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Abstract: This article deals with the mathematical analysis of theilisg problem of identifying the distinguishability of inpautput
mappings in the linear time fractional inhomogeneous pai@bquation [ u(x,t) = (k(X)ux)x+r(t)F(x,t) 0< a <1, with Dirichlet
boundary conditionsi(0,t) = ¢(t), u(1,t) = gy (t). By defining the input-output mappings|[-] : # — C[0,T] andW[] : % —
C1[0,T] the inverse problem is reduced to the problem of their iiiviity. Hence, the main purpose of this study is to investigthe
distinguishability of the input-output mappingg[-] and ¥[-]. Moreover, the measured output ddt@) andh(t) can be determined
analytically by a series representation, which implies tha input-output mapping®|-] : % — C1[0,T] and¥[] : .# — C[0,T] can
be described explicitly.
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1 Introduction

, .. The main goal of this study is to investigate the
The inverse problem of unknown source function in a gistinguishability of the unknown source function via
linear inhomogeneous parabolic equation by using ovefnpyt-output mappings in a one dimensional time
measured data has generated an increasing amount ghgtional inhomogeneous parabolic equation. We first
interest from engineers and scientist during the last feWgptain the unique solution of this problem using Fourier
decades. This kind of problems play a crucial role in method of separation of variables with respect to the
engineering, physics and applied mathematics. Th&jgenfunctions of a corresponding Sturm-Liouville
problem of recovering unknown source function in the gjgenvalue problem under certain conditiofi§][ As the
mathematical model of a physical phenomena ispext step, the noisy free measured output dita and
frequently encountered. Intensive study has been carrief|(t) are used to introduce the input-output mappings
out on this kind of problem, and various inverse problemsg|] - — C1[0,T] and¥[] : .# — CL[0,T] where.#
and many numerical methods developed, 11-17].  represents the set of admissible source functions. Finally
Fractional differential equations are generalizations ofye investigate the distinguishability of the unknown

ordinary and partial differential equations to an arbitrar gqyrce functiorr (t) via the above input-output mappings
fractional order. By linear time-fractional parabolic @[] andy[]

equation, we mean certain parabolic-like partial
differential equation governed by master equations
containing fractional derivatives in time. The research
areas of fractional differential equations range from the
theoretical to the applied aspects.
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Consider now the following initial boundary value if ®[r1] # @[rp] impliesryi(t) # ra(t) andW[r1] # W[ro]

problem: impliesry(t) # ro(t). This, in particular, means injectivity
of the inverse mapping®~* and 1. In this paper,
Dfu(xt) = (KX)u)x +r(t)F(xt), 0<a <1, measured output data of Neumann type at the boundaries
(x,t) € Qr, x =0 andx =1 are used respectively in the determination

of the distinguishability of the unknown functionit). In
addition, in the determination of this analytical resutis f
input-output data are obtained.

u(x,0) =g(x), 0<x<1,

u(0,t) = go(t), U(LL) = (), O<t<T,
1)
whereQr = {(xt) e R?: 0<x<1, 0<t<T} and
the fractional derivativ®{ u(x,t) is defined in the Caputo
senseDfu(x,t) = (I179U)(t), O0< a < 1,19 being the
Riemann-Liouville fractional integral

The paper is organized as follows. In section 2, an
analysis of the inverse problem with the single measured
output dataf(t) at the boundaryx = 0 is given. An
analysis of the inverse problem with the single measured
output datah(t) at the boundark = 1 is considered in

L ft—1)9-1f(r)dr, O<a<1 section 3. Numerical procedure is given in section 4.
(1H)(t) = { ?é{’) 0 Ca—o. Finally, some concluding remarks are given in the last
’ o section.

The left and right boundary value function(t) and
yn(t) belong toC[0, T]. The functions 0< cp < K(X) < €1
(agf)glg))satgfflotf;? following conditions: 2 An analysis of the inverse problem with
X) € ) i
(C2)g(x) € C?[0,1, 0(0) — Yo(0), g(1) = s (0). given measured datat (1)
Under these conditions, the initial boundary value . ) )
problem (1) has the unique solutioix,t) defined in the Consider now the inverse problem with one measured
domainQr = {(xt) € R2: 0<x<1, 0<t<T} which output dataf(t) at x = 0. In order to formulate the

1 5 solution of the parabolic problem (1) by using Fourier
k/lec!(r)ggvsert?t stgteisf:epsatcrﬁie: (quu)ago\r/l% |(r(1)|t|-|z-a]l gn%)( (boojal darymethoql.of the separation of variables, let us first introduce
conditions. The spacwl(o T] contains the functions an auxiliary function/(x,t) as follows:

f € C1(0,T] such thatf’(x) € L(0, T).

This kind of problems play a crucial role in engineering,
physics and applied mathematics since it is used
successfully to model complex phenomenian variou
fields such as fluid mechanics, viscoelasticity, physics
chemistry and engineering.

v(x,t) = u(xt) — (1—=x)¢o(t) — ga(t)x, x<[0,1],

Sby which we transform the problem (1) into a problem
with homogeneous boundary conditions. Hence the initial
boundary value problem (1) can be rewritten in terms of

Consider the inverse problem of determining thev(x’t) in the following form:

distinguishability of the unknown function(t) from the

Dirichlet type of measured output data at the boundaries| Pt VO6t) = VX ) = ((K(x) = D)v(%,t))x — XD g (t)
x=0andx = 1: — Dt Wo(t) -+ XD Yo (t) — K (X)go(t)
K(x)ya(t) +r(t)F(x.t),
@[] = K(X)Ux(X,t;M)|xc0, T € # CCHQr) v(x, 0> 904 — (1 =x)40(0) — ¢ (0)x,
L O<x<1,

Wir] = k(X)ux(X,t;r)|x=1, € CCHQr). v(0,t) =0, v(1,t) =0, O<t<T.
Then, the inverse problem with the measured output data _ _ o 2
f(t) andh(t) can be formulated as the following operator ~ The unique solution of the initial-boundary value
equations: problem can be represented in the following fort0]f

ofr]=f, feCX0,T] .
W[r]=h, heclo,T]. vx,t) =% <{(6),¢(8) > Eaa(—Ant?)gn(X)

n=1
These formulations reduce the inverse problem of o ;
determining unknown functiom(t) to the problem of +5 (/ S g (—Ans?) (< E(8,t —5), h(6) >
invertibility of the input-output mapping®[-] and ¥[]. &\ Jo ’
Hence this leads us to study the distinguishability of the
source function via the above input-output mappings. We + <r(t—9s)F(6,t—s),@(0) >)ds> ()
say that the mappings®[] : .# — C!0,T] and
W[]: # — C0,T] have the distinguishability property
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where
() =9(x) = (1 =x)¢o(0) — Y1(0)x,
& (x,t) = ((k(¥) — 1)vx(x,1))x — XD g (t) — Df' tho(t)
+ XD yo(t) — K (X)go(t) + K (¥ (0),

Moreover< {(60),@(0) >= foqu](e)z(e)de  Eap
being the generalized Mittag-Leffler function defined by

o z
Fea?= 2 Py

Assume thatm(x) is the solution of the following Sturm-
Liouville problem:

—@x(X) =A@(x), 0<x<1,
®0)=0, ¢(1)=0, 0<t<T,

The Neumann type of measured output data at thg2),

boundaryx = 0 in terms ofv(x,t) can be written in the
following form:

k(0)(w(0,t) + yn(t)) = f(t), te(0,T] (3)

In order to arrange the above solution, let us define the

followings:

z(t) =< (8),¢n(8) > Eq.a(—Ant?), (4)

Whit) = [ M a(—s) < (0.t~ 9.0(0) > ds
®

W)= [ $ Eaa(-Aef) <HE-IF(O1-9), (6)
@(60) > ds )

The solution in terms of,(t), wy(t) andy,(t) can then be
rewritten in the following form:

V) = 5 OB+ S OB+ S OB

Differentiating both sides of the above identity with
respect toc and substituting = 0 yields:

00

S Wa(t)g(0) + ilyn(t)%(o)-

n=1

w(0.t) = iznmqm(ow

Taking into account the over-measured ddt3 (vy(0,t) +

¢a(t) = £

is obtained, which implies thdt(t) can be determined
analytically. The right-hand side of identity (8) defines th
input-output mappings®[r] on the set of admissible
source function’”:

@[](t) = KO) <w1<t>+ > (00 + 5 w060
©
+ ilyn(t)q){](O)), vt € [0,T]. (10)

The following lemma implies the relation between the
source functionsry(t),ra(t) € # at x = 0 and the
corresponding outputf (t) := k(0)ux(0,t;rj), j =1,2.
Lemma 1.1. Let wui(xt) v(xt;ry) and
U2(X,t) = U(x,t;r2) be the solutions of the direct problem
corresponding to the admissible parameters
ri(t),ra(t) € 2. If fj(t) = k(0)(w(O,t;rj) + ¢u(t)),

j = 1,2, are the corresponding outputs. The outdus),

j = 1,2, satisfy the following series identity:

A1) =KO) (iAwn(t)quA(on iAyn(t)cpA(m) ,

for each t € (0,T] where Af(t) = fi(t) — fa(t),

Awn(t) = W}l(t) — W2(t), Ar(t) = ry(t) —rp(t) and
Aya(t) = Yal) — Ya() = JoS" Eaa(—Ans") <
[Ar(t—9)]F(t—9),@(6) > ds

Proof. By using identity (8), the measured output data
fi(t) == Kk(0)(w(0,t) + yu(t)), j = 1,2 can be written as
follows:

10 =K©) (cm(t) -3 AOAO + 3 WO
+ iyﬁ(twm),

fa(t) = k(0) <Lﬂ1(t) +

+ iyﬁ(t)%(@)

respectively. Hence the difference of these formulas
implies the desired result.

The lemma and the definitions enable us to reach the
following conclusion:

f(t) = k(0) (llfl(t) n i 20 d(0) + i Wa(),(0) Corollary 1.1. Let the conditions of Lemma 1.1
= =1 < ra(t) —ra(t), gn(x) >=0,
- vt € (0,T], vn = 0,1,.. holds, then
+n;yn(t)<ﬂé(0)>a fa(t) = f2§t),v]t €[0,T]
(8
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Proof.  Note that ri(t) # rat) implies ]
< ri(t) —ra(t), g(x) ># 0 and Ay,(t) # O, for some ]
ne .4. Hence by Lemma 1.1 we conclude that
fi(t) # fa(t) Vt € (0,T]. Moreover, it leads us to the

following important consequence that the input-output Ah(t) = k(1) (Z A (t) ¢h(1) + Z Ay,(t)(pﬁ,(l)) ’
mapping®|r] is distinguishable, i.ery (t) # ra(t) implies =1 =L
@[r] # Plra). for eacht € (0, T] whereAh(t) = hy(t) — hy(t), Awn(t) =
WA (t) —Wa(t), Ar(t) = rq(t) —ra(t).

) (1) — wA(t), Ar(t) = ra(t) - ra(t)
Theorem 1.1.Let conditions (C1),(C2) hold. Assume that Proof. By using identity (11), the measured output data
@[] : & — C0,T] is the input-output mapping defined hj(t) := k(1) (v(1,t) + ¢u(t)), j = 1,2 can be written as
by (9) and corresponding to the measured outpuffollows:
f(t) :==k(0)ux(0,t). In this case the mappin@|[r] has the

= 1,2, are the corresponding outputs. The outgw(s),
= 1,2, satisfy the following integral identity:

parametersr ., o e class OF AAMSSBE ) ) <w1<t) - 5 BORD+ 5 0w
D[rq] # P[ra] Vri,ro € A =ry(t) #ra(t). o
+ yln(t)%(l)>,
Proof. From the above explanations the proof of the n=1
theorem is clear. o0 o0
ha(t) = k(1) <w1<t> +3 ZO@1) + T WAO@h(D)
n=1 n=1
3 An analysis of the inverse problem with d
given measured datah(t) +n;yﬁ(t)%(1)>’

espectively. Sincek(t) = Z3(t) from the definition then

Consider now the inverse problem with one measurec{he difference of these formulas implies the desired result

output datah(t) at x = 1. Taking into account the
over-measured datgt) = k(1) (v (1,t) + @i (t))

® w Corollary 2.1. Let the conditions of Lemma 2.1. If in
h(t) = k(1) (wlm + 3 2D+ T wa()gh(D) addition
i e <ra(t) —r2(t), gh(X) >=0,¥n=0,1,...

+3 yn(t)%(1)> : holds, therhy (t) = hy(t), vt € (O, T].

(1) Proof. ~ Note that rqi(t) # rat) implies

is obtained which implies thali(t) can be determined = rl(}_ rﬁ(t)’(p“(xg >f 0 and gyln(t) # 0, folr zomte}] ‘
analytically. The right-hand side of identity (11) defines ne . Hence by Lemma c.1 Wwe conclude tha

the input-output mapping?[r] on the set of admissible Pll(lt) 7 hz.(t) Vtte EO’T]' Moreover,ﬂ;t tlete;]ds us tto tr;e i
source functions?': ollowing important consequence that the input-outpu

mapping®¥[r] is distinguishable, i.ery (t) # ro(t) implies
0 W[rl] 75 W[rz].
wIr(t) == k(1) <tﬂ1(t)+ > wt)eh(1) + len(t)%(l)

n=1 The lemma and the definitions given above enable us to
® reach the following conclusion: the input-output mapping
+ Z yn(t)#.(l)), vt € (0,T]. W{r]]is distinguishable, i.e;3(X) # r2(x) impliesW[r1] #
n=1 Wr,).

(12)  Theorem 2.1.Let conditions (C1),(C2) hold. Assume that
W[]:# — CY0,T] is the input-output mapping defined

The following lemma implies the relation between the py (12) and corresponding to the measured output
parameters ri(t),ro(t) € J# at x = 1 and the h(t):=k(1)ux(1,t). In this case the mappirg[r] has the
corresponding outputs(t) == k(1)ux(L,t;rj), j = 1,2. distinguishability property in the class of admissible
Lemma 2.1. Let woi(xt) = uv(xt;ry) and Parameters?,ie.,
Ua(x,t) = (X, t;r2) be the solutions of the direct problem ~ W[ri) # Wlr2] Vry,ra € A = ri(t) # ra(t).
(2), corresponding to the admissible parametersProof. From the above explanations the proof of the
ru(t),ra(t) € 2. If hi(t) = k(1)(w(1,t;rj) + yn(t)),  theoremis clear.
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4 Numerical procedure Then from (13)-(15) we obtain
' ; 1 i) i(s=1)
We use finite difference method to the problem (1). We 1 i F(J__ k+3) (U —u _
subdivide the intervald0,1] and [0,T] into M and N N =E R T1/2
subintervals of equal lengthé = & and 7 = [, © e CHNC (20)
respectively. We choose the implicit scheme, which is 1 ki+lui+l_ui k|“ I BTy
absolutely stable and has a first order accuracy in hoth h h h !
and 7, [7-9]. The implicit scheme of problem (1) for
a =1/2is as follows: wW=g (21)
1 Lr(j—k+3) (u-u™? i |
=5 Uzkrg) (4 i i w® = g (22)
V& (i—k)! ™/ (13)
1 wo-u - u® =gl s=012 .. (23)
h Kit1 h —k h +1'F
The system of equations (20)- (22) can be solved by
the Gauss elimination method aub‘ is determined. If
0_ 14 the difference of values between two iterations reaches the
U =0 (14) . ; -
prescribed tolerance, the iteration is stopped and we accep
. . the corresponding valuas(®, uiJ(S)(i =1,2...,Ny) asri,
up =g (15)  u/(i=1,2,..,Ny), on the §)-th time step, respectively. In
virtue of this iteration, we can move from levglo level
. . j+1
uy = ¢, (16)
where 1<i <M and 0< j < N are the indices for the Example 1Consider the following problem:
spatial and time steps respectively,
UJ _ (X4 t ) j _ I’(tj), gi _ g(Xi), Dtl/zu(x,t):(exux)ﬁr(t)[(5\/_\/_ nzte?‘> sinfx— mte‘cosmx|,  (24)
FJ — F(x,t), ¥ = wo(ty), ¢! = yn(tj),x =ih, tj = jT. u(x,0) =0, (25)
At thet = 0 level, adjustment should be made according u(0,t) =0, (26)
to the initial condition and the compatibility u(Lt) =0,
requirements. (@7)

Now, let us construct the predicting-correcting
mechanism. Firstly, if we use the measured output data is
u(1,t) = h(t) we obtain

and the measured output datdis) = — 3.
The exact solution of this problem {s(t),u(x,t)} =
{t?,t3sinmx} .
o) = Dt 2u(L,t) - (KLux(L,t)x an
F(LY) 5 Conclusion

The finite difference approximation oft) is

The aim of this study was to investigate the
distinguishability properties of the input-output mapgsn

{‘/"1 1 (HJ _kM%‘iﬂAl)] @[] : # — C[0,T] andW[]: # — CL0,T], which are
ri— _ (18) determined by the measured output dataxat 0 and
) ’ x = 1, respectively. In this study, we conclude that the
distinguishability of the input-output mappings hold
whereHi — Dl/zh(tj), j=0,1,....,N. which implies the injectivity of the inverse mappings !

In numerical computation, since the time step is very@d %", The measured output dafit) and ht) are
I take i@ — pi-1 GO _ -1 obtained analytically by a series representation, which
smatl, ~we  can laxe L U leads to the explicit form of the input-output mappings
1= 9’ L2, ""N’.' =1,2,..,M. At eachs-h iteration step @[] and¥[-]. This work advances our understanding of
we first determine/(® from the formula the use of the Fourier method of separation of variables
and the input-output mapping in the investigation of
inverse problems for fractional parabolic equations. The

: , i(9)_ (o . . ; :
[‘l’i—% <HJ — Kt Lhujsl)] author plans to consider various fractional inverse
pi(s) — . (19) problems in future studies, since the method discussed
) T has a wide range of applications.
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