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Abstract: In the next few years, the rate of enhancement in GPUs (Graphics Processing Units) performance is expected to outshine
that of CPUs (Central Processing Units), increasing the demand of the GPU as the processor chosen for image processing. In light of
tremendous advance in computer vision research of recognition shape domain, we proposed a GPU technology of programming and
computing to accelerate the Fourier descriptor technique invariant to color images classification. It is a simple and powerful technique
to represent objects based on their shapes. It has attractive properties such as rotational, scale, and translational invariance. Since the
heaviest part of Fourier descriptor computing time is the Fast Fourier Transform (FFT), we decided to bring it out on GPU.We used
CUDA: Compute Unified Device Architecture, the specific programming language of GPU, and its CUFFT library to acceleratethe
computation of FFT. To showcase this implementation, we studied the performance of GPU versus a traditional implementation on
CPU for single and double precision.
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1 Introduction

Development of storing systems, transmission and
acquisition systems induced the creation of a great base of
image. Diversity of these databases (medicals image,
objects image and faces image) makes image
representation one of dynamic domain of research.
Indexing image by her contain is not the only way to
characterize it. We must find a speedily representation
available and easily to compare. For all image, we can
extract different attributes using some mathematic tools.
Descriptor is a tool that represents all information of
image in its coefficients vector. In our paper, we are
interested in shapes descriptor and more precisely the
Fourier descriptor on recognition and classification
images domain. We proposed a new implementation of
GFD (Generalized Fourier Descriptor) and GCFD
(Generalized Clifford Fourier Descriptor) based on GPU
technology. For GPU implementation, it is more
important to indicate the appropriate descriptor in term of
time and efficiency. Indeed, the performance and speedy
factors have becoming in the same importance degree.

In fact Fourier descriptor is used as feature vector in
various papers. The first ideas are started by Gauthier et

al. [1], when they proposed a family of invariants in
translation, rotation, and scale. Fourier descriptor is also
used on object classification and image retrieval domain
by Y. Raj Bahadur [2] and F. Javier Diaz [3]. F. Smach
and al. [4] were implemented for the first time the GFD as
a co-design (HW/SW), when the hardware part was
implemented in FPGA. Finally, J. Mennesson and al. [5]
have created the notion of GCFD. This method was
implemented purely on software using matlab and C. In
order to present some papers using the Fourier descriptor
on GPU, T. Li presented in [6] an optimal method based
on Fourier descriptors to detect and track an active
contour of images (convex and concave) using CUDA. In
[7], H. Heidari and al. implemented also a color based
image retrieval system in CUDA. However no
publications exist about GPU implementation of
recognition shape image based Fourier descriptor.
Accelerating the mechanism of Fourier descriptor on
GPU is an original idea to have a suitable result of
recognition for so less time.

We divided our paper in five main parts. First of all,
we gave an overview of the Fourier descriptor with each
pattern. Secondly, we defined CUDA hierarchical and its
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specifications architecture. Thirdly, we detailed CUDA
CUFFT library and our algorithms using this last.
Fourthly, we discussed about experimental results of GFD
and GCFD. Finally, we compared between FFT and
Fourier descriptor implementation for each pattern and
precision.

2 Fourier descriptor for a color image

Fourier descriptor can be used as a feature vector
component in various applications, such as:

• Image retrieval (on the web or in large database),
• Shape recognition (tumors in medical images),
• Object tracking (someone in the metro) etc . . .

In case of shape recognition domain, we used Fourier
descriptor for color object image processing. It gathers
the full information of object in image. It conserves the
invariance characters of geometric transform, noisy and
lighting. Fourier descriptor can be in global mode
representing all pixels of image or in local mode, where it
shows some regions and interesting points. We quote
among shapes descriptor: Fourier descriptor, geometric
moments . . .

In this context, we studied the Fourier descriptor for
recognition and classification images. Complex Fourier
Transform or Fast Fourier Transform (FFT) is used by
Fourier descriptor to extract different features of an object
in an image. Those features were represented in a
coefficients vector that will be used as an input of
classifier (SVM, neuron network . . . ) to identify their
class.

2.1 Fourier transform

2.1.1 Definition

Fourier transform is used in a wide range of applications,
such as image analysis, image filtering, image
reconstruction and image compression. It is the analogous
of theoretical Fourier series for non-periodic functions.It
is an operator that transforms an integral function to
another function giving its frequency spectrum. This
transform is an important image processing tool which is
used to decompose an image into its sine and cosine
components [8]. The output of the transformation
represents the image in the Fourier or frequency domain,
while the input image is the spatial domain equivalent. In
the Fourier domain image, each point represents a
particular frequency contained in the spatial domain
image. The Fourier transform of spatial functionf (x)
gives a frequency function(equation 1). It can be

recovered without losing information using two variables
u and v(equation 2)1:

F(v) =
∫ +∞

−∞
f (x)e−( jvx)dx (1)

F(u,v) =
∫∫ +∞

−∞
f (x,y)e− j2Π(ux+vy)dxdy (2)

2.1.2 Fast Fourier Transform in image processing

For a digital image processing, Fourier descriptor used
DFT (Discrete Fourier Transform) which is the basis of
most digital images processing(equation 3). The
intensity of digital image f (x,y) defined inR2 function
will be transformed inR2 frequency function using DFT
(equation 4):

F(u) =
M

∑
1

f (x)e− j2Π( ux
M ) (3)

F(u,v) =
M

∑
x=1

N

∑
y=1

f (x,y)e− j2Π( ux
M + vy

N ) (4)

For a discrete function, DFT uses a summation
operator, while for a continuous function, it uses an
integral operator. DFT is a sampled Fourier transform;
therefore it does not contain all frequencies forming an
image. Only a set of samples is large enough to fully
describe the spatial domain image. The FFT is based on
the complex DFT, a developed model of the real DFT.
Even with these computational savings, the ordinary one
dimensional DFT hasN2 complexity but FFT can reduce
it to Nlog2N. There are various forms of FFT but most of
them restrict the size of the input image that may be
transformed. It is used to access the geometric
characteristics of a spatial domain image. In most
implementation the Fourier image is shifted in such a way
that the output imageF(0,0) is displayed in the center.

2.2 GFD: Generalized Fourier descriptor

The image intensity relations were defined in Cartesian
coordinates but D.Zhang and G.Lu [9] have used them in
2 dimensions Polar coordinates.

F(ρ ,θ ) = ∑
r

∑
i

f (r,θi)e j2Π( r
R ρ+ 2Π

T ϕ) (5)

A classical method applied on GFD, consist in
computing Fourier descriptor vector on each color
channel separately. The resulting vectors will be
concatenated in simply vector as an input of classifier.

1 y, u: Spatial and frequency variable (as respectively of x, v).
u=1...M and v=1...N.
j2= -1.
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This approach is given by F. Smach and al. [10] defined
some invariants for all digital color images. These
invariants are noted by this following relation:

D f (r) =
∫ 2Π

0
‖ f (r,θ )‖2dθ (6)

The integral is replaced by a finite sum in discrete
domain to produce the Fourier descriptor vector. In fact,
we summarize the compute of descriptors in five main
steps. Firstly, we decompose a color image into 3 separate
channels images (red, blue and green). Then, we apply
the FFT algorithm for each channel. Therefore we sum
the square module of FFT located on the circle of radius
”r” [ 4]. Then, we gather these values to construct the
Fourier descriptor vectorD f (r). Finally, we normalize all
coefficients byD f (0) (E.g. FDb(1) = D f b(1)/D f b(0)).
The following figure shows how we computeFDb(r) for
each channels of image:

Fig. 1: Compute of Generalize Fourier Descriptor

2.3 GCFD: Generalized Clifford Fourier
Descriptor

In this section, we presented the second model of Fourier
descriptor: GCFD or Generalized Clifford Fourier
Descriptor. It can minimize the loss of data relative of
GFD. This descriptor is based on Fourier transform
defined in Clifford algebra [5]. For this transform, it used
2 bi-vectors B and I4B, they are equivalent of two
perpendicular plans [11]. To bring out the totality of color
image information, the same method consists to compute
the Fourier descriptor vector. For GCFD, we worked in
two channels instead of three channels. To define GCFD,
we decomposed an image into parallel part according the
bi-vector B and other perpendicular part accordingI4B.
We chose aBb = blue∧e4 as a bi-vector replacingB. This

choice specifies the analysis plan and generates another
orthogonal plan. We noticed that decomposing of color
image is sensitive to the bi-vector chosen. It varied the
result of descriptor, thereafter the precision of
classification. When applying the Clifford Fourier
Transform (CFT), we obtained some invariant noted by
GCFD, it can be defined in 2 vectorsGCFD‖B and
GCFD⊥B:

GCFD‖B =

∫ 2Π

0

∥

∥F‖B(r,θ )
∥

∥

2
dθ (7)

GCFD⊥B =
∫ 2Π

0
‖F⊥B(r,θ )‖2dθ (8)

We determinate theGCFD‖B values when applying
the CFT in a parallel analyze plan of B. As theGCFD⊥B
values were obtained by the same transform for the
second planI4B. Applying the CFT for a function allows
decomposing them in parallel and perpendicular parts. To
compute the Fourier descriptor for each component, we
follow the same steps of GFD for each plan. Firstly, we
compute the CFT for the both channels. Next, we
determine the module of CFT and its square values. Then
we extract the coefficients vector [12] and finally we
normalize these coefficients with the first term.

Fig. 2: Compute of Generalized Clifford Fourier Descriptor

The GCFD vector is the concatenation of the parallel
and orthogonal part of descriptor. The number of
coefficients for this descriptor is 2×m instead of 3×m
from the marginal method of GFD.

3 Parallelism approaches of CUDA

FFT is used in image transform, video compression,
speech and audio. For each field it makes its specific
signification, it has a compute intensive and big volume
of data [13]. For this reason, we estimated that GPU
based FFT algorithm can be the cost effective solution. In
fact GPU has becoming a hot research topic that works in
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image processing. It can execute the FFT application in
parallel model using the SIMD (Single Instruction
Multiple Data) mode. To execute this transform, we used
a programming language of graphics card which is
CUDA (Compute Unified Device Architecture).

3.1 Programming under GPU : CUDA

CUDA is a programming language under GPU. It was
introduced by the NVIDIA Corporation in November
2006. This architecture provides a complete solution for
General Purpose-Computing on Graphics Processing
Unit, including new hardware, instruction sets and
programming models. The API (Application
Programming Interface) of CUDA allows communication
between the CPU and GPU, ultimately allowing the user
to control the execution of code on the GPU with the
same degree of control as on CPU. It primarily allows the
C programming language to be used as a high-level
interface, although other languages are supported. Other
important features are flexibility of data structures and
explicit access on the different physical memory levels of
the GPU. CUDA presents also a good framework for
programmers including a compiler, CUDA Software
Development Kit (CUDA SDK), a debugger, a profiler,
CUFFT and CUBLAS scientific libraries [14].

3.2 CUDA Programming Hierarchical

The CUDA computing engine virtualizes graphics
hardware available to the programmer through the use of
uniquely numbered threads that are organized into 1D,
2D, or 3D blocks of arbitrary size [15]. The threads are
executed on the graphics device equipped with a GPU,
hereafter referred to as the device, serving as a
coprocessor that enhances the computational capabilities
of the workstation, referred to as the host (CPU).

 Grid

Global Memory

Constant Memory

Host (CPU)

Shared Memory

Registers Registers

Thread (0,0) Thread (1,0)

Block (1,0)

Shared Memory

RegistersRegisters

Thread (0,0) Thread (1,0)

Block (0,0)

Fig. 3: GPU Device Memory Hierarchy [16]

The memory of the device presented in figure 3, is
disjoint from the memory of the host, making it necessary

to allocate and transfer blocks of data to the device prior
to executing threads. In addition to off-chip random
access memory, termed global memory, the device offers
a limited amount of low-latency on-chip memory
accessible to all threads within a block, referred to as
shared memory. On-chip memory is also available in the
form of registers, which are only accessible to individual
threads. The device code is encapsulated in special
functions called kernels that are invoked by the host, and
executed in parallel by multiple threads. At run time, the
threads within the block are executed in groups of 32,
called warps. The execution follows the single instruction
multiple thread (SIMT) model. This model guarantees
parallel execution as long as the threads in a warp do not
experience a divergence of code due to branching
instructions. To ensure peak performance, it is imperative
to maximize the occupancy of the multiprocessors and to
minimize the latency associated with global memory
access by selecting the appropriate granularity of
computations and the proper assignment of thread block
dimensions [18].
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Fig. 4: CUDA thread organization and execution [17]

Each CUDA kernel runs a virtualized set of threads
which are hierarchically organized into three dimensional
thread blocks. The programming model conceptually
partitions these thread blocks into a three dimensional
grid (left side of Fig4 above). CUDA dynamically assigns
each thread block to a single streaming multiprocessor. A
thread block is further broken down into a collection of
multiple warps, each group of scalar threads that execute
in SIMD fashion (right side of Fig4). This implicit SIMD
model can reduce the programming complexity and
improve the code maintainability. However, this model
may limit the instruction throughput on SIMD vector
units since warp formation is statically determined.

4 CUFFT library of CUDA

As a new method of implementation on GPU, we used a
specific library of CUDA programming language which is
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CUFFT [19,20]. It is the CUDA FFT library that
implements the Fourier transform algorithms and
provides a simple interface for computing parallel FFT on
GPU. This allows users to leverage the floating point
power and parallelism of the GPU without having to
develop a custom. The CUFFT library implements several
FFT algorithms, each with different performances and
accuracy. The 4.0 version [21] of the CUFFT library
supports the following features:

• 1D, 2D, and 3D transforms of complex and realvalued
data

• Batch execution for doing multiple transforms of any
dimension in parallel

• Transform sizes up to 64 million elements in single
precision and up to 128 million elements in double
precision in any dimension, limited by the available
GPU memory

• Inplace and outofplace transforms for real and
complex data

• Doubleprecision transforms on compatible hardware
• Support for streamed execution, enabling

simultaneous computation together with data
movement . . .

Algorithm 1: 2D FFT of an image using CUDA
(CPU part)

Input :
img input ⊲ the input image
matrix img h ⊲ complex image matrix in the host
matrix img d ⊲ complex image matrix in the device
plan ⊲ the transform place of CUFFT
Output :
matrix img Rh ⊲ real image matrix in the host
matrix img Rd ⊲ real image matrix in the device
img ouput ⊲ the output image

1 for i← 0 to width do
2 for j← 0 to height do
3 matrix img h(i∗width+ j).x← img input(i, j)
4 matrix img h(i∗width+ j).y← 0

5 matrix img Rd← matrix img Rh
6 matrix img d← matrix img h
7 cufftPlan2d(plan, CUFFTZ2Z) ⊲ 2D transform plan for

complexe data
8 cufftExecZ2Z (plan, matriximg d, matrix img d) ⊲

complex to complex transform function
9 FFT shift (matrix img Rd, matrix img d) ⊲ FFT shifting

kernel
10 for l← 0 to width do
11 for k← 0 to height do
12 img out put(l,k)← matrix img Rh(l ∗width+k)

13 return img out put

Applying CUFFT can be resumed in 4 easy steps.
Initially, we should allocate space on GPU where the FFT

functions compute its algorithm [22,23,24]. Then,we
create plan specifying transform configuration like the
size and type (real, complex, 1D, 2D and so on). The
following step is to execute the plan as many times as
required, providing the pointer to the GPU data created in
the first step. Finally, we destroy the space initially
created to release the GPU memory.

Algorithm 2: KERNEL of FFT shift on CUDA (GPU
part)

Input :
matrix img ⊲ complex image matrix in the device
aux ⊲ auxiliary matrix for exchange
Output :
matrix img R ⊲ real image matrix in the device

1 col1 : 0 to width/2 ⊲ pointer to the x-coordinate until
the middle of image

2 row1 : 0 to height/2⊲ pointer to the y-coordinate until the
middle of image

3 col2 : width/2 to width ⊲ pointer to the x-coordinate from
the middle until the end of image

4 row2 : height/2 to height ⊲ pointer to the y-coordinate
from the middle until the end of image

5 Phase 1: Exchange the data between the four
quadrants Exchange the data between the first
quadrant and the third quadrant for the real part.

6 aux(row1∗width+col1)←
matrix img(row1∗width+col1).x

7 matrix img(row1∗width+col1).x←
matrix img(row2∗width+col2).x

8 matrix img(row2∗width+col1).x←
aux(row1∗width+col1)

9 Do the same step for the imaginary part of the previous
quadrants. Exchange the data between the second
quadrant and the forth quadrant for the real part.

10 aux(row1∗width+col1)←
matrix img(row1∗width+col2).x

11 matrix img(row1∗width+col2).x←
matrix img(row2∗width+col1).x

12 matrix img(row2∗width+col1).x←
aux(row1∗width+col1)

13 Do the same step for the imaginary part of the previous
quadrants.Phase 2: Define the module of those previous
results

14 matrix img R(row1∗width+col1)←
{matrix img(row1∗width+col1).x∗matrix img(row1∗
width+col1).x+matrix img(row1∗width+col1).y∗
matrix img(row1∗width+col1).y}

15 Do in the same way the second, the third and the fourth
quadrants.

16 return matrix img R

For more details, we tried to define some
programming specification of CUFFT library API [23].
First of all, CUFFT stands to compute real and complex
data for each precision such ascufftReal, cufftComplex,
cufftDoubleReal and cufftDoubleComplex. This
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temporary space will be allocated separately for each
individual plan. CufftPlan1D(), cufftPlan2D() and
cufftPlan3D() create a simple plan for a1D, 2D and3D
transform respectively. Then, when the execution function
is called, the actual transform takes place following the
plan of execution. Before talking about execution, we
should notice thatcufftHandle creates aftercufftPlan() to
store and access CUFFT plans.CufftExecC2C (or
cufftExecZ2Z) executes a single precision (or double
precision) complex to complex transform plan in the
transform direction as specified by direction parameter
CUFFT FORWARD (or CUFFT INVERSE). Also
cufftExecR2C (or cufftExecD2Z) executes a single
precision (or double precision) real to complex (implicitly
forward) CUFFT transform plan. At the end of the
transformation, we free all GPU resources associated with
a CUFFT plan and destroy the internal plan data structure
by cufftDestroy(). In Algorithm 1, extract of CUDA C
programs is presented to show how CUFFT used on
Fourier descriptor. We describe also how CUFFT used the
GPU memory pointed to by the input data parameter.
Then the execution function stores the Fourier coefficients
in the output data array. Besides this, we added a relevant
kernel calledfft shift to reorder the output of Fourier
transform. This kernel is shown in Algorithm 2.

5 Experimental results

For the experiment, we used NVIDIA’s GeForce GT
525M graphics card based GPU with Compute Capability
2.1. It belongs to the Fermi architecture and it supports 96
CUDA cores, running at 1.2 GHz. It is connected with
Intel R© CoreTM i3-2350M based CPU with a clock speed
2.30 GHz built in x64 PC Main Boards PCI Express. For
smooth running the process of FFT based image
recognition using GPU, we have used different resolution
of images to figure out the performance of FFT on CPU
and GPU based implementation for Fourier descriptor.
Images are chosen with an odd resolution for some
processing obligation. CPU performance results are
obtained by computing FFT of images in C++ using
OpenCV and measuring the execution time using the
Visual Studio special profiler. Then GPU performance
results are obtained by applying the CUFFT library for
each image in CUDA and measuring the execution time
using the special NVIDIA Compute Visual Profiler.

5.1 Processing of GFD computing for a color
image

According to these experimental materials features, we
started processing image with the first pattern of Fourier
descriptor which is GFD. We divided our work in two
parts: firstly we processed the FFT function for each
image on both computing platforms (CPU and GPU).

Secondly, we processed the totality of GFD also on both
computing platforms. Based on the processing described
previously, the results measured can be seen in table I.
The time is shown in microseconds and is calculated from
when either the CPU or GPU starts allocating memory
and calculating the FFT response to the FFT responses
are ready for use in host memory.

Table 1: FFT features on GFD
Image
size

Processing time of FFT Speedup
factor of FFTCPU (ms) GPU (ms)

15×15 0.75 0.1 7.5×
31×31 1.55 0.13 11.9×
63×63 5.77 0.28 20.6×

127×127 20.22 0.89 22.7×
255×255 85.61 3.52 24.3×
511×511 380.03 18.36 20.7×

1023×1023 1626.66 103.4 15.7×

Table 2: GFD features
Image
size

Processing time of GFD Speedup
factor of GFDCPU (ms) GPU (ms)

15×15 2.91 0.3 9.7×
31×31 4.98 0.97 5.1×
63×63 13.54 3.7 3.6×

127×127 47.13 15.35 3×
255×255 197.68 61.47 3.2×
511×511 552.76 90.77 6×

1023×1023 1981.25 182.68 10.8×

As expected, GPU implementation outperforms CPU
version in all size of image. The previous table indicates
that GPU seems to run FFT faster than CPU. While
increasing the image size, the results show an
improvement performance of GPU as about 1.52 second
as a difference with CPU for 1023x1023 resolutions. It
can be noticed from table 1 that the speedup factor can
reach 24X at 255x255 image size. The speedup of FFT
computing was impacting certainly in the full treatment
of GFD. The results in table 2 show that GPU reduced
enormously the GFD execution time. We notice that the
speedup factor can reach in highest 10X.

5.2 Processing of CGFD for a color image

As the first model of Fourier descriptor, we implemented
the GCFD on both processors. This descriptor includes
less proceeding than GFD. On one hand, we reduced the
execution time of processing; on the other hand, we used
a shorter descriptor vector than GFD.

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 1, 297-306 (2016) /www.naturalspublishing.com/Journals.asp 303

Table 3: FFT features on GCFD
Image
size

Processing time of FFT Speedup
factor of FFTCPU (ms) GPU (ms)

15×15 0.26 0.07 3.7×
31×31 0.44 0.09 4.8×
63×63 0.95 0.18 5.2×

127×127 2.86 0.59 4.8×
255×255 14.82 2.34 6.3×
511×511 45.18 12.14 3.7×

1023×1023 185.42 64.62 2.8×

Table 4: GCFD features
Image
size

Processing time of GCFD Speedup factor
of GCFDCPU (ms) GPU (ms)

15×15 2.48 0.2 12.4×
31×31 4.5 0.79 5.7×
63×63 11.19 2.54 4.4×

127×127 42.84 12.45 3.4×
255×255 159.91 50.17 3.1×
511×511 484.3 60.01 8×

1023×1023 1848.72 99.31 18.6×

Table 3 shows the comparison time of FFT computing
of GCFD between CPU and GPU. This last present a
great enhancement versus CPU, since the difference time
can reach 0.12 second. In the same table, the speedup
factor is outstanding for all image size. Maximum
speedup achieved 6.3X in 255x255 image size, whereas
minimum is 2.8X in 1023x1023 resolutions. This
performance will decrease the execution time of GCFD
computing. As shown in the table 4 above, GPU highly
reduces the time of computing. It achieves about 18X as a
speedup for 1023x1023 resolutions.

6 A comparative study of implementation
results

To showcase this work, we studied the efficiency of each
implementation for single and double precision. We started
this study by comparing the result of FFT implementation
on both computing platforms. Then, we compared GFD
and GCFD implementation on CPU than on GPU.

6.1 Comparative study of FFT

6.1.1 FFT of GFD

In Figure 5, we observe that the performance boost for FFT
is gradually enhanced. This performance for both CPU and
GPU is nearly the same for image size between 15x15 until
63x63. On both descriptors, while the resolution increases
the performance of CPU still delayed versus GPU.

Fig. 5: FFT for GFD in single and double precision: CPU & GPU

In the same figure, we show the relative performance
using each different precision. For CPU, both curves of
single and double precision are very close together and do
not separate in the most points. Whereas for GPU, we
notice that single precision is best than double precision
from 511x511 images size but after this resolution the
performance is nearly the same.

6.1.2 FFT of GCFD

In the same context, we compared the execution time of
FFT for GCFD. Figure 6 shows that when the size of image
increases, the gap between CPU and GPU increases from
the 127x127.

Fig. 6: FFT for GCFD in single and double precision: CPU &
GPU

In the same figure, we should focus the reduction of
execution time when using single precision on both
platforms. For CPU the gap between both precision
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started from 511x511 image size while for GPU it began
from 255x255.

6.2 Comparative study of Fourier descriptor

In this work we are interested mainly in the execution
time of Fourier descriptor, therefore and by analogy to the
previous study, we divided this part according to the
descriptor type and the precision type.

6.2.1 GFD

Figure 7 below shows that the performance of GFD on
CPU and GPU is nearly common before 127x127 image
sizes. For a large resolution, GPU performs better results
than those of CPU, so if we increase the size of image, the
margin rises immediately.

Fig. 7: GFD in single and double precision: CPU & GPU

The results of execution time for GFD indicate a great
performance of single precision then double precision.
This brings more flexibility of programming giving the
same results. On CPU, single precision reduces
enormously the execution time compared to double
precision. For 1023x1023 image size, it can reach up to
455 ms of execution time difference. However, on GPU
the difference between simple and double precision
achieved only 72 ms.

6.2.2 GCFD

For the second pattern of descriptor GCFD, figure 8 shows
that single precision get best time versus double precision
for both CPU and GPU. It can reduce up to 383 ms on
CPU and up to 24 ms on GPU. Implementing GCFD on
GPU makes fewer vectors of descriptor and less time. This
method improves better recognition and classification than
classical method.

Fig. 8: GCFD in single and double precision: CPU & GPU

6.3 Comparative study of speedup factor

6.3.1 Speedup of FFT

To showcase the performance of this work, we compared
the speedup of each implementation of FFT for the both
models of descriptor. In figure 9, we notice that the
performance of GPU is more important for GFD than
GCFD. We noted that the least value of speedup is around
2.8X and the highest can reach 24.3X.

Fig. 9: Speedup of FFT: GFD & GCFD

Due to their massive parallel architecture, using GPU
enables the completion of computationally intensive
assignments much faster compared with CPU. In fact, we
realized that GFD has a speedup better then GCFD
because the feature of heavy work of GPU. This is why
GPU has enormous potential particularly in areas where
data and compute intensive basic research requires the
processing of large volumes of measurement data. When
we have more data, the performance of GPU was great.
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6.3.2 Speedup of Fourier descriptor

To finish this study, we compared the speedup of GFD
and GCFD average time: We found that GCFD achieves

Fig. 10: Speedup of GFD & GCFD

superior speedups compared to GFD; it can reach 18.6X
of speedup. In otherwise, GFD gives maximum 10.8X of
speedup according to figure 10.

7 Conclusion and Future Work

This paper describes the acceleration of the Fourier
descriptor vector computing using CUDA platform and
discusses the feasibility and profit of different kinds of
optimized CUDA program. We perform also the
computing of FFT, which is the heaviest part of GFD and
GCFD using CUDA CUFFT library. We can find out that
a good CUDA program could speed up the parallel
programs significantly. Hence, we optimize the
computing time of Fourier descriptor vector. Then, we
compare between both models of descriptor for single and
double precision and finally we show that GPU success to
reduce enormously the execution time. As future work,
we proposed to realize the classification part on GPU
using the descriptor vector to perform the SVM based
classification and we compare it with another
implementation on a FPGA.
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