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Abstract: We study the information complexity of the numerical integration on the Hölder-Nikolskii classesMHr
p in the randomized

setting. We adopt classical Monte Carlo method to approximate this integration and derive the corresponding convergence rate.
Comparing our results with the previous known results in thedeterministic setting, we see that the randomized algorithms have faster
convergence rates.
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1 Introduction

The calculation of d-dimensional integrals occurs in
numerous applications including physics, chemistry,
finance, and the computational sciences, where thed may
be in the hundreds or even in the thousands, see
[1,6,7,8,9]. For most integrands we could not compute the
integral utilizing the fundamental theorem of the calculus
since there is no closed form expression of the
antiderivatives. We have to approximate the integral
numerically. Algorithms for solving this problem are
given by using function values on finite points. The
information complexity is the minimal number of the
function values, needed to solve the problem to within a
threshold ε. It is a lower bound of computational
complexity which is defined as the minimal number of
information operations and combinatory operations to
obtain a solution to withinε. However it is proved that for
the integration problem the information complexity is
proportional to the computational complexity, cf. [15].
Thus as the computational complexity, the information
complexity is a fundamental invariance of computer
science. In this paper we concentrate on the information
complexity of integration on the classes of functions with
mixed smoothness.

A central issue of information complexity theory is to
investigate how the information complexity of a given
problem depends onε−1 and d. If it depends

exponentially on ε−1 or d, we say the problem is
intractable. This intractability is also called the curse of
dimensionality, cf. [1,4,6,9]. It is well-known that the
integration problem defined on the usual Sobolev classes
of functions suffers from the curse of dimensionality in
the deterministic setting. It is also known that the
randomization can break the intractability, that is, the
complexity in the randomized setting depends
polynomially onε−1 andd, cf. [5,6,7, 9]. This shows the
advantage of the randomized methods. In this paper we
study the efficiency of randomized method in the
computation of the high dimensional integration. We
consider Hölder-Nikolskii class of functions with mixed
smoothness. cf. [3,5,14]. This class plays an important
role in the study of the complexity of many numerical
problems, such as integration and function
approximation, since the bounds of deterministic
complexity of these problems depend weakly on the
dimension, cf. [2,4,10,11,12,13]. In what follows, we will
use randomized method to approximate the integration on
this class and derive the corresponding convergence rates.
Our results show the randomized algorithms have faster
convergence rates than the deterministic ones.

The remaining part of this paper is organized as
follows. In Section 2 we formulate the problem of
integration in the framework of information-based
complexity theory and present the main results. In Section
3 we prove our main results. Finally, in Section 4 we
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illustrate the significance of our results and discuss their
potential applications in physics and finance.

2 Preliminary and main results

In this section, we first formulate the problem of the
numerical integration in the framework of
information-based complexity theory, then we present our
main results.

Let Td := [0,2π)d be thed-dimensional torus. It is the
product of d copies of the interval[0,2π ] with the
identification of the end points. LetC(Td) be the space of
continuous functions onTd andF ⊂ C(Td). For f ∈ F ,
we would like to approximate the integral

Int( f ) :=
∫

Td
f (t)dλ d(t)

by some quadrature formula, whereλ d denotes the
normalized Lebesgue measure onTd . When F is
specified, we write down the integration problem as
(F, Int).

We now describe the deterministic quadrature formula.
For any givenk ∈N, we choosek pointst1, . . . , tk ∈ Td and
weightsc1, . . . ,ck ∈ R to compose a mappingq via

q( f ) :=
k

∑
j=1

c j f (t j), f ∈ F,

where F is some class of continuous functions. The
number k is called the cardinality of the quadrature
formula. Denote the set of allk-point quadrature rules, by
Qk. We introduced the classes of admissible quadrature
formulas

Q
n(F,R) :=

⋃

k≤n

Qk,

and
Q(F,R) :=

⋃

n∈N

Q
n(F,R) =

⋃

k≥0

Qk.

The error of a quadrature ruleq ∈Q(F,R) on the class
F is defined as

e(F, Int,q) := sup{|Int( f )− q( f )|, f ∈ F}.

Having fixed the cardinalityn and minimizing the above
expression by a good choice ofq ∈Qn−1(F,R), we obtain
then-th minimal deterministic error

edet
n (F, Int) := inf{e(F, Int,q), q ∈ Q

n−1(F,R)}. (1)

For a given thresholdε, the information complexity of the
problem(F, Int) is defined as

comp(ε, Int) := inf{n : en(F, Int)≤ ε}.

That is, the minimal number needed to solve this
integration problem to withinε.

Then we turn to the randomized setting. One can view
randomized quadrature formulas as random variables
taking values inQ(F,R). To be precise, we recall the
following definition.
Definition 1. A triple M := ([Ω ,F ,P],q,k) is called a
randomized quadrature rule, if
(1) [Ω ,F ,P] is a probability measure space.
(2) q : Ω → Q(F,R) is a mapping, such that for allf ∈ F
the mapping

ω ∈ Ω → qω( f ) := (q(ω))( f ) ∈ R

is a real random variable.
(3) k : Ω → N is a measurable natural number, such that
we have

qω ∈ Q
k(ω)(F,R), ω ∈ Ω .

The error of a randomized algorithmM on the classF
is defined through the integral

e(F, Int,M ) := sup

{∫

Ω
|Int( f )− qω( f )|dP(ω), f ∈ F

}
.

The cardinality of the algorithmM is defined by

MC-card(M ) :=
∫

Ω
k(ω)dP(ω).

Thus then-th minimal randomized error for the problem
(F, Int) is

emc
n (F, Int) := inf{e(F, Int,M ), MC-card(M )≤ n−1},

(2)
for any n ∈ N. Similarly one can define the information
complexity of(F, Int) in the randomized setting.

Now we introduce the Hölder-Nikolskii classes of
functions. Denote byLp(Td) the space of Lebesgue
measurable functions defined on thed-dimensional torus
Td satisfying

‖ f‖p =

(
(2π)−d

∫

Td
| f (x)|pdx

)1/p

<∞, for 1≤ p<∞,

‖ f‖∞ = ess sup
x∈Td

| f (x)|< ∞.

Let e be a subset of natural numbers in[1,d]. Denote by

△l
t(e) = ∏

j∈e
△l

t j
, △l

t( /0) = I.

the mixed l-th difference operators with stept j in the
variablex j for j ∈ e. Then we define the classMHr

p as the
set of f ∈ Lp such that for anye

‖△l
t(e) f (x)‖p ≤ ∏

j∈e
|t j|

r,

wherel > r.
In what follows, we use the notations≪ and≍. For

two sequences{an}n∈N and {bn}n∈N of positive real
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numbers, the order inequalityan ≪ bn means that there is
a numberc > 0 such that, for alln, we havean ≤ cbn; and
the relationan ≍ bn meansan ≪ bn andbn ≪ an.

Now we recall the results about the deterministic
complexity of the integration on the classesMHr

p.

Theorem 1[14] Let r > 1 be a real number, 1< p ≤ ∞.
Then

edet
n (MHr

p, Int)≍ n−r(log(d−1) n).

Our main results are the following two theorems.

Theorem 2.Let r > 1 be a real number, 1< p < ∞. Then

emc
n (MHr

p, Int)≪

{
n−r−1/2(log(d−1)n)r+1, 2≤ p < ∞;
n−r−1+1/p(log(d−1)n)r+1, 1< p < 2.

Theorem 3.Let r > 1 be a real number, 1< p < ∞. Then

emc
n (MHr

p, Int)≫

{
n−r−1/2, 2≤ p < ∞;
n−r−1+1/p, 1< p < 2.

We see from Theorem 2 and 3 that modulo a power of
logarithm, the sharp bound ofemc

n (MHr
p, Int) has been

determined. Comparing Theorem 1 with Theorem 2 and
3, one can see that the randomized method provides a
better convergence rate than the deterministic one.
Quantitatively, the improvement amounts to the factor
n−1/2 if p ≥ 2 andn−1+1/p if 1 < p < 2.

3 Proofs of main results

In this section, we shall prove our main results. To this end,
we need some auxiliary lemmas. First we invoke a result
of approximation of functions fromMHr

p by trigonometric
polynomials.

For m ∈ N, we define the de la Vallee-Poussin kernel
Vm(x) by

Vm(x) = 1+2
m

∑
k=1

coskx+2
2m

∑
k=m+1

(
2m− k

m

)
coskx,

wherex ∈ R. Denotex(l) = π l
2m , l = 1, ...,2m, we define

the linear operator

Rm( f ,x) = (4m)−1
4m

∑
l=1

f (x(l))Vm(x− x(l))

and

∆n( f ,x) = R2n( f ,x)−R2n−1( f ,x), n ≥ 1,

where∆0( f ,x) = R1( f ,x). Then we define the operator
∆s( f ,x) as the composition of the one-dimensional
operators

∆s( f ,x) = ∆sd (∆sd−1 . . .∆s1( f ,x1) . . . ,xd),

where ∆s j acts as a one-dimensional operator on a
function depending on the variablex j. Now the
approximation operatorTQn is defined as follows:

TQn = ∑
‖s‖1≤n

∆s( f ,x),

whereQn denotes the number of function values used in
TQn . It is clear thatQn ≍ 2nnd−1.

Lemma 1.[14]. Let 1≤ p ≤ ∞,r > 1/p. For f ∈ MHr
p, we

have
‖ f −TQn( f )‖p ≪ 2−rnnd−1.

The proof of Theorem 2 is based on variance reduction.
To carry out this process, we will use the classical Monte
Carlo quadrature formula which is defined as follows. Let
(ξi)

n
i=1 be independent,Td-valued, uniformly distributed

over Td random variables on some probability measure
space(Ω ,Σ ,µ). For f ∈C(Td), we put

Qω( f ) =
1
n

n

∑
i=1

f (ξi(ω)), ω ∈ Ω .

Lemma 2.[3,6] Let 1≤ p ≤ ∞. Then for all f ∈C(Td),

∫

Ω
|Int( f )−Qω( f )|dµ(ω)≤

{
n−1/2‖ f‖p, 2≤ p ≤ ∞,

cpn1/p−1‖ f‖p, 1≤ p < 2,

wherecp = 22/p−1.
Proof of Theorem 2. We first construct a randomized
algorithm based on the classical Monte Carlo quadrature
rule.

Let (Ω ,Σ ,µ), (ξi)
m
i=1, and Qω be defined as above,

wherem = Qn. For f ∈ MHr
p, we set forω ∈ Ω ,

Aω( f ) = Qω ( f −TQn( f ))+ Int(TQn( f ))

= Qω ( f −TQn( f ))+ qm( f ).

It is easy to see thatM = ((Ω ,Σ ,µ),(Aω )ω∈Ω ) is a
randomized method, where the required measurability
follows from the fact that the mapping

( f ,x)−→ f (x)− (TQn f )(x)

from C(Td) × Td into R is continuous. Obviously,
M ∈ Q2m(MHr

p,R). Then we derive a upper estimate of
the error ofAω which leads to the required bound. Using
Lemma 2, we get forf ∈ MHr

p

∫

Ω
|Int( f )−Aω( f )|dµ(ω)

=

∫

Ω
|Int( f )−Qω( f −TQn( f ))− Int(TQn( f ))|dµ(ω)

=

∫

Ω
|Int( f −TQn( f ))−Qω( f −TQn( f ))|dµ(ω)

≤ m−αp‖ f −TQn( f )‖p, (3)
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whereαp = 1/2 for 2 ≤ p < ∞ and αp = 1− 1/p for
1< p < 2. Combining the relationshipm = Qn ≍ 2nnd−1,
Lemma 1 and (3), we get

emc
n (MHr

p, Int)≪ n−r−1/2+(1/p−1/2)+(log(d−1) n)r+1.

The proof of Theorem 2 is complete.
Next we turn to the proof of the lower bounds. We will

reduce the lower estimate in the randomized setting to that
of the average case setting. For this purpose we recall the
definition of then-th minimal error in the average setting.

Let X be a Banach space andF be a closed bounded
subset ofX . Assume that the setF is equipped with a
Borel field B(F) which is theσ -algebra containing all
open subsets ofF. Let µ be a probability measure defined
on (F,B(F)). Denote the subset of thoseq ∈ Qn−1(F,R)
which are (B(F),B(R)) measurable byQmes

n−1(F,R).
Then, for q ∈ Qmes

n−1(F,R), we define the average error
with respect toµ as

e(Int,q,µ) :=
∫

F
|Int( f )− q( f )|dµ( f ).

Minimizing the errors with respect to the choice ofq ∈
Qmes

n−1(F,R), we yield then-th minimal average error with
respect toµ

eavg
n+1(Int,µ) := inf

q∈Qmes
n (F,R)

e(Int,q,µ).

Lemma 3.[4]. For every probability measureµ on F and
for all n ∈ N,

emc
n (F, Int)≥ eavg

2n−1(Int,µ)/2.

Proof of Theorem 3. In the proof of the lower bounds,
we separate two cases, 2≤ p ≤ ∞ and 1≤ p < 2.

First, we consider the case 2≤ p ≤ ∞. It suffices to
consider the casep = ∞. We shall define a probability
measure onF = MHr

∞,. For this purpose, we need
construct ñ := 2n functions with mutually disjoint
supports. For a givenn ∈ N, we divide the torusTd into
2n equal subsections{Gi}

2n
i=1 with mutually disjoint

interiors,

Gi =
{

x ∈ Td : x1 ∈ T̃,x j ∈ T, j = 2, . . . ,d
}
,

where

T̃ =

{
x1|

(i−1)π
n

≤ x1 <
(i−1)π

n
+

π
n

}
,

and i = 1, . . . , ñ. Then we chooseφ to be a fixed bump
function inC∞(R) with support contained inT0, whereT0
is the interior ofT, such that 0≤ φ(t)≤ 1, t ∈ T, φ(t) = 1,
whent ∈ [π/2,3π/2]. The functionfi is defined to have a
bump only in the rectangleGi as follows:

fi(x)= ap(2n)−r+1/pφ(2n(x1−(i−1)π/n))φ(x2) · · ·φ(xd),

for x ∈ Td , where 1≤ p ≤ ∞. It is easily seen that

∫

Td
fi(x)dλ d(x) =

{
apCd(2n)−r−1+1/p, 1≤ p < ∞,
apCd(2n)−r−1, p = ∞,

(4)
where

∫
T φ(t)dt = C. Furthermore, let{εi}

ñ
i=1 be a

sequence of independent,{−1,1}-valued random
variables on some probability space(Ω1,Σ1,µ1) with

µ1{εi = 1}= µ1{εi =−1}= 1/2, i = 1, . . . , ñ.

For p = ∞, we choose a constantap > 0 such thatfi ∈
MHr

∞ for i = 1, . . . , ñ and put

µ = dist

(
ñ

∑
i=1

εi fi

)
,

where dist means the distribution of theMHr
∞-valued

random variable. For any system of pointsx1, . . . ,xn, let
us defineI by

I = {i : 1≤ i ≤ ñ, {x1, . . . ,xn}∩Gi =∅}.

It is clear that the cardinality of the setI satisfies

|I| ≥ ñ− n = n. (5)

Further,q( fi) = 0 for i ∈ I, and we can estimate
∫

MHr
∞
|Int( f )− q( f )|dµ( f )

=

∫

Ω1

∣∣∣∣∣Int

(
ñ

∑
i=1

εi(ω) fi

)
− q

(
ñ

∑
i=1

εi(ω) fi

)∣∣∣∣∣dµ1(ω)

:=
∫

Ω1

∣∣∣∣∣I1+ I2− q

(

∑
i6∈I

εi(ω) fi

)∣∣∣∣∣dµ1(ω), (6)

where

I1 := ∑
i∈I

εi(ω)Int( fi), I2 := ∑
i6∈I

εi(ω)Int( fi).

The distribution of{εi}
ñ
i=1 does not change if we replace

εi by −εi for i ∈ I and leave it unchanged fori 6∈ I.
Consequently, we can continue (6) as follows

=
∫

Ω1

∣∣∣∣∣−I1+ I2− q

(

∑
i6∈I

εi(ω) fi

)∣∣∣∣∣dµ1(ω)

≥
∫

Ω1

∣∣∣∣∣∑i∈I

εi(ω)Int( fi)

∣∣∣∣∣dµ1(ω)≫

(

∑
i∈I

|Int( fi)|
2

)1/2

= |I|1/2|Int( f1)| ≫ n−r−1/2,

which together with Lemma 3 completes the lower
estimates for 2≤ p ≤ ∞. In the above proof, we used the
Khintchine’s inequality, and the relations (4), (5). Now let
1≤ p < 2 and letµ be the equi-distribution on the set

{± fi : i = 1, . . . , ñ},
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where this time we choose a constantap > 0 such thatfi ∈
MHr

p, for i = 1, . . . , ñ. With I as above, using the relations
(4) and (5) again, we get
∫

MHr
p

|Int( f )− q( f )|dµ( f )

=
1
2ñ

ñ

∑
i=1

∑
σ=±1

|σ Int( fi)− q(σ fi)|

≥
1
2ñ ∑

i∈I
∑

σ=±1
|σ Int( fi)|

≥
1
2ñ ∑

i∈I
|Int( fi)| ≫ n−r+1/p−1,

which together with Lemma 3 again completes the lower
estimates for 1≤ p < 2. The proof of Theorem 3 is
complete.

4 Conclusion:

We determine the information complexity of the
integration over the classMHr

p. Our results show that this
problem is tractable in the randomized setting. Moreover
if we neglect the logarithmic factor, then we find that the
convergence rate does not depend ond. This property
again shows the great advantage of the randomized
methods. It allows us to use randomized methods to
approximate high dimensional integration when the
integrand is taken from the classMHr

p. In particular we
can approximate the path integration by randomized
algorithms. In this case the dimensiond can be arbitrarily
large. Since path integration lies at the foundation of
quantum mechanics, statistical mechanics and
mathematical finance. Our results may have potential
applications in these fields.
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