randomized method to approximate the integration on

Thus as the computational complexity, the informationthis class and derive the corre_sponding convergence rates.
complexity is a fundamental invariance of ComputerOur results show the randomized algorithms have faster

science. In this paper we concentrate on the informatiorf©"Vergence rates than the deterministic ones.
complexity of integration on the classes of functions with  The remaining part of this paper is organized as
mixed smoothness. follows. In Section 2 we formulate the problem of
A central issue of information complexity theory is to integration in the framework of information-based
investigate how the information complexity of a given complexity theory and present the main results. In Section
problem depends one ! and d. If it depends 3 we prove our main results. Finally, in Section 4 we
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illustrate the significance of our results and discuss their  Then we turn to the randomized setting. One can view

potential applications in physics and finance. randomized quadrature formulas as random variables
taking values in2(F,R). To be precise, we recall the
following definition.

2 Preliminary and main results Definition 1. A triple ./ := ([Q,.7,P],q,k) is called a
randomized quadrature rule, if

In this section, we first formulate the problem of the (1) [Q,.7,P] is a probability measure space.

numerical integration in the framework of (2)d:Q — 2(FR)is a mapping, such that for allc F

information-based complexity theory, then we present outhe mapping

main results.

LetT9 := [0,2m)? be thed-dimensional torus. It is the we Q= du(f) = (q(w))(f) R

product of d copies of the intervall0,2r1 with the

identification of the end points. L&(TY) be the space of

continuous functions o andF ¢ C(TY). For f € F,

we would like to approximate the integral

is a real random variable.
(3) k: Q — N is a measurable natural number, such that
we have
Jw € 29(FR), weQ.
Int(f):= / f(t)dAd(t) The error of a randomized algorithm# on the clas§
Td is defined through the integral

by some quadrature formula, where? denotes the
normalized Lebesgue measure off. When F is  &F.Int,.Z) ::sup{/Q|Int(f)—qw(f)|dP(w), fEF}-
specified, we write down the integration problem as

(F,Int). The cardinality of the algorithm is defined by
We now describe the deterministic quadraturedformula.
FO( any giverk € N, we choosé pointst;, . olke T%and MC-card.#) = / k(w)dP(w).
weightscy, ..., Ck € R to compose a mappingvia Q
k Thus then-th minimal randomized error for the problem
q(f) := Zc,—f(t,—), feF, (F,Int)is
=1

. _ . e°(F,Int) :=inf{e(F,Int,.#), MC-card.#)<n-—1},

where F is some class of continuous functions. The 2)

numberk is called the cardinality of the quadrature for anyn € N. Similarly one can define the information
formula..Denote the set of attpoint quad'rat'ure rules, by - complexity of(F, Int) in the randomized setting.
Q. We introduced the classes of admissible quadrature Now we introduce the Holder-Nikolskii classes of

formulas ) functions. Denote byL,(T%) the space of Lebesgue
2'(F,R) = U Qx; measurable functions defined on tth@imensional torus
k<n Td satisfying
and e
. n o
Q(F7R) = Ue@ (F,R)_ UQk Hf”p: ((Zn)d/ |f(X)|de> < oo, for1§p<00,
neN k>0 Td

The error of a quadrature rutgs 2(F,R) on the class

F is defined as [ f]lo = ess supf(x)| < co.

xeTd
e(F,Int,q) :=sup{|Int(f)—q(f)|, feF}. Lete be a subset of natural numbergind]. Denote by
Having fixed the cardinality and minimizing the above Al(e) = |_| A{j, AYD) =1.
expression by a good choice@f 2"1(F,R), we obtain Jee

then-th minimal deterministic error . . , ,
the mixed|-th difference operators with stefp in the

4 (F,Int) ;= inf{e(F,Int,q), gqe 2" Y(FR)}. (1) variablex; for j € e Then we define the classH} as the
set off € Lp such that for ang
For a given threshold, the information complexity of the

problem(F,Int) is defined as HA{(e)f(x)Hp < |'| Iti]"
jee
comp(e,Int) :=inf{n:ey(F,Int) <e}.
wherel >r.
That is, the minimal number needed to solve this In what follows, we use the notatiorg andx<. For
integration problem to withims. two sequencegan}neny and {bn}neny Of positive real
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numbers, the order inequality; < b, means that there is where As; acts as a one-dimensional operator on a
a number > 0 such that, for alh, we havea, < cbn; and  function depending on the variable;. Now the

the relationa,, < b, means, < b, andb, < ap. approximation operatdlg, is defined as follows:
Now we recall the results about the deterministic

complexity of the integration on the clasddsi,. To, = Ag(f %),

Theorem 1[14] Letr > 1 be a real number, & p < «. Isilz<n

Then

whereQ, denotes the number of function values used in
Ta,- Itis clear thaQy < 2'nd-1,

Our main results are the following two theorems. Lemma 1[14]. Let 1< p<oo,r >1/p. Forf € MH!, we
Theorem 2.Letr > 1 be a real number, 4 p < . Then have

i (MHF, Int) =< n~" (log!®n).

_ —rnd—1

) nY2(log@ Y )+l 2< p< oo I =Ton(F)llp <275
e (MHp, Int) < n—-11/p(log@ D)+l 1< p<2  The proof of Theorem 2 is based on variance reduction.
’ To carry out this process, we will use the classical Monte

Theorem 3.Letr > 1 be a real number, & p < . Then Carlo quadrature formulda which is deﬁned as .foII'ows. Let

(&), be independent “-valued, uniformly distributed
& (MHL, Int) > n—-1/2, 2< p< oo over TY random variables on some probability measure
P n"HYP 1<p<2 space(Q,2, ). Forf € C(TY), we put

We see from Theorem 2 and 3 that modulo a power of 1N
logarithm, the sharp bound @f°(MH}, Int) has been Qu(f) = - Zf(fi(w)), we Q.
determined. Comparing Theorem 1 with Theorem 2 and i=
3, one can see that the randomized method provides a
better convergence rate than the deterministic oneLemma 2[3,6] Let 1< p < c. Then for allf € C(T%),
Quantitatively, the improvement amounts to the factor
n~Y2if p>2andn *YPif1 < p< 2. N2 fll,, 2<p<o,
fymn-eumpuor < {0, 2205
3 Proofs of main results wherec, = 2%/P~1,

Proof of Theorem 2. We first construct a randomized

In this section, we shall prove our main results. To this end algorithm based on the classical Monte Carlo quadrature
we need some auxiliary lemmas. First we invoke a resultule.

of approximation of functions fromMH}, by trigonometric Let (Q,2, ), (&)",, and Q. be defined as above,
polynomials. wherem= Qn. For f € MHJ, we set forw € Q,
Forme N, we define the de la Vallee-Poussin kernel
Yo%) by Ao(f) = Qu(f —To,(F)) +Int(Tgy())
= Qu(f = To,(f)) +am(f).
m 2m 2m—k . .
Ym(X) = 1+22 coskx+ 2 Z <—) COskx, It is easy to see thatZ = ((Q,Z, 1), (Aw)weca) is @
=1 K=r+1 m randomized method, where the required measurability
follows from the fact that the mapping
wherex € R. Denotex(l) = %1, I =1,...,2m, we define
the linear operator (F,x) — £(x) = (T, F) (%)
g 4m from CgTd) x T4 into R is continuous. Obviously,
Rm(f,x) = (4m) f(x(1) Zm(X—x(1)) A € 2™ (MH!,R). Then we derive a upper estimate of
1= the error ofA,, which leads to the required bound. Using
and Lemma 2, we get fof € MH},
An(£.X) =Ran(f.%) ~Ron 1(F%), n>1, [ It (F) = Au( Dld ()

where Ag(f,x) = Ry(f,x). Then we define the operator :/ [Int(f) — Qeu(f —To,(f)) —Int(Tg,(f))|du(w)
As(f,x) as the composition of the one-dimensional Q
operators =/ [Int(f —Tq, () = Qu(f =Ty (f))ldu(w)

Q

AS(faX):Asd(ASdfl"'ASl(fvxl)"'vxd)v Sm_apr_TQn(f)Hpv (3)
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wherea, = 1/2 for 2< p< o andap =1—1/p for forx € T9, where 1< p < w. Itis easily seen that
1 < p < 2. Combining the relationshim = Q,, = 2'n%-1,

Lemma 1 and3), we get _ d apCd(2n) " 1HYP 1< p< o,
€ ata ds) €ge /I'd fl(x)d/\ ( {azcd(Zn) r— 1 p= oo,
& (MH}, Int) < ="~ Y2H1/P=1/2) (og(@=D )2, @
where [;@(t)dt = C. Furthermore, let{g}!', be a
The proof of Theorem 2 is complete. sequence of independent{—1 1}-valued random

Next we turn to the proof of the lower bounds. We will variables on some probability spa@@;, 21, 1) with
reduce the lower estimate in the randomized setting to that ) ~
of the average case setting. For this purpose we recall the Hif{é =1} =pm{a=-1=1/2, i=1...n
definition of then-th minimal error in the average setting. For b — . we choose a constaat > 0 such thatf. &

Let X be a Banach space afdbe a closed bounded MH’pf_ i1 mand out b :
subset ofX. Assume that the sdt is equipped with a o fOM=4,...,nand pu
Borel field (F) which is the g-algebra containing all i
open subsets d¥. Let i be a probability measure defined p = dist <Zi€i fi> 7
on (F,%(F)). Denote the subset of thoges 2" %(F,R) i=
which are (#(F),#(R)) measurable by2™ (F,R). _ o
Then, forg € 2/ (F,R), we define the average error where dist means the distribution of thdH[-valued

with respect tqu as random variable. For any system of poixs..., Xy, let
us defind by
e(Int,q, u): /Ilnt f)ldu(f). | ={i:1<i<h {X1,....xn} NG =2}

Minimizing the errors with respect to the choice @ Itis clear that the cardinality of the sksatisfies
5 (F,R), we yield then-th minimal average error with ~
respect tqu I[=A—n=n (5)

Further,q(fi) =0 fori € I, and we can estimate

[ int(t)—a(t)idu(f)
MHY,

M (Int,u):=  inf Int .
en+]_( n 7“) qeg{l{r‘-els(F,R)e( n 7q7“)

Lemma 3[4]. For every probability measune on F and

forallneN, il n
= | Int (_Zei(w) fi> —q (_Zsi(w) fi> dus(w)
en“(F.Int) > &2y (Int, ) /2. S -
Proof of Theorem 3.In the proof of the lower bounds, = / li+l2—q <; & (w) fi) dp(w), (6)
we separate two cases2p < o and 1< p< 2. & 17l

First, we consider the case<2p < «. It sufficesto  where
consider the cas@ = . We shall define a probability
measure onF = MH{, . For this purpose, we need Il::Za(w)Int(fi), Iz::Za(w)Int(fi).
construct i := 2n functions with mutually disjoint 1€ ]
supports. For a given € N, we divide the torug? into

2n equal subsecnons{G} N, with mutually disjoint The distribution of{eI , does not change if we replace
interiors, & by —g foriel and leave it unchanged far¢ I.

Consequently, we can continue (6) as follows

o garonn)

1/2
Zsi(w)lnt(f )| dug(w >><Z|Int )

andi — 1,...,7i. Then we choose to be a fixed bump = |I["/2lInt(f1)| >n~""%/2,
function inC®(R) with support contained ifig, whereTo  which together with Lemma 3 completes the lower

is the interior ofT, such thatG< ¢(t) <1,t €T, 9(t) =1,  estimates for Z p < w. In the above proof, we used the
whent € [11/2,3m1/2]. The functionf; is defined to have a  Khintchine’s inequality, and the relations (4), (5). Now le

Gi:{xe-l-d:xlef’xjGT7 j:2,...,d},
duz(w)

where

n

f:{xl|@r<xl<w+f}, 2/91

bump only in the rectangl€; as follows: 1< p< 2 and letu be the equi-distribution on the set
fi(x) = ap(2n) " Po(2n(xy — (i—1)71/n)) 9(X2) - P(Xa), {£firi=1,...,n},
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where this time we choose a constapt> 0 such thaff; [4] V. V. Dubinin, On optimal quadrature formulae for class#
MH], fori=1,...,A. With | as above, using the relations functions with bounded mixed difference , Mat. Zamedé,

(4) and (5) again, we get 149-151 (1991).
[5] G. S. Fang, P. X. Ye, Integration error from anistropiasdes,
/ [Int(f) —q(f)|du(f) J. Complexity,19, 610-627 (2003).
MH [6] S. Heinrich, Random approximation in numerical analybi

> ©°T

K.D.Bierstedt, et al., editor, Functional Analysis: Predmgs
= 2_1~ Zi loint(f)) —q(ofi) of the Essen Conference, Lect. Notes in pure and appl. Math.,
N5 5 150 123-171 (1994).
1 [7]1 S. Heinrich, Quantum integration in Sobolev classe, J.
—NZ > loint(fi)| Complexity,19, 19-42 (2003).
NG, [8] S. Heinrich, Quantum summation with an application to

Y

1 “r1/p-1 integration, J. Complexityi.8, 1-50 (2002).
Z_ﬁZ“nt(fi)' >n ) [9] E. Novak, Stochastic properties of quadrature formulas
Ie Numer. Math 53, 609-620 (1988).

which together with Lemma 3 again completes the lower[10] E. Novak, I. H. Sloan and H.Wozniakowski, Tractalilit

Y

es“mates for 1< p < 2. The proof of Theorem 3 |S of approximation for WEIghted Korobov spaces on classical
complete. o and Quantum computers, Found. Comput. Math121-156
(2004).

[11] A. Sard, Best approximate integration formulas; best
. approximation formulas, Amer. J. Matfl, 80-91 (1949).
4 Conclusion: [12] W. Sickel, T. Ullrich, Tensor products of Sobolev-Beso
spaces and applications to approximation from the hyperbol
We determine the information complexity of the  cross, J. Approx. Theorl61(2), 748-786 (2009).
integration over the clagdH!. Our results show that this [13] W. Sickel, T. Ullrich, Spline interpolation on sparseds,
problem is tractable in the randomized setting. Moreover ~APPl. Anal.,90, 337-383 (2011). o .
if we neglect the logarithmic factor, then we find that the [14]N\évaN.S;iré)éaﬁg\}v%ﬂ:o}lqgn;g“on of Periodic Functions,
convergence rate does not dependdnThis propert ' : e L .
again Sghows the great advanptage of the prar?do%ize&“_’] Traub J. F., Wasilkowski G. W. and Wozniakowski H.,
methods. It allows us to use randomized methods to Information-based Complexity, Academic Press, New York,
. . . . . . 1988.
approximate high dimensional integration when the
integrand is taken from the clasgH'. In particular we
can approximate the path integration by randomized
algorithms. In this case the dimensidrtan be arbitrarily
large. Since path integration lies at the foundation of
quantum mechanics, statistical mechanics and
mathematical finance. Our results may have potential
applications in these fields.
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