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Abstract: Let A be the class of functionsf , f (z) = z+
∞
∑

m=2
amzm, analytic in the open unit discE. Let S∗s(h) consist of functions

f ∈ A such that 2z f′(z)
f (z)− f (−z) ≺ h(z), where≺ denotes subordination andh(z) is analytic inE with h(0) = 1. For n = 0,1,2,3, . . . , a

certain integral operatorIn : A→ A is defined asIn f = f−1
n ∗ f such that( f−1

n ∗ fn)(z) = z
z−1 , where fn(z) = z

(1−z)n+1 , and∗ denotes

convolution. By takingh(z) =
[

1+ 2
π2

(

log 1+
√

z
1−√

z

)2]α
,0<α < 1, and using the operatorIn, we define some new classesUSTs(n,α) and

UKs(n,α), and study some interesting properties of these classes. The ideas and techniques of this paper may motivate further research
in this field.
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1 Introduction

Let A be the class of functionsf (z) of the form

f (z) = z+
∞

∑
j=2

a jz
j
, (1)

which are analytic in the open unit discE := {z : |z|< 1}.
Let S∗ andC be the subclasses ofA which, respectively,
consist of starlike, convex univalent functions.

An analytic function f is subordinate to an analytic
function g, written f (z) ≺ g(z), if there is an analytic
function w : E → E with w(0) = 0 satisfying
f (z) = g(w(z)). Various subclasses ofS∗ andC can be

unified by requiring that either of the quantityz f′(z)
f (z) or

{

1+ z f′′(z)
f ′(z)

}

is subordinate to a functionh(z) with a

positive real part inE, h(0) = 1, h′(0) > 0. These unified
classes are denoted asS∗(h) and C(h). For recent
developments, see [11,12] and the references therein.
We note some of the subclasses as in the following

(i) S∗(hPAR) =UST=
{

f ∈ A : ℜ
( z f′(z)

f (z)

)

>
∣

∣

z f′(z)
f (z) −1

∣

∣

}

,

where

hPAR(z) = 1+
2

π2

(

log
1+

√
z

1−√
z

)2
. (2)

UST = S∗(hPAR) is called the class of the parabolic
starlike functions introduced by Ronning [14].

(ii) S∗(β ) = S∗
((

1+z
1−z

)β)
=
{

f ∈ A :
∣

∣argz f′(z)
f (z)

∣

∣<
β π
2

}

.

S∗(β ) is called the class of strongly starlike function of
orderβ , 0< β ≤ 1.

(iii) The classesS∗γ ,Cγ of starlike and convex functions of
orderγ, respectively, are defined as:

S∗γ =
{

f ∈ A : ℜ
z f′(z)
f (z)

> γ
}

,

Cγ =
{

f ∈ A : ℜ
(z f′(z))′

f ′(z)
> γ

}

.

The corresponding classesC(hPAR) andC(β ) of convex
functions are defined accordingly.
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Let the parabolic domainΩ∗ be defined as follows.

Ω∗ = {u+ iv : u>

√

(u−1)2+ v2}. (3)

That is, Ω∗ is bounded by parabolav2 = 2u− 1. The
functionhPAR(z), given by (2), is known to be univalent in
E and mapsE conformally ontoΩ∗.

Let P be the class of Caratheodory functionsp, with
p(0) = 1 andℜp(z)> 0, z∈ E.
Then PPAR ⊂ P is the class of functionsp(z) which are
subordinate tohPAR(z) in E. Also, we define the class
PPAR(α),0< α ≤ 1, which is a subclass ofP and consists
of analytic functions p(z), p(0) = 1 such that
p(z)≺ [hPAR(z)]α , wherehPAR(z) is given by (2).
We note thatPPAR(1) = PPAR. We call UST(α) and
UCV(α), the classes of strongly uniformly convex
functions, respectively. These classes are defined as
follows

UST(α) =
{

f ∈ A :
z f′(z)
f (z)

∈ PPAR(α)
}

,

and

UCV(α) =
{

f ∈ A :
{

1+
z f′′(z)
f ′(z)

}

∈ PPAR(α)
}

.

In 1959, Sakaguchi [18] defined the class of starlike
functions with respect to symmetrical points. We use this
concept and define the following.

Definition 1.Let f ∈ A. Then f(z) is said to belong to the
class USTs(α) if and only if

{ 2z f′(z)
f (z)− f (−z)

}

∈ PPAR(α),z∈ E.

Similarly f ∈UCVS(α),0<α ≤ 1, if and only if, forz∈E

− 2(z f′(z))′

( f (z)− f (−z))′

}

∈ PPAR(α).

The classA is closed under the Hadamard product or
convolution(∗)

( f1 ∗ f2)(z) = z+
∞

∑
j=1

a j+1,1a j+1,zz
j+1

,

where

fk(z) = z+
∞

∑
j=1

a j+1,mzj+1 ∈ A,k= 1,2.

Denote byDn : A→ A, the operator defined by

Dn f (z) =
z

(1− z)n+1 ∗ f (z),n∈ N0 = {0,1,2. . .}.

The symbolDn is called the Ruscheweyh derivative ofnth
order.

Let fn(z) = z
(1−z)n+1 ,n∈ N0,

and let f−1
n (z) be defined such that

( fn ∗ f (−1)
n )(z) =

z
1− z

(4)

Analogous to symbolDn, an integral operatorIn : A → A
is defined as follows; see [7].

In f (z) = ( f−1
n ∗ f )(z)

=
[ z
(1− z)n+1

]−1
∗ f (z),n∈ N0. (5)

We note thatI0 f = z f′ andI1 f = f , see also [8,9].

From (4) and (5), we obtain the following identity for
In.

(n+1)In f (z)−nIn+1 f (z) = z(In+1 f (z))′. (6)

The hypergeometric function2F1 can be used to defineIn f
as follows. Since

(1− z)−a =2 F1(a,1;1;z),a> 1,

we have
[ z
(1− z)n+1

]−1
= 2F1(1,1;a;z)

= (a−1)

1
∫

0

(1− t)a−2 dt
1− tz

.

Therefore

In f (z) = [z2F1(1,1;n;z)]∗ f (z),n∈ N0.

We now define the main classes of analytic functions
which will be studied in this paper as follows.

Definition 2.Let f ∈ A. Then f∈USTs(n,α) if and only if
In f ∈UST(α) for 0< α ≤ 1,n∈ N0 and z∈ E.
We note that USTs(1,1) =USTs. That is

f ∈USTs(1,1) implies 2z f′(z)
f (z)− f (−z) ≺ hPAR(z) in E.

Definition 3.Let f ∈ A. Then f(z) is said to belong to the
class UKs(n,α) if and only if there exists g∈ USTs(n,α)

such thatz(In f (z))′

Ing(z) ∈ PPAR,z∈ E.

Throughout this paper, we shall assumen∈ N0,
0< α ≤ 1,z∈ E unless otherwise stated.

2 Preliminaries

Lemma 1([6]). Let u1+ iu2 and v= v1+ iv2 and letΦ be
a complex-valued functions satisfying the conditions:
(i) Φ(u,v) is continuous in a domain D⊂ C2,
(ii) (1,0) ∈ D andΦ(1,0)> 0,
(iii) ℜΦ(iu2,v1) ≤ 0 whenever (iu2,v1) ∈ D and
v1 ≤− 1

2(1+u2
2).

If h(z) = 1+
∞
∑

m=1
cmzm is a function analytic in E such

that h(z),zh′(z) ∈ D and ℜ(h(z),zh′(z)) > 0 for z ∈ E,
thenℜh(z)> 0 in E.
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Lemma 2([15]). Let p(z) be an analytic function in E with
p(0)=1 andℜp(z)>0, z∈E. Then, for s> 0andµ 6=−1
(complex),

ℜ
{

p(z)+
szp′(z)
p(z)+ µ

}

> 0 for |z|< r0,

where r0 is given by

r0 =
|µ +1|

√

A+(A2−|µ2−1|2) 1
2

, (7)

A= 2(s+1)2+ |µ |2−1,

and this radius is best possible.

The following result is a special case one due to Kanas [4].

Lemma 3. Let β ,δ be any complex numbers withβ 6= 0
andℜ

(β
2 + δ

)

> 0. If h(z) is analytic in E, h(0) = 1 and
satisfies

(

h(z)+
zh′(z)

βh(z)+ δ
)

≺ hPAR(z), (8)

where hPAR(z) is given by (2), and q∗(z) is an analytic
solution of

q∗(z)+
zq′∗(z)

βq∗(z)+ δ
= hPAR(z),

then q∗(z) is univalent and h(z)≺ q∗(z)≺ hPAR(z).
Here q∗(z) is the best dominant of (2) and is given by

q∗(z) =

[ 1
∫

0

(

exp

tz
∫

t

hPAR(u)−1
u

du
)

dt

]−1

.

Lemma 4([3]). Let w(z) be analytic in E. If |w(z)|
assumes its maximum value on the circle|z|= r at a point
z0, then z0w′(z0) = kw(z0), where k≥ 1.

Lemma 5([17]). Let Φ ∈ C and g∈ S∗ in E. Then, for
F analytic in E with F(0) = 1, φ∗Fg

φ∗g is contained in the

closed convex hullCo of F(E).

Lemma 6.Let p∈ P, z∈ E and z= reiθ . Then

(i)
2π
∫

0
|p(reiθ )|λ dθ <C(λ ) 1

(1−r)λ−1 , whereλ > 1 and C(λ )

is a constant depending only onλ . For this result, we refer
to [2].

(ii)
2π
∫

0
|p(reiθ )|2dθ ≤ 1+3r2

1−r2 see [13].

Lemma 7([5]). Let q(z) be a convex function in E with
q(0) = 1 and let another function h: E →C beℜh(z)> 0.
Let p(z) be analytic in E with p(0) = 1 such that

(p(z))+h(z)(zp′(z))≺ q(z), z∈ E.

Then p(z)≺ q(z) ∈ E.

3 The classUSTs(n,α)

Theorem 1.Let f ∈USTs(n,α). Then the odd function

ψ(z) =
1
2
[ f (z)− f (−z)], (9)

belongs to UST(n,α).

Proof.From (9), we can write

Inψ(z) = 1
2In[ f (z)− f (−z)]

= 1
2[In f (z)− In f (−z)]. (10)

By logarithmic differentiation of (10), we have

z(Inψ ′(z))
Inψ(z)

= 1
2

[

2z(In f (z))′

(In f (z))−(In f (−z)) +
2(−z)(In f (−z))′

(In f (z))−(In f (z))

]

= 1
2[h1+h2(z)] = h(z).

Since f ∈USTs(n,α), h1,h2 ∈ PPAR(α) in E.
That is,hi(z) ≺ [hPAR(z)]α , i = 1,2, 0< α ≤ 1 andz∈ E.
This implies thath(z)≺ hα

PAR(z), z∈ E, and thereforeψ ∈
UST(n,α) in E. The proof is complete. ⊓⊔

Theorem 2.Let, for z∈ E, f ∈USTs(n,α) and let
ψ(z) = 1

2[ f (z)− f (−z)]. Thenψ ∈ UST(n+ 1,α) in E.
That is

UST(n,α)⊂UST(n+1,α).

Proof.Let f ∈ USTs(n,α). Then ψ = 1
2[ f (z) − f (−z)]

belongs to the classUST(n,α) by Theorem 1.
Set

z(Inψ(z))′

Inψ(z)
= h(z),

h(z) is analytic inE with h(0) = 1.
Using identity (6), we obtain

z(Inψ(z))′

Inψ(z)
=
{

h(z)+
zh′(z)

h(z)+n

}

.

Sinceψ ∈UST(n,α), it follows that

{

h(z)+
zh′(z)

h(z)+n

}

≺ φ(z) = (hPAR(z))
α

in E.
Using Lemma 3, we have

h(z)≺ (hPAR(z))
α

in E, and this proves thatψ ∈UST(n+1,α) in E. ⊓⊔

Theorem 3. Let f ∈ USTs(n + 1,α) and let, with
ψ = 1

2( f (z)− f (−z)),

g(z) =
n+1

zn

z
∫

0

tn−1ψ(t)dt. (11)

Then g∈UST(n,α) in E.
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Proof.From (11), we have

(n+1)Ψ(z) = ng(z)+ zg′(z) (12)

Using (6) and (12), we can write

(n+1)In+1Ψ(z) = nIn+1g(z)+ z(In+1g(z))
′

= (n+1)Ing(z)

Therefore
In+1Ψ(z) = Ing(z).

Since f ∈USTs(n+1,α).,Ψ ∈UST(n+1,α) by
Theorem 1 and henceg∈UST(n,α) in E. ⊓⊔
Theorem 4.Let f ∈USTs(n+1,1) and let
Ψ = 1

2( f (z)− f (−z)). Then InΨ belongs to S∗(1
2) for

| z |< R, where R is given by

Rn =
| µ +1 |

√

A+(A2− | µ2−1 |2) 1
2

, (13)

A= 2(s+1)2+ | µ |2 −1 µ = 2n+1, s= 2,

and this radius is exact.

Proof.Let

z(In+1Ψ (z))′

In+1Ψ(z)
=

1
2
(H(z)+1), ℜH(z)> 0 in E, (14)

sinceIn+1Ψ ∈UST⊂ S∗1 see [14].
Using (6) and proceeding as in Theorem 2, we have

from (14)

z(InΨ(z))′

InΨ(z)
=

1
2

H(z)+
1
2
+

zH′(z)
H(z)+2n+1

.

That is

2
{z(InΨ(z))′

InΨ(z)
− 1

2

}

= H(z)

+
2zH′(z)

H(z)+2n+1
,ℜH(z) > 0

Now, using Lemma 2,

ℜ
[

2
{z(InΨ(z))′

InΨ(z)
− 1

2

}]

= ℜ
[

H(z)+
2zH′(z)

H(z)+ (2n+1)

]

> 0 for | z |< R,

where

Rn =
(2n+2)

√

A+(A2− | µ2−1 |2) 1
2

,

µ = 2n+1,A= 2(s+1)2+ | µ |2 −1, s= 2.⊓⊔
We note the following special case.
Let n= 0 ThenI0Ψ = zΨ ′ andR0 =

2√
18+18

6= 1
3.

That is , if I1Ψ =Ψ ∈ S∗1
2

in E,

thenI0Ψ = zΨ ′ ∈ S∗1
2

for |z|< 1
3.

Let L(r,F) denote the length of the image of the circle
|z|= r underF .

We prove the following.

Theorem 5.Let f ∈USTs(n,α).Then, for0< r < 1,

L(r, f ) = O(1).(
1

1− r
),

where F= In f and O(1) is a constant.

Proof.Since f ∈USTs(n,α), we have withF = In f ,

2zF′(z)
F(z)−F(−z)

=
2zF′(z)
Φ(z)

= hα(z),ℜh(z) > 0, Φ ∈UST.

Thus, withz= reiθ , we have

L(r,F) =

2π
∫

0

| zF′(z) | dθ

=

2π
∫

0

|Φ(z)hα(z)|dθ

≤ π
[( 1

π

2π
∫

0

|Φ(z)| z
z−α dθ

)
2−α

2
( 1

π

2π
∫

0

|h(z)|2dθ
)

α
2
]

≤ π
[( 1

π

2π
∫

0

| r
1− reiθ |

2
2−α dθ

) 2−α
2
( 1

π
.
1+3r2

1− r2

) α
2
]

≤ C
[( 1

1− r

)
2

2−α −1] 2−α
2
.

( 1
1− r

)
α
2

= O(1).
( 1

1− r

)α
,

where C,O(1) are constants and we have applied
Holder’s inequality, subordination for the odd functions
Φ ∈UST⊂ S∗1

2
and Lemma 6. ⊓⊔

As an application of Theorem 5, we have following
coefficient result.

Corollary 1. Let f ∈ USTs(n,α) and let, for In f = F,

F(z) = z+
∞
∑

m=2
Amzm.Then, by Cauchy Theorem,

m|Am| =
1

2πrm+1

∣

∣

∣

∣

∣

2π
∫

0

zF′(z)e−imθ dθ

∣

∣

∣

∣

∣

, z= reiθ

≤ 1
2πrmL(r,F)

Now, applying Theorem 5, we obtain

Am = O(1).m(α−1) (m→ ∞)

We note that, for n= 1,α = 1, f ∈USTs and f(z) given
by (1), we have am = O(1), where O(1) is a constant.

We now prove that the classUSTs(n,α) is invariant under
convolution with convex univalent functions.

c© 2016 NSP
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Theorem 6.Let f ∈USTs(n,α) and let g∈C. Then
( f ∗g) ∈USTs(n,α).

Proof.We note that

In( f ∗g) = g∗ In f ,g∈C.

We consider

2In[z{ f ∗g}]′
In[( f ∗g)(z)− ( f ∗g)(−z)]

=
2z(g∗ In f )′

g∗ [In{ f (z)− f (−z)}]

=
g∗ z(In f )′

InΨ .InΨ
g∗ InΨ

,Ψ(z) =
f (z)− f (−z)

2
.

=
g∗H.InΨ
g∗ InΨ

,

where
z(InΨ )′

InΨ
≺ hα

PAR≺ hPAR,

which impliesΨ ∈UST⊂ S∗ andH ∈ PPAR(α).
Now, using Lemma 5, we have

{ 2z(In( f ∗g))′

In[( f ∗g)(z)− ( f ∗g)(−z)]

}

(E)⊂CoH(E).

This proves that( f ∗g) ∈USTs(n,α) in E. ⊓⊔

Applications of Theorem 6.

Let In fi(z) = Fi(z), 1≤ i ≤ 3, In f (z) = F(z),
f ∈USTs(n,α), and let

(i) F1(z) =
z
∫

0

F(t)
t dt

(ii) F2(z) =
z
∫

0

F(t)−F(xt)
t−xt dt, |x| ≤ 1, x 6= 1

(iii) F3(z) = 1+c
zc

z
∫

0
tc−1F(t)dt, ℜ(c)> 0

The proof follows immediately since we can write
Fi = F ∗gi, 1≤ i ≤ 3, with

g1(z) =
∞

∑
j=1

zj

j
=− log(1− z),

g2(z) =
∞

∑
j=1

1− x j

j(1− x)
zj =

1
1− x

log
1− xz
1− z

, |x| ≤ 1,x 6= 1

g3(z) =
∞

∑
j=1

1+ c
j + c

zj
, ℜ(c)> 0,

and gi is convex inE for eachi, 1 ≤ i ≤ 3, g3(z) is
convex, see [16].

Theorem 7. Let G∈ USTs(n,1) and let, for0 < λ ≤ 1,
g∈ A be defined by

g(z) =
1
λ

z1− 1
λ

z
∫

0

t
1
λ −2ψ(t)dt, (15)

2ψ(z) = G(z)−G(−z).

Then

ℜ
{z(Ing(z))′

Ing(z)

}

> γ,

where (16)

γ =
1

(1−λ )+
√

λ 2+1
. (17)

Proof. SinceG ∈ USTs(n,1), it follows from Theorem 1
that

ψ(z) = G(z)−G(−z) ∈UST(n,1),

and this impliesInψ ∈UST⊂ S∗1
2

in E.

Set

z(Ing(z))′

Ing(z)
= (1− r)h(z)+ r,

h(z) = 1+ c1z+ c2z2+ . . .

Then, from (15), we have

Re

[

z(Ing(z))′

Ing(z)

]

= Re

[

(1− r)h(z)+ r +
λ (1− r)zh′(z)

(1−λ )+ rλ +λ (1− r)h(z)

]

>
1
2
.(18)

That is

Re

[

(1− r)h(z)+ r +
λ (1− r)zh′(z)

(1−λ )+ rλ +λ (1− r)h(z)
− 1

2

]

> 0.(19)

We know from the functionalφ(u,v) by takingu= u1+
iu2 = h(z),v= v1+ iv2 = zh′(z). So, from (18), we have

φ(u,v) = (1− r)u+(r − 1
2
)+

λ (1− r)v
(1−λ )+ rλ +λ (1− r)u

.

For

D = C\
{

− 1−λ + rλ
λ (1− r)

}

×C,

the conditions (i) and (ii) of Lemma 1 are clearly satisfied.
We proceed to verify condition (iii).

ℜΦ(iu2,v1)

=
2γ −1

2
+ℜ

[

λ (1− γ)v1

1−λ + γλ + iλ (1− γ)u2

]

=
2γ −1

2
+

λ (1− γ)(1−λ + γλ )v1

(1−λ + γλ )2+λ 2(1− γ)2u2
2

≤ 2γ −1
2

− 1
2

{

λ (1− γ)(1−λ + γλ )(1+u2
2)

(1−λ + γλ )2+λ 2(1− γ)2u2
2

}

=
A+Bu2

2

2C
,

c© 2016 NSP
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where

A= (2γ −1)(1−λ + γλ )2−λ (1− γ)(1−λ + γλ ),
B= (2γ −1){λ 2(1− γ)2}−λ (1− γ)(1−λ + γλ ),

C= {(1−λ + γλ )2+λ 2(1− γ)2u2
2}> 0.

Now ℜφ(iu2,v1)≤ 0 if and only ifA≤ 0 andB≤ 0. From
A ≤ 0, we obtainγ as given by (16) andB ≤ 0 ensures
γ ∈ (0,1)
Thus all the three conditions of Lemma 1 are satisfied and
we apply it to haveReh(z)> 0 E. This proves thatIng∈ S∗r
in E andr is given by (16). ⊓⊔

4 The classUKs(n,α)

Theorem 8.Let f ∈UKs(n,α). Then, with

z= reiθ ,0≤ θ1 < θ2 ≤ 2π , F = In f ,

we have

θ2
∫

θ1

ℜ
{

(zF′(z))′

F ′(z)

}

dθ >−π
2
.

Proof.Since f ∈ UKs(n,α), there existsg ∈ USTs(n,α),
such that, withF = In f , G= Ing, we have

zF′(z) = ψ(z)h
1
2 (z), h∈ P, (20)

ψ(z) =
G(z)−G(−z)

2
.

Now by definitionzψ ′(z)
ψ(z) ≺ (hPAR(z))α . This implies that

∣

∣

∣

∣

arg
zψ ′(z)
ψ(z)

∣

∣

∣

∣

≤ απ
4

Thus we can write

zψ ′(z)
ψ(z)

= p
α
2 (z), p∈ P (21)

Logarithmic differentiation of (19) and using (20), we have

(zF′(z))′

F ′(z)
=

1
2

zh′(z)
h(z)

+
α
2

p(z), h, p∈ P in E (22)

Now, for h∈ P, we have

max
h∈P

∣

∣

∣

∣

∫ θ2

θ1

ℜ
zh′(z)
h(−z)

dθ
∣

∣

∣

∣

≤ π −2cos−1
(

2r
1− r2

)

. (23)

see [10].
Hence, from (19) and (20), with 0≤ θ1 < θ2 ≤ π , we have
∫ θ2

θ1

ℜ
(zh′(z))′

h(−z)
dθ >−π

2

This completes the proof.⊓⊔

Theorem 9. UKs(n,1)⊂UKs(n+1,1)

Proof.Let f ∈UKs(n,1). Then there existsg∈USTs((n,1)
such that

2z f′(z)
g(z)−g(−z)

=
z f′(z)
ψ(z)

∈ PPar,ψ ∈UST(n,1)

By Theorem 2, we note thatg ∈ USTs(n,1) and
consequentlyψ ∈ UST((n + 1,1). This implies that
In+1ψ ∈UST⊂ S∗1

2
.

Set

(z(In+1 f (z))′

In+1ψ(z)
= H(z), ψ(z) =

1
2
[g(z)−g(−z)],

Using identity (6), we have

z(In f (z))′

Inψ(z)
=

{

H(z)+
zH′(z)

h(z)+n

}

∈ PPAR,

where

h(z) =
z(In+1ψ(z))′

In+1ψ(z)
∈ P in E.

Therefore, we have

{H(z)+h0(z)(zH′(z))} < hPAR(z) in E,

where

h0(z) =
1

h(z)+n
∈ P.

Now applying Lemma 7, we have

H(z)< hPAR(z),z∈ E.

This proves thatf ∈UKs(n+1,1) in E. ⊓⊔

Remark 1. Let

Ln(F) =
n+1

zn

∫ z

0
tn−1F(t)dt.

Then

Ln(F) =

(

z
∞
∑
j=0

n+1
n+ j+1zj

)

∗F(z)

=

(

z
∞
∑
j=0

(n+1) j (1) j
(n+2) j j zj

)

∗F(z)

= [zF21(1,n+1,n+2;z)]∗F(z)

= z
(1−z)n+1 ∗

[

z
(1−z)n+2

]−1

∗F(z)

= fn(z)∗ f−1
n+1(z)∗F(z)

This implies that

InLn(F) = In+1F(z).

Thus we can easily drive the following.

Theorem 10. Let F ∈ UKs(n + 1,α). Then
Ln(F) ∈UKs(n,α).

We also prove:
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Theorem 11. Let f ∈ UKs(n,1) with respect to
g∈USTs(n,1).
Let

ψ(z) =
1
2
[g(z)−g(−z)].

Then

ℜ
{

z(In+1 f (z))′

In+1ψ(z)

}

> 0, for z∈ E.

Proof.Let f ∈UKs(n,1). Then there existsg∈USTs(n,1),
with

ψ(z) =
1
2
[g(z)−g(−z)],

such that

ℜ
{z(In f (z))′

Inψ(z)

}

> 0,

whereInψ ∈UST⊂ S∗(1
2) in E.

Definew(z) in E such that

z(In+1 f (z))′

In+1ψ(z)
=

1−w(z)
1+w(z)

, (24)

wherew(0) = 0 andw(z) 6=−1.
We shall show that|w(z)| < 1.
From (23), we have

z(In+1 f (z))′ = In+1ψ(z).
1−w(z)
1+w(z)

. (25)

So, from (24) and identity (6), we have

(n+1)
z(In f (z))′

Inψ(z)

=
z(In+1 f (z))′

Inψ(z)

[1−w(z)
1+w(z)

]

+
(In+1 f (z))′

Inψ(z)

{ −2zw′(z)
(1+w(z))2 +n

[1−w(z)
1+w(z)

]

}

. (26)

We now apply identity (6) for the functionψ and since,
by Theorem 1.UST(n,α) ⊂ UST(n+ 1,α), there exists
an analytic functionw1(z) with w1(0) = 0 and|w1(z)|< 1
such that

Inψ(z)
In+1ψ(z)

=
1−w1(z)
1+w1(z)

. (27)

We note here that, from identity (6), that

ℜ
{z(In+1ψ(z))′

In+1ψ(z)

}

> 0

and

ℜ
{ Inψ(z)

In+1ψ(z)

}

>
n

n+1
> 0

are equivalent.
Thus, from (25) and (26), we have

z(In f (z))′

Inψ(z)
=

1−w(z)
1+w(z)

+
1

n+1

(1+w1(z)
1−w1(z)

)( 2zw′(z)
(1+w(z))2

)

. (28)

Suppose now that, forz∈ E,

max
|z|<|z0|

|w(z)| = |w(z0)|= 1,(w(z0) 6=−1).

Then it follows, from Lemma 4, that

z0w′(z0) = kw(z0), wherek≥ 1.

Settingw(z0) = eiθ andw1(z0) = reiφ in (28), we have

ℜ
{z0(In f (z0))

′

Inψ(z0)

}

= ℜ
{ 1

n+1
− 2k(eiθ +e−iθ +2)(1+ r2+2r cosφ)

|1+ reiφ |2|1+eiθ |2
}

=
−4k
n+1

{ (cosθ +1)(1+ r2+2r cosφ)
|1+ reiφ |2|1+eiθ |2

}

.

Hence, ifφ = π
2 , we have

ℜ
{z0(In f (z0))

′

Inψ(z0)

}

< 0,

whereInψ ∈ S∗ andk≥ 1.
This contradicts our hypothesis thatf ∈ UKs(n,1). Thus
|w(z)|< 1 and so from (23), we obtain the required result.
⊓⊔

Theorem 12.Let fi ∈ UKs(n,α) and let, forα1,α2 ≥ 0,
0≤ α1+α2 = 1.

f (z) =

z
∫

0

( f ′1(t))
α1( f ′2(t))

α2dt. (29)

Then f∈UK(n,α) in E.

Proof.From (28), we have

f ′(z) = ( f ′1(z))
α1( f ′2(z))

α2.

Therefore

f (−1)
n (z)∗ z f′(z)

= f (−1)
n (z)∗ [( f ′1(z)

α1)( f ′2(z)
α2)]

= ( f−1
n ∗ ( f ′1(z))

α1).( f−1
n (z)∗ f ′2(z)), (α1+α2 = 1).

This gives us

(In f (z))′ = [In f1(z)]
α1[In f2(z)]

α2.

Let In f = F, In fi = Fi . Then we have

F(z) =

z
∫

0

(F ′
1(t))

α1(F ′
2(t))

α2dt, (30)

where, with

Gi(z)−Gi(−z)
2

= ψi(z),Gi = Ing∈USTS(α),
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zF′
i (z) = ψi(z)Hi(z),

zψ ′
i (z)

ψi(z)
∈ PPAR(α), Hi ∈ PPAR(1).

From (30), we have

zF′(z) = (ψ1(z)H1(z))
α1(ψ2(z)H2(z))

α2

= (ψ1(z))
α1(ψ2(z))

α2(H1(z))
α1(H2(z))

α2

= ψ(z).H(z),

where
ψ(z) = (ψ1(z))

α1(ψ2(z))
α2,

H(z) = (H1(z))
α1(H2(z))

α2.

Now it is easy to note that

zψ ′(z)
ψ(z)

= α1
zψ ′

1(z)
ψ1(z)

+α2
zψ ′

2(z)
ψ2(z)

= α1p1(z)+α2p2(z) = p(z),

wherepi ∈ PPAR(α), α1+α2 = 1.
SincePPAR(α), 0< α ≤ 1 is a convex set, it follows that
p∈ PPAR(α) in E.

Thereforezψ ′(z)
ψ(z) ∈ PPAR(α) in E. Also

H(z) = (H1(z))
α1(H2(z))

α2,

whereHi(z)≺ hPAR(z), i = 1,2.
Sinceα1+α2 = 1, we haveH(z)≺ hPAR(z).
ThereforeH ∈ PPAR in E.

Hence, from (31), we have

zF′(z)
ψ(z)

∈ PPAR,ψi ∈UST(α).

This proves thatF = In f ∈UK in E. ⊓⊔

Theorem 13.Let f ∈UKs(n+1,1). Then In f is close-to-
convex for|z|< rn, where

rn =
2(n+1)

3+
√

9+4n(n+1)
. (31)

Proof. Let f ∈ UKs(n + 1,1). Then there exists

g∈USTs(n+1,1) such that
{

z(In+1 f (z))′

In+1ψ(z) ≺ hPAR(z)
}

in E,

where

ψ(z) =
g(z)−g(−z)

2
∈UST(n+1,1).

We shall first show thatInψ ∈ S∗1
2

in |z| < rn, wherern is

given by (31).
SinceIn+1ψ ∈UST⊂ S∗1

2
, we can write

z(In+1ψ(z))′

In+1ψ(z)
= h(z), ℜh(z)>

1
2
.

Using identity (6), we have

z(Inψ(z))′

In+1ψ(z)
= h(z)+

zh′(z)
h(z)+n

,

Using well-known [1] distortion results forh ∈ P, we
obtain

ℜ
(z(Inψ(z))′

Inψ(z)

)

≥ ℜh(z)
[

1− 2r
1− r2

{ 1
1

1+r +n

}]

= ℜh(z)
[

1− 2r
(1− r)+n(1− r2)

]

= ℜh(z)
[1− r +n−nr2−2r

(n+1)− r −nr2

]

= ℜh(z)
[ (n+1)−3r −nr2

(n+1)− r −nr2

]

. (32)

The right hand side of (32) is greater than or equal to zero
if |z|= r < rn wherern is given by (31). Now, again using
identity (6) andInψ ∈ S∗1

2
⊂ S∗ in |z|< rn, we have

ℜ
[z(In f (z))′

Inψ(z)

]

= ℜ
[

H(z)+
zH′(z)

h0(z)+n

]

,

where

ℜH(z) = ℜ
[z(In+1 f (z))′

In+1ψ(z)

]

> 0,

ℜh0(z) = ℜ
[z(In+1ψ1(z))′

In+1ψ(z)

]

>
1
2
.

Using distortion results forH andh0, we get

ℜ
[z(In f (z))′

Inψ(z)

]

≥ ℜH(z)
[

1− 2r
1− r2 .

1
1

1+r +n

]

= ℜH(z)
[ (1+n)−3r −nr2

(1− r)+n(1− r2)

]

,

and this shows that right hand side is greater than or equal
to zero for|z|= r < rn wherern is given by (31).
SinceInψ ∈ S∗ in |z| < rn, it follows that In f is close-to-
convex in|z|< rn and this proves our result.⊓⊔

Remark 2. Following the similar technique of Theorem
6, we can also prove that the classUKs(n+1,α) is closed
under convolution with convex univalent functions, and
consequently it is invariant under the integral operators
given in the applications of Theorem 6.
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