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Abstract: This paper looks into the effectiveness of B-spline approximation algorithm in approximating the bicubic B-spline surface
from the set of scattered data points which are taken from thescanned 3D object in the form of point sets. Using the B-spline
approximation algorithm, the unknown B-spline control points are determined, followed by the reconstruction of the bicubic B-spline
surface. Using a set of neighbourhood of data points, a B-spline surface patch may be constructed, which can be pieced together to
form the final surface. Modification of the B-spline approximation algorithm is carried out before the reconstruction inorder to fit the
scattered data points closely. Here, the density of the datapoints is scaled down due to the sparseness of the points thatmay affect the
smoothness. The sample of scattered data points is chosen from a specific region in the point set model by usingk-nearest neighbour
search method. Furthermore, to fit the sample set of scattered data points accurately, they are reoriented in the normal direction. We
also observe the effect of noise in the reconstruction of bicubic B-spline surface. Experimental results demonstrate that the scattered
data points are better fitted after the modification of the algorithm and the accuracy of the approximated bicubic B-spline surface is
easily influenced by the presence of noise.
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1 Introduction

Surface fitting is known as surface approximation. This
concept is similar to the regression problem where the
model is the surface representation and the data are the
sampled points on the surface [1]. Generally, there are
few types of surface representation namely polygonal
mesh, implicit surface, parametric surface and
subdivision surface.

In the real world, surface is modelled from the large
amount of scattered data points instead of uniformly
distributed data points. The sources of scattered data
points can be obtained from measured values of physical
quantities, experimental results and computational values
which are widely found in scientific and engineering
applications [2]. Therefore, an efficient surface
reconstruction method is needed in order to best
approximate and hence to produce a smooth and accurate
3D surface from a set of scattered data points. However,
the approximation for 3D scattered data points is not an
easy task due to the amount of data points as well as its
irregularity in distribution.

In the context of surface reconstruction, the data are
usually obtained from 3D scanners in the form of point
clouds. As there are many different approaches in

recovering these point sets, our paper is focusing in a
local area of the point sets whereas we recover the surface
in patches. Using the similar approach in [3], we find a
neighbourhood of points and construct a surface locally,
and in the end combine the information to reform a better
estimation of the whole surface.

[4] mentioned that the most frequently-used
approximation methods are interpolation by spline,
interpolation by radial basis function and the least square
approximation. According to [5], tensor product of
B-splines surfaces is widely used to approximately
compare with the other types of approximation because of
its advantages inherent in working with tensor products
such as to provide better continuity and smoothness when
involving with large data point set. A B-spline surface
consists of continuous surface patches that continuously
connect at their boundary and have continuous higher
order derivatives. For an example, a cubic B-spline hasC2

parametric continuity which means that it is not only
continuous on the knot intervals but also has continuity in
tangents and curvatures. AC2 surface has stronger
continuity than continuity of curvature asC2 ensuresG2.
If it only had continuity of curvature it would beG2. The
attractive and important properties of B-spline which
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make it stand as the most efficient surface representation
such as [6]:

i.It possesses a high degree of continuity which is
important for computing the surface intrinsic
properties such as curvature.

ii.If subjected to an affine transformation, it is still a
B-spline whose control points are obtained by
subjecting the original B-spline control points to that
affine transformation. Examples of affine
transformation are translation, rotation, scaling,
reflection and shearing.

iii.Due to the local support of the basis B-spline function,
the shape can be controlled locally.
This paper focuses on the usage of B-spline

approximation on a neighbourhood of points obtained
from a 3D scanned data. The B-spline approximation
technique is adopted from [2] as the computational time is
low even if the number of scattered data points is large.
According to [2], for 5,000 data points, the control points
can be obtained in 0.15 seconds on a Sun SPARC10. With
the current more up-to-date technology, the processing
time obviously will speed up. As far as we are concerned,
there is not much literature about the usage of B-spline
approximation to approximate the surface from a set of
scattered data points in a local setting, and also the effects
of the noisy data on the B-spline surface, hence we will
look into both issues in this paper. The mathematical
background of B-spline, B-spline approximation
algorithm and thek-nearest neighbor search method will
be introduced briefly. The methodology to approximate
the bicubic B-spline surface by using the modified
B-spline approximation algorithm and to observe the
effects of noisy data on approximated B-spline surface
will be described in Section 2. Section 3 shows the
graphical results of approximated bicubic B-spline
surface using modified B-spline approximation algorithm
and affected bicubic B-spline surface by different noise
levels. Then, in Section 4, we will discuss the
approximated bicubic B-spline surfaces and the relation
between noise level and accuracy based on visual
inspection by using the results obtained from Section 3
and finally a conclusion is given in Section 5.

2 Materials and Methods

In this paper, a set of scattered data points together with
added noisy data are taken as an input and to produce
tensor product B-spline surfaces as output. To fit a set of
3D data points by using B-spline surface, one can
interpolate B-spline to pass through all the data points but
this method will be sensitive to noise and the data may be
overfitting. Therefore, one can use approximation method
to produce a smoothing effect. In determining the set of
control points for this paper, we will use the concept of
interpolation and approximation. Before describing this
algorithm, some mathematical background of B-spline
surface will be provided as follows.

2.1 B-spline Surface

The rectangular B-spline surface patchf (u,v) is
constructed by applying tensor product technique to the
B-spline curve which is described as a linear combination
of B-spline basis functions in two topological parameteru
and v [6]. Furthermore, it is defined by a topological
rectangular set of control pointsPi, j for 0 ≤ i ≤ m,
0 ≤ j ≤ n and the two knot vectors:
U = (u0,u1,u2, . . . ,um+k) and V = (v0,v1,v2, . . . ,vn+l ).
B-spline surface patch is given by

f (u,v) =
m

∑
i=0

n

∑
j=0

Pi, jN
k
i (u)N

l
j (v) (1)

whereNk
i (u) andNl

j(v) are the B-spline basis functions of
orderk and l respectively. The parameteru andv are the
global parameter.

2.2 B-spline Approximation

For the discussion of B-spline approximation, we follow
the literature from [2]. The materials are repeated here in
detail as we want the completeness of understanding for
our paper. LetΦ be a uniform tensor product grid
overlaid on a rectangular domainΩ . Assume
Ω = {(x,y) | 0≤ x< m, 0≤ y< n}, wherem,n∈ Z

+, be
a rectangular domain in thexy-plane. Consider a set of
scattered points, denoted asP = {(xc,yc,zc)} in
3-dimensional plane, where(xc,yc) ∈ Ω and Φ is an
(m+ 3)× (n+ 3) lattice which spans the integer grid in
Ω . To approximate the scattered dataP, an approximation
function f is formulated as a uniform bicubic B-spline
function, which is defined by a control latticeΦ overlaid
on domainΩ . To have a better picture, see Figure1.

Fig. 1: DomainΩ and LatticeΦ

Let φi j be the value of thei j -th control point on lattice
Φ, located at the position(i, j) for i = −1,0,1, . . . ,m+1
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and j =−1,0,1, . . . ,n+1. Then, the function value off at
a position(x,y) ∈ Ω is as follows:

f (x,y) =
3

∑
k=0

3

∑
l=0

N4
k (s)N

4
l (t)φ(i+k)( j+l) (2)

where i = ⌊x⌋ − 1, j = ⌊y⌋ − 1, s = x − ⌊x⌋ and
t = y − ⌊y⌋. The parameters and t are the global
parameter. Note that⌊x⌋ is known as floor function and
can be defined as⌊x⌋=max{n∈ Z|n ≤ x}. N4

k andN4
l are

the uniformC2 continuous cubic (degree 3)B-spline basis
functions defined as:

N4
i (t) =























(1−t)3

6 , i = 0
3t3−6t2+4

6 , i = 1
(−3t3−3t2+3t+1)

6 , i = 2
t3
6 , i = 3

where t ∈ [0,1). These uniform cubic B-spline basis
functions serve to weigh the contribution of each control
point to f (x,y) based on its distance to(x,y). Therefore,
the problem is reduced to determine the control points in
latticeΦ that will be the best approximation for the set of
the scattered pointsP. Let consider a data point(xc,yc,zc)
in P and from Equation (2), we know thatf (xc,yc) = zc is
related to the sixteen control points in the neighborhood
of (xc,yc). To illustrate this method easily and without
loss of generality, assume that 1≤ xc,yc < 2 and thus
i = j = 0. Therefore, Equation (2) at (xc,yc) can be
simplified as:

zc = f (xc,yc) =
3

∑
k=0

3

∑
l=0

N4
k (s)N

4
l (t)φkl

wheres= xc−1, t = yc−1. In order to determineφkl , the
least square sense solution is necessary to minimize the
square sum of the 16 control points that is∑3

k=0 ∑3
l=0 φ2

kl .
The method to derive an explicit formula for the sixteen
control pointsφkl can be referred to [7]. Here, we only
provide a unique solution which is obtained from the
derivation as the following:

φkl =
N4

k (s)N
4
l (t)zc

∑3
a=0 ∑3

b=0[N
4
a(s)N

4
b(t)]

2
(3)

where(k, l) = (0,0),(0,1), . . . ,(3,3). Next, for each data
points (xc,yc,zc) ∈ P, equation (3) can be used to
determine the set of sixteen control points in its
neighborhood. These neighborhoods will overlap if the
data points are close to each other.

Therefore, they may assign different values to several
shared control points. For each data point,(xc,yc,zc) ∈ P,
Equation (3) gives a different value. For instance, let
consider φc for φi j . The equation ofφc is shown as
follows:

φc =
wczc

∑3
a=0 ∑3

b=0[N
4
a(s)N

4
b(t)]

2

where wc = N4
k (s)N

4
l (t), k = (i + 1) − ⌊xc⌋,

l = ( j + 1)− ⌊yc⌋, s = xc − ⌊xc⌋, t = yc − ⌊yc⌋. φi j is
chosen to minimize the error,e(φi j ) = ∑c(wcφi j −wcφc)

2.
Differentiatinge(φi j ) with respect toφi j gives

φi j =
∑c w2

cφc

∑cw2
c

(4)

If φi j has contribution from several data points, then
Equation (4) provides a least square solution in order to
minimise local approximation error. But, ifφi j has
contribution from a data point only, then the computation
is reduced to equation (3) and leaves no approximation
error. Furthermore, ifφi j does not have contributions from
any data points, thenφi j can be assigned as zero value or
the average of coordinate-zc’s. To accelerate the
computation, numerator and denominator of equation (4)
can be accumulated for each control point by considering
each data point in turn. The value of control point is
obtained by division provided that the denominator is not
zero. Null denominator indicates there are no any data
points. The pseudocode for the B-spline approximation
algorithm can be obtained in [2]. In our study, we use the
similar approach as [2], that is we build up 4× 4 control
net and estimate the control points from the neighboring
data points. In addition, there is no such multilevel step as
we directly apply the B-spline approximation method.
This is because the algorithm is simple and easy to
implement. We study and modify this algorithm so that
we can still achieve the similar result without undergoing
the multilevel.

2.3 k-Nearest Neighbours Algorithm

The k-nearest neighbours (kNN) algorithm is one of the
simplest, yet very accurate classification method [8]. It
was a type of machine learning algorithm that was first
mentioned and described in the early 1950s but only
attracted the attention in 1960s as computing power
started available [9]. Here thek is a positive integer. This
algorithm searches for the points that are relatively close
to a considered point from a set of points in
n-dimensional space. Metric to measure the closeness is
the Euclidean distance where the Euclidean distance
between two n−dimensional points,
X = (x1,x2,x3, . . . ,xn) andY = (y1,y2,y3, . . . ,yn) is given
as follows:

d(X,Y) =

√

n

∑
i=1

(xi − yi)2

Since k is a user-defined value, one has to choose it
carefully. If the k value is too small, noise will be
modelled whereas for largek, the neighbours may include
many points from other classes. This algorithm is very
simple and there is no training involved but it is costly as
the same searching procedure is repeated for every single
points in a point set.
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2.4 Modified B-spline Approximation Algorithm

In this section, we modified the approach by [2]. As in
their paper, their sample is scattered but not into the
context of surface reconstruction. We claim that our
approach in this paper is to reconstruct a region from a
3D point sets from a real object which contains real life
surface property with its feature, curve and sharp edges.
The existing B-spline approximation algorithm is
undergoing a modification in order to minimise the
distance between the scattered data points and the
approximated bicubic B-spline surface. The distance is
the problem in the existing algorithm because we observe
that the constructed B-spline surface does not fit closely
to the data points. The sample of scattered data points is
chosen from a specific region in the point set model by
using k-nearest neighbour search method. Before
constructing the surface patch, we determine the control
points,φi j for the region where all the sample scattered
points distributed. This will eliminate theφi j that does not
have any contributions from data points. If we set the
control net with dimensionm× n, then when particular
φi j in the control net does not have any contributions from
data points, thez−coordinate ofφi j will be assigned as
zero by default. However, we will assign another
numerical for it and it will be discussed in the coming
Algorithm 2.

The control points near with the border of surface
patch will have smallerz-coordinate value ofφi j or height
of control point if there is less contribution from the data
points. By default, thez-coordinate of control points are
assigned with zero value if there is no contribution from
data points. This normally can be observed near with the
border of surface patch, therefore produce a faulty result
as the surface move towards the zero. To solve this border
problem, the height of the particular control points which
is lower than the average value of all coordinatezc, is
assigned to a value of its nearest neighbouring point
where that particular control point acts as the centre of the
neighbourhood. Note that the value of the nearest
neighbouring point is from the sample scattered data
points.

Next, when the set of scattered data points is
significantly below or above the B-spline surface patch,
then adjustment of the control points is performed in
order to fit the scattered data points better. In order to
carry out the adjustment, the algorithm 1 is needed to
calculate the average distance, which is a problem from
the existing B-spline approximation algorithm. The
algorithm is shown as follows:

Algorithm 1
Input: Scattered data pointsP= {(xc,yc,zc)}
Output: Average distance,k

Step 1:Compute the set of unadjusted control points,
φi j = {(qx,qy,qz)} for the centre of scattered points
region by using B-spline approximation algorithm.

Step 2:Generate function,f (x,y) using linear interpolation
from P= {(xc,yc,zc)}.

Step 3:Generaten random points,Pr = {(xr ,yr ,zr)} from
bicubic B-spline function,P(u,v) based onφi j . (n is
an user-defined value and must be large enough)

Step 4:Computez= f (xr ,yr) by substituting value ofxr and
yr .

Step 5:Computed = zr −zand then the average distance,k=
d/n.

Before constructing bicubic B-spline surface patch,
the position of the sample scattered data points,P needs
to be reoriented in order to have a better surface
approximation in order to increase the accuracy of the
fitting. Principal component analysis (PCA) is a statistical
procedure, which is used to reorient the data points to the
orthogonal direction. Therefore, this will increase the
accuracy of the fitting as mentioned. In this research, the
normal vector ofP is estimated by the PCA. A normal
vector can be obtained by determining the eigenvector for
the smallest eigenvalue, which is derived from a
covariance matrix. We follow the literature from [10].
Given a neighbourhood of 3D points{p0, p1, p2, . . . , pn}
and let sayp0 is the centre of the neighbourhood. A 3×3
covariance matrix,bi j where i, j = 1,2,3 is constructed
such that:

bi j =
n

∑
k=1

(pki − p0i)(pkj − p0 j ) (5)

wherepk = (px, py, pz) is the neighboring point, andi in
pki is the index forpk. For further explanation,pk1 is the
x-coordinate ofpk, pk2 is they-coordinate ofpk, andpk3
is thez-coordinate ofpk. The same explanation is applied
for pkj , p0i , andp0 j . Let a≤ b≤ c be the three eigenvalue
of the matrix in Equation (5), the eigenvector
corresponding to the smallest eigenvalue is the normal
vector atp0. Let say, the eigenvectors for the eigenvalues
a, b and c are (n1,n2,n3), (y1,y2,y3) and (x1,x2,x3)
respectively. These eigenvectors are written in matrix
form below:

A =





x1 y1 n1
x2 y2 n2
x3 y3 n3





In fact, matrixA is an orthogonal matrix because it is a
square matrix and satisfying the condition such that
A−1 = AT . The rows and columns of an orthogonal
matrix are an orthonormal basis which mean that each
row and column have length one and are mutually
perpendicular. Next, we would like to map the
orthornomal system(X′,Y′,N′) which is centered atp0 to
Cartesian coordinate system(X,Y,Z) which is centered
at origin (0,0,0). In order to do so, a transformation
matrixM is needed for the orientation part as described in
[11]. Let X = (1,0,0), Y = (0,1,0), Z = (0,0,1),
X′ = (x1,x2,x3), Y′ = (y1,y2,y3) and N′ = (n1,n2,n3).
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The rotation matrixM:

M =







x1 x2 x3 0
y1 y2 y3 0
n1 n2 n3 0
0 0 0 1







and the inverse transformation is the transpose:

M−1 = MT =







x1 y1 n1 0
x2 y2 n2 0
x3 y3 n3 0
0 0 0 1







If wish to transformX′Y′N′ which is centered atp0 to
XYZ, we can obtainp′i such that

p′i = M







pix − p0x

piy − p0y

piz − p0z

1






(6)

wherei = 0,1,2, . . . ,n
To orientate back fromXYZ to X′Y′N′ which is centered
at p0, which is given by

pi = MT









p′ix
p′iy
p′iz
1









+







p0x

p0y

p0z

0






(7)

With all this materials, we can now describe the steps
to construct the bicubic B-spline surface patch from the
sample of scattered data points. The steps are described as
algorithm as follows:

Algorithm 2
Input: Point set model
Output: Bicubic B-spline surface patch

Step 1:Translate the point set model to the octant where
coordinatex and coordinatey have positive values.
This is because the modified B-spline approximation
algorithm can only be used whenx− and
y−coordinate of data points are in positive value,
whereas thez−coordinate can be positive or negative.

Step 2:Usek-nearest neighbour search method to select a set
of sample scattered data points,P from point set
model.

Step 3:Ensure the height of coordinatezc of P are
approximately minimumt units by reducing or
increasing the coordinatezc. The t value here is
depending on the sparseness of point set. In this
research, we chooset = 5. The significance fort units
is to avoid the irregular and bumpy surface and thus
improve the accuracy of the surface patch fitting using
this modified algorithm.

Step 4:Translate the positionP so that centre ofP is moved to
origin (0,0,0).

Step 5:Estimate the normal vector,N of P at the centre of
neighbourhood,p0 by using PCA method.

Step 6:Reorient the position ofP based on Equation (6).
Further rotation is needed if the undesired position
occurs. The undesired position is occurred because
PCA sometimes does not reorients the data points
towards the orthogonal direction. After the
reorientation, translate backP to the original position.

Step 7:The density ofP is scaled down by a value which is
based on the sparseness ofP. The data points are
sparse and therefore scaling down them to make them
compact. This step also wants to prevent the irregular
and bumpy surface and thus leads to a better
approximation.

Step 8:Proceed to Algorithm 1 to findk.
Step 9:Modify the value ofzc in Equation (3) such that

z′c = zc−
k
a. (a is an user-defined value) This step is to

make a distinct different from the existing B-spline
approximation algorithm. The existing algorithm
cannot fit the surface closely, and therefore Algorithm
1 comes to solve the distance problem as mentioned
earlier.

Step 10:Compute the set of control points,φi j = {(qx,qy,qz)}
for the scattered points region by using B-spline
approximation algorithm. If the coordinateqz of φi j is
less than or equal to the averagezc value ofP, replace
the coordinateqz of φi j with the coordinatezc value of
P by considering 1-nearest neighbour search. Here,
the significance of averagezc value is to acts as a
marker.

Step 11:Rescale the set of control points andP and then
reorient to the original position by taking the dot
product ofMT .

Step 12:Bicubic B-spline surface patch is constructed based on
the set of control points that are obtained from Step 11.

2.5 Effects of Noisy Data on B-spline Surface
Approximation

Now, in this section, we are going to observe the effect of
noisy data with different levels on the sensitivity of
B-spline surface approximation. The presence of noise
will contribute to the bad fitting of the surface. Moreover,
the accuracy of the 3D model will be reduced during the
surface reconstruction due to the set of data points being
contaminated by the noise. Although many of the surface
reconstruction procedures assume that the distribution of
the noise is Gaussian or normal distribution, that is not
the exactly the case [12].

In order to carry out this experiment, we assume that
the sets of sample scattered data points,P that are used
earlier are noise free. For the experimental purpose,
original data points are altered that is twenty noisy data
are added randomly in positive and negative direction toP
and then we construct the bicubic B-spline surface using
steps in Algorithm 2. The noise level to be considered is
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0.3, 0.5, and 0.7. Then, the effect of noisy data is
inspected visually by making a comparison between the
noise free and the added noise surface.

3 Results

We test our model with Stanford bunny as shown in the
coming figures. We choose a random region to test how
our algorithm perform for the data points obtained in the
context of surface reconstruction.

Here, we will show the results obtained from
Algorithm 2. The scattered data points are denoted as
green dots whereas the control points are denoted as red
dots. To select the sample of scattered points,P from
Bunny point set model, we setk = 100, that is
100-nearest neighbour. The two selected regions are red
in colour, which are shown in Fig.2.

Fig. 2: The two selected red sample regions from the Stanford
bunny mesh model

The following figures show the two different sets ofP
of our result.
(i) A bicubic B-spline surface patch 1

Fig. 3: The selected red sample region is zoomed

45

50

x

5

10

15

y

6

7

8

9

z

Fig. 4: Set 1: (From top to bottom) Original position ofP before
reorientation, position ofP after reorientation, a bicubic B-spline
surface patch is constructed afterP undergoes reorientation, and
a bicubic B-spline surface is reoriented to original position of P.

(ii) A bicubic B-spline surface patch 2

Fig. 5: The selected red sample region is zoomed
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Fig. 6: Set 2: (From top to bottom) Original position ofP before
reorientation, position ofP after reorientation, a bicubic B-spline
surface patch is constructed afterP undergoes reorientation, and
a bicubic B-spline surface is reoriented to original position ofP.

After looking at the surface approximation of the two
different samples of scattered points,P, we will observe
the effect of noisy data towardsP which is assumed to be
smooth. The same two samples of scattered points are
used for the following experiments. Twenty noise data are
added randomly in positive and negative direction inP.
Observations for bicubic B-spline surface are as follows:

(i)Effect of noisy data towards bicubic B-spline surface
patch 1

Fig. 7: Set 1: Reconstruction with no-noise, with 0.3, 0.5 and 0.7
noise level.

(ii)Effect of noisy data towards bicubic B-spline surface
patch 2
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Fig. 8: Set 2: Reconstruction with no-noise, with 0.3, 0.5 and 0.7
noise level.

4 Discussion

Our bunny point set model is translated to the octant
which has positive coordinatex andy, This is because we
want to ensure our modified B-spline approximation
algorithm can be applied in determining the set of control
points. Depending on the sparseness of the scattered data
points, its density can be scaled up or down in order to
have a better approximation and hence to produce a
smooth bicubic B-spline surface. In our experiment, the
first and the second sample scattered data points are

scaled down by two. Without undergoing the scaling
procedure, the obtained approximated surface will be
irregular and bumpy. Adjustment of the coordinatezc of P
to approximately minimum five units in the early step is
done because of the higherzc values ofP, which will also
contribute to the irregular and bumpy surface. However,
before the construction of surface patch, the density of
data points and the height ofzc values are reverted to its
original values.

In the step 3 of Algorithm 1, the valuen that is used
for our study is 980100 points. Meanwhile, in the step 9
of Algorithm 2, we have mentioned thata is a
user-defined value, and therefore thea value for bicubic
B-spline surface patch 1 and 2 is 1.3 and 1.1 respectively.
We believe that the value ofa is related to the scaling
factor and can be adjusted based on the visual inspection.
Besides, we test the algorithm in a much more
complicated area such as the bunny ear region. We
acknowledge that our method is unable to recover this
region nicely due to its complexity. However, this is a
common issue when dealing with feature preservation by
using surface approximation method.

The two bicubic B-spline surface patches are
well-fitted with the modified B-spline approximation
algorithm after resolving the distance issue in the existing
algorithm as shown in Fig.4 and Fig. 6. For the
comparison purpose, we zoom in the selected region from
the Stanford bunny model as shown in Fig.3 and Fig.5.
in between the constructed bicubic B-spline surface and
the original surface. We can observe that the constructed
surfaces do a good approximation of the shape of the
original surface. Throughout our experiment, B-spline
surface with degree three is the main focus because it is
not only continuous on knot intervals but also has
continuity in tangent and curvature.

The effect of noisy data towards the accuracy of
surface fitting is inspected visually. Here, we choose the
noise level at 0.3, 0.5 and 0.7 for the experimental
purpose. One is able to observe the effect of noise for the
bicubic B-spline surface patch 1 via careful visual
inspection because of the uneven distribution ofP. It
shows a slight change of the surface border when noise
level is increased by observing Fig.7. However, noise
effect is very obvious when the noise level is increased
for bicubic B-spline surface patch 2 as shown in Fig.8
due to the set ofP being evenly distributed. Therefore, the
accuracy of the approximated bicubic B-spline surfaces is
quite sensitive to the presence of noise even at a low level
of noise. For our experiment purpose, noise level at 0.3 is
a good indication of the result as it is neither too low nor
too high. Noise level at 0.5 and 0.7 can be considered
quite noisy and therefore the bad fitting of the surface is
expected, not due to the fact that B-spline surface fails to
estimate but rather than the case of bad data points given.
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5 Conclusion

This paper shows the bicubic B-spline surface
approximation by using modified B-spline approximation
algorithm. From the observation, the modified algorithm
resolves the distance issue in the existing algorithm and
fits the scattered data points efficiently. For the effects of
noisy data at different noise levels towards the bicubic
B-spline surface approximation, the experimental results
show that the accuracy and the smoothness of B-spline
surfaces are easily influenced by the presence of noise.
Since bicubic B-spline surfaces are used most commonly
in computer-aided geometric design, denoising process is
important as the pre-process of the surface reconstruction.
We note that our observation is done visually which may
be prone to a subjective opinion. For future research, one
can use an objective inspection such as statistical method
to assess the accuracy of the approximated B-spline
surface in the presence of noisy data.
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