
Appl. Math. Inf. Sci.10, No. 1, 317-323 (2016) 317

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100133

On the Generation of Rogue Waves in Dusty Plasmas
Due to Modulation Instability of Nonlinear Schr ödinger
Equation

S. M. Ahmed1, M. S. Metwally1, S. A. El-Hafeez2 and W. M. Moslem3,4,∗

1 Department of Mathematics, Faculty of Science, Suez University, Suez, Egypt
2 Department of Mathematics, Faculty of Science, Port Said University, Port Said 42521, Egypt
3 Department of Physics, Faculty of Science, Port Said University, Port Said 42521, Egypt
4 Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo, Egypt

Received: 13 Mar. 2015, Revised: 2 Jul. 2015, Accepted: 30 Jul. 2015
Published online: 1 Jan. 2016

Abstract: The release of rogons (rogue waves) associated with the electrostatic perturbations in dusty plasmas containing two-
temperature ions is investigated. Solving the fluid equations using perturbation method, a nonlinear Schrödinger equation (NLSE)
is derived for the electrostatic potential amplitude, associated with the propagation of envelope wavepackets. The solution of the NLSE
is presented, which proposed as an effective tool for studying the rogons in different Saturn’s rings (i.e. E-ring, F-ring, and B-ring).
Our analysis indicates that the plasma parameters of the E-ring cannot support the propagation of rogue waves, but the rogue waves
may exist in B- and F-rings. The existence region of the created rogons is defined, as well as the forbidden zone of rogue waves is
examined. The variation of the structural properties of therogons with relevant plasma parameters is investigated, inparticular focusing
on the ratio between the low-temperature ion number density-to-dust number density, as well as the temperature ratio between the
low-temperature ions-to-electrons.
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1 Introduction

Dusty plasmas is a somewhat ambiguous term for the
mixture of charged dust grains with the electrons and ions
which found in normal plasmas. First, the Voyager
observations during 1980s showed various phenomena in
the Saturn’s rings that could not be explained on purely
gravitational alone, as well as a new ring (that is called
Saturn’s F-ring) discovered by these missions too.
Furthermore, there are many examples in the solar system
have relevance to the presence of dust grains such as in
noctilucent clouds, interstellar dust clouds, cometary tails,
planetary rings, solar nebula, etc. Dust particles are also
found in the Earth environment such as production
processes, flames, rocket exhausts, fusion devices, and
many laboratory experiments (see e.g. Refs. [1,2]).

In general, dust grains are highly negatively (or
positively) charged and massive grains in electron-ion
plasma. So, the dust masses are responsible for the

appearance of new types of waves and instabilities. One
of these waves is the low frequency dust-acoustic wave
(DAW), which was reported theoretically first by Rao et
al. [3] and was verified experimentally by Barkan et al.
[4]. Linear and nonlinear waves can exist in dusty
plasmas based on the strength of the nonlinearity in the
system. Many efforts have been made to examine
different nonlinear modes depending on the tendency to
self-organization and formation of long-living nonlinear
dissipative and coherent structures in a dusty plasma,
such as shock waves, solitons, cavitons, collapsing
cavities, etc. (see e.g. Refs. [5,6,7,8,9,10,11,12,13,14,
15]). Both shocks and solitons in dusty plasmas can be
formed by different means. These are not necessarily
restricted to the mode excitation due to instabilities, or an
external forcing, but can also be a regular collective
process analogous to the shock wave generation in gas
dynamics [2].
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One of the important effects that can change the
nonlinear modes propagation is the temperature of the
species, i.e. the presence of one species but having
two-temperatures. For example, the ions could have low
and high temperatures depending on achieving the
condition of the two-temperatures ion assumption. The
latter is defined by the energy rateER between the two
type of ions must be much smaller than the characteristic
frequency of the systemωpd = (4πnd0e2z2

d/md)
1/2, i.e.,

ER/ωpd ≪ 1, hereωpd is the dust plasma frequency,nd0
is the unperturbed dust density,zd is the dust charge
number, andmd is the dust mass. The two type ions are
assumed to have the same massmi and charge numberzi,
but one requires lower temperatureTil and another higher
temperature Tih. Here, ER = Γ /v2

ith, where
vith =

√

Tih/miand Γ = (4πnil0e4 lnΛ)/m2
i , with a

Coulomb logarithm lnΛ ≈ 10− 15 and unperturbed low
temperature ion number densitynil0 [16,17]. The validity
of the two-temperature ions assumption is examined for
Saturn’s environments as in Refs. [18,19].

During the last two centuries, many reports of
extreme wave events teem in ocean seafarer stories: an
ultra-high ghost wave occurs unexpectedly, propagates for
short times destroying everything in its passing and then
disappears without a trace [20]. Now, these catastrophic
waves are well-known by rogue waves (or freak waves, or
monster waves, or rogons). On the other hand, rogons are
short-lived phenomena appearing suddenly out of
nowhere. The average height of the rogons can be two,
three, or even more times the height of the surrounding
waves.

Importantly, fundamental research has by now gone
beyond the standard ocean-surface-dynamical problem,
tracing rogue waves in different fields of science starting
from mid-ocean and coastal waters [21,22], fiber optics
[23], Bose-Einstein condensates [24,25], plasma physics
(e.g. Refs. [26,27,28,29,30]), and even in finance [31].
Since the phenomenon of rogue waves is still a matter of
active research, it is precocious to state clearly what the
most common causes are or whether they vary from place
to place. Several mechanisms for rogue waves including
diffractive focusing, nonlinear effects (modulational
instability), wind waves, and thermal expansion. Here, we
are interesting to examine the generation of rogue waves
based on one of the successful theories to explain the
propagation of rogue waves which is the modulational
instability due to the presence of nonlinear effects in the
plasmas.

In view of the crucial importance of this challenging
phenomenon, we have undertaken an investigation of the
occurrence of rogue waves in different Saturn’s rings
which is associated with the presence of charged dust
grains interacting with two-temperatures ions plasma. A
reductive perturbation method is used to reduce the basis
equations to one evolution equation describing the plasma
system. The nonlinear Schrödinger equation is derived
from the evolution equation, which admits a rational

solution characterizing the rogue wave profile. Using the
available data for different Saturn’s rings, an ad hoc
numerical study of the rogons is briefly presented.

2 Basic equations and formulation of the
problem

Let us consider a system of four-components
collisionless, unmagnetized dusty plasma consisting of
negatively charged dust particles, isothermal electrons,
and two-temperature isothermal ions. The dimensionless
basic equations are governed by

∂nd

∂ t
+

∂
∂x

(ndud) = 0, (1)

(

∂
∂ t

+ ud
∂
∂x

)

ud −
∂φ
∂x

= 0, (2)

∂ 2φ
∂x2 + nil + nih − nd − ne = 0, (3)

where the number densities of ions and electrons are
expressed as:

nil = µil exp(−∆ilφ), (4)

nih = µih exp(−∆ihφ) , (5)

and

ne = µe exp(∆eφ) . (6)

Here,ud, nd , andφ referred to the dust fluid velocity,
number density, and electrostatic potential, respectively.
The densitiesnd andn j ( j = il, ih, ande) are normalized
by nd0 and ndzd0, respectively. The space coordinate is
normalized by the dust Debye lengthλDd

=
(

Te f f /4πnd0e2zd
)1/2

, the time is normalized by the
inverse of dust plasma frequencyω−1

pd =
(

md/4πnd0e2z2
d

)1/2
, the velocityud is normalized by the

dust-acoustic speedCDA =
(

zdTe f f /md
)1/2

, and φ is
normalized by Te f f /ezd . At equilibrium, we have
µil + µih = µe +1, where

1
Te f f

=
1

zdnd0

[

nil0

Til
+

nih0

Tih
+

ne0

Te

]

,

∆il =
Te f f

zdTil
, ∆ih =

Te f f

zdTih
, ∆e =

Te f f

zdTe
,

µil =
nil0

zdnd0
, µih =

nih0

zdnd0
, µe =

ne0

zdnd0
.

whereTe,Til , and Tih are the temperatures of electrons,
cold ions, and hot ions in units of energy, respectively.
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The electrons being more mobile than the other
plasma particles and they will impact more into the grain
surface, the grain will be negatively charged, acquire a
negative potential with respect to the ambient plasma.
After that, the random motion of the ions and the
electrons in the neighborhood of the charged grains are
disturbed. As the gains are negatively charged, the ions
are attracted and electrons are repelled .Then, the grains
become positively charged, the possibility of hitting ions
decrease and the chance for electrons is increase. Finally,
the electron flux is reduced by repulsion just enough to
balance with ion flux. The dust grain chargeqd is
determined bydqd/dt = ∑

j
I j where j represents the

plasma species (electrons and ions) andI j is the current
associated with the speciesj. At balance the net current
flowing onto the dust grain surface becomes zero, so we
consider the dust charge is constant at this case.

To study small- but finite-amplitude DAWs, we derive
the evolution equation describing the basic set of fluid
equations (1)–(6). So, we employ the reductive
perturbation method, which introduces the stretched
space-time coordinates

X = ε1/2 (x−λ t) and T = ε3/2t, (7)

whereλ is the phase speed of the acoustic waves that will
be determined later andε is a smallness parameter
measures the weakness of the amplitude or dispersion.
The physical quantities appear in Eqs. (1)–(6) are
expanded as:

nd = 1+ εn(1)d + ε2n(2)d + ε3n(3)d + ........, (8)

ud = εu(1)d + ε2u(2)d + ε3u(3)d + ............, (9)

φ = εφ (1)+ ε2φ (2)+ ε3φ (3)+ ............, (10)

Substituting Eqs. (7)–(10) into Eqs. (1)–(6), we obtain to
the lowest order inε

n(1)d = u(1)d =−φ (1), (11)

while the Poisson equation gives the compatibility
condition

λ = (µil∆il + µih∆ih + µe∆e)
−1/2. (12)

To the next-order ofε, we get the system of equations
in the second-order perturbed quantities. Solving those
equations, we obtain the Korteweg-de Vries (KdV)
equation

∂φ (1)

∂T
+Bφ (1) ∂φ (1)

∂X
+

1
2

∂ 3φ (1)

∂X3 = 0, (13)

where

Fig. 1: The nonlinear coefficientB againstµil for Saturn’s E-ring,
whereβ1 = 0.1, β2 = 0.98, β = β1/β2, andµih = 1000.

B =
1
2

[

−3+
µil(1−β 2

1)+ µihβ 2(1−β 2
2)+β 2

1

(µil(1+β1)+ µihβ (1+β2)−β1)
2

]

,

β1 =
Til

Te
, β2 =

Tih

Te
, and β =

Til

Tih
.

It is well-known that the KdV equation (13) has different
nonlinear solutions including solitary wave solution.
However, the latter is out the scope of the present work
since we are interesting to investigate the rogue wave
solution of the evolution equation describing the plasma
in different Saturn’s rings. Describing the rogue waves
could be done by using the nonlinear Schrödinger
equation (NLSE). The KdV equation can be transformed
to the NLSE for small wave number, however the
coefficients of the produced NLSE cannot satisfy the
condition for rogue wave existence. Therefore, the NLSE
that has been obtained from the KdV equation cannot
support rogue wave solution (see e.g. Ref. [32]). Now, it
is interesting to examine the sign of the nonlinear
coefficientB. On the other hand, couldB equal zero at
some critical value. Numerical analysis indicates that at
critical concentration of low ions density (i.e.µil ≡ µilc)
the nonlinear coefficientB = 0. Thus, the KdV equation is
not sufficient to describe the nonlinear wave propagation
at µilc, and we need to derive another equation describing
the system. We can use new stretched variables as

X = ε (x−λ t) and T = ε3t, (14)

along with the expansions (8)–(10) into the basic Eqs. (1)–
(6), after some algebraic manipulations, we finally obtain
the modified Korteweg-de Vries (mKdV) equation

∂φ (1)

∂T
+Cφ (1)2 ∂φ (1)

∂X
+

1
2

∂ 3φ (1)

∂X3 = 0, (15)

where
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Fig. 2: The nonlinear coefficientB againstµil for Saturn’s B-ring,
whereβ1 = 0.05, β2 = 0.98, β = β1/β2, andµih = 1.

C =
1
4

[

15−
µilc(1+β 3

1)+ µihβ 3(1+β 3
2)−β 3

1

(µilc(1+β1)+ µihβ (1+β2)−β1)
3

]

.

Notice that we have replaced the expression of the
phase velocity from Eq. (12) into the coefficientsB andC,
then make an appropriate simplification to ensure that the
compatibility condition (12) is always satisfied.

It is interesting to transform the mKdV Eq. (15) to the
NLSE to describe the behavior of the weakly nonlinear
wave packet that gives rise to freak wave propagation.
Therefore, we expandφ (1) as [33,34]

ϕ =
∞

∑
m=1

εm
L=m

∑
L=−m

ϕ(m)
L (X ,T )exp(iLθ ), (16)

Here,ϕ ≡ ϕ(1) for simplicity andθ = (kX −ωT), where
k andω are real variables representing the wave number
and the frequency of the carrier wave, respectively. The
stretched variablesX andT are given by

X = ε (X − vgT ) and T = ε2T, (17)

wherevg is the group velocity,ϕ(m)
L in equation (16) must

be real, so we considerϕ(m)
−L = ϕ(m)∗

L , where the asterisk
indicates the complex conjugate. Substituting Eqs. (16)
and (17) into Eqs. (15) and comparing the coefficient of
ε. We get in the first-order of the approximation form = 1
and L = 1 the electrostatic waves dispersion relation
ω = − 1

2k3. The second order approximation form = 2
andL = 1 yieldsvg = − 3

2k3 is the group velocity. From
the third-order approximationm = 3 andL = 1, we finally
deduce from the resulting condition the NLSE equation
which take the form:

i
∂ψ
∂T

+
1
2

P
∂ 2ψ
∂X

2 +Q |ψ |2 ψ = 0. (18)

Fig. 3: The nonlinear coefficientB againstµil for Saturn’s F-ring,
whereβ1 = 0.01, β2 = 0.98, β = β1/β2, andµih = 0.8.

Here, ϕ(1)
1 ≡ ψ for simplicity that represents the

electrostatic wave envelope. The coefficients of the
dispersion and nonlinear terms are given byP = −3k and
Q = −Ck, respectively. The character of the dynamic
wave depends on the sign of the ratio ofP/Q = 3/C. The
sign of this ratio refer to the (in)stability of the system.
The unstable envelope pulses propagate when(P/Q)> 0,
while the stable envelope pulses exist when(P/Q) < 0.
The waves become stable ifC < 0 and unstable ifC > 0.

The NLSE (18) has a rational solution that is located
on a nonzero background and localized both in theT and
X directions as [35]

ψ =

√

P
Q

[

4(1+2iPT)

1+4P2T
2
+4X

2 −1

]

exp(iPT ). (19)

Equation (19) represents the freak wave solution in the
unstable zone of the NLSE (18) for which the nonlinear
coefficientC must be positive. If we substitute Eqs. (16)
and (17) into the KdV equation (13), we obtain also the
NLSE but with different forms ofP andQ, i.e. P = −3k
and Q = B2/3k. Therefore, the ratioP/Q is always
negative and hence the NLSE that obtained from the KdV
equation cannot support rogue wave solution and it is
usually represent stable wave.

3 Numerical analysis and discussion

Recalling that the transfer from KdV Eq. (13) to mKdV
Eq. (15) needs a substantial condition which is the
nonlinear coefficientB vanishes at critical concentration
of low ions density (i.e.µil ≡ µilc). To examine this
condition for typical plasma parameters of E-, B-, and
F-rings, we have plotted the nonlinear coefficientB
against the concentration of low ions densityµil as in
Figs. 1, 2, and 3. It is seen that for E-ring typical
parameters, the nonlinear coefficientB has always
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Fig. 4: The contour plot of B-ring of the rogue wave amplitude
√

P/Q againstµih andβ1, whereβ2 = 0.98 andβ = β1/β2.

Fig. 5: The contour plot of F-ring of the rogue wave amplitude
√

P/Q againstµih andβ1, whereβ2 = 0.98 andβ = β1/β2.

negative values. However, for B- and F-rings the
nonlinear coefficientB has either positive or negative
values, as well as at critical concentration of low ions
density (i.e.µil ≡ µilc) B vanishes, which is depicted in
Figs. 2 and 3. Therefore, the transformation from the
KdV to mKdV is only possible for B- and F-rings. Hence,
the following analysis will consider only these two cases.

Recalling that the rogue waves can exist in the
modulational instability region that represents by the
NLSE (18). On the other hand, ifP/Q < 0, the amplitude
modulated envelope will be “stable” against external
perturbations and the waves are modulationally “stable”
and may propagate in the form of a “dark” (“black” or
“gray”) envelope wave packet, i.e., a propagating
localized “hole” (a “void”) amidst a uniform wave energy
region. In other words, for “positive”P/Q, the carrier
wave is modulationally “unstable;” it may either
“collapse,” due to (possibly random) external
perturbations, or lead to the formation of “bright”
envelope modulated wave packets, i.e., localized envelope

Fig. 6: The rogue pulse profile of B-ring, whereµih = 0.3, β1 =
0.15, β2 = 0.98, andβ = β1/β2.

“pulses” confining the carrier wave. We are interesting to
investigate a special modulational unstable solution for
P/Q > 0, which is local both in space and time. This is
typical for rogue waves, which appear suddenly and then
disappear without trace. In order to gain some insight, we
have depicted the ratioP/Q for B- and F-rings. From Eq.
(19), it is seen that the maximum amplitude of the rogons
is proportional to(P/Q)1/2 = (3/C)1/2. So, for rogons
existence the sign of the nonlinear coefficientC should be
positive. The contour plot of the ratio(3/C)1/2 is depicted
in Figs. 4 and 5 for B- and F-rings, respectively. Figure 4
clears the contour plot of the ratio(3/C)1/2 for B-ring. It
is obvious that the rogons can exist for wide range of
plasma parameters except for the white zone since the
ratio P/Q is negative orC < 0. The enhancement of the
parameter β1 would lead to shrink (increase) the
maximum amplitude forµih < 0.5 (µih > 0.5), however
the parameterµih increases the pulse amplitude. The
behavior in the F-ring is different, since the rogue waves
can exist for the possible values of plasma parameters as
depicted in Fig. 5. Now, we will plot the rogue wave
profile for different Saturn’s rings as shown in Figs. 6 and
7. It is seen that the rogue wave amplitude for B-ring is
shorter than F-ring. Furthermore, the rogue wave profiles
have not change in their spatial size. The taller pulse
amplitude in the F-ring may be speculated to that the
plasma parameters in the F-ring produce sufficient high
nonlinearity to absorb a large amount of energy from the
background waves and produce towering rogons.

4 Summary

We have presented a theoretical model, for rogons (rogue
waves) associated with the electrostatic pulse propagation
in dusty plasmas containing two-temperature ions.
Solving the fluid equations, we have derived the nonlinear
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Fig. 7: The rogue pulse profile for F-ring, whereµih = 0.05, β1 =
0.13, β2 = 0.98, andβ = β1/β2.

Schrödinger equation (NLSE) for the electrostatic
potential amplitude, associated with the propagation of
envelope wave packets. An envelope rational solution of
the NLSE is presented, which proposed as an effective
tool for studying the rogons in Saturn’s rings. Three rings
namely; E-ring, F-ring, and B-ring are considered, and the
existence of rogue waves in these rings are examined. It is
found that only B- and F-rings support the propagation of
rogue waves. The existence region of the rogons is
examined for typical plasma parameters of B- and
F-rings, and the forbidden region of the rogons are
defined precisely. Outside the forbidden region, it is
possible for a random perturbation to grow and may thus
lead to the creation of the rogue waves. We can elucidate
this phenomenon to that the relatively high number
density of the dust grains in the B- and F-rings could
create an abundant nonlinearity in the system to soak up
high amount of energy from the background waves
producing steep rogons.
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