
Appl. Math. Inf. Sci.10, No. 1, 267-271 (2016) 267

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100127

Akaike Information Criterion and Fourth-Order Kernel
Method for Line Transect Sampling (LTS)

Ali Algarni 1,∗ and Ahmad Almutlg 2

1 Statistics Department, Faculty of Science, King AbdulazizUniversity, Jeddah, Saudi Arabia
2 Mathematics Department, Faculty of Science, Qassim University, Qassim, Saudi Arabia

Received: 7 Mar. 2015, Revised: 20 May 2015, Accepted: 12 Aug. 2015
Published online: 1 Jan. 2016

Abstract: Parametric and noparametric approaches were used to fit linetransect data. Different parametric detection functions are
suggested to compute the smoothing parameter of the nonparametric fourth-order kernel estimator. Among the differentcandidate
parametric detection functions, the researcher suggests to use Akaike Information Criterion (AIC) to select the most appropriate one of
them to fit line transect data. More specifically, four different parametric models are considered in this research. Where as two models
were taken to satisfy the shoulder condition assumption, the other two do not. Once the appropriate model is determined,it can be used
to select the smoothing parameter of the nonparametric fourth-order kernel estimator. As the researcher expected, this technique leads
to improve the performances of the fourth-order kernel estimator. For a wide range of target densities, a simulation study is performed
to study the properties of the proposed estimators which show the superiority of the resulting proposed fourth-order kernel estimator
over the classical kernel estimator in most considered cases.

Keywords: Akaike information criterion, Maximum likelihood estimation, Fourth-order kernel estimator, Exponential model, Half-
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1 Introduction

The smoothing parameterh of the fourth-order kernel
estimator plays a vital role in its performance. Its
performance becomes acceptable compared to the
classical kernel estimator when the method of
determining the smoothing parameter is chosen correctly.
In other words, there is a scope to improve the
performances of the fourth-order kernel estimator by
considering a suitable parametric method to determineh.
mor survey given in Chen [1], Cline and Hart [2], Eidous
[3], Eidous and bAl-Masri [4], Cowling and Hall [5],
Eidous [6], Eidous and Alshakhatreh [7], Gasser and
Muller [8], Gasser et al. [9], Eidous [10], Mack and
Quang [11], Wand and Jones [12], Zhang and
Karunamuni [13], Eidous [14].

The four parametric models will be again considered
in this paper. However, choosing a suitable parametric
model for the data is not dependent on guesswork, instead
the (AIC) will be used for this purpose in this paper. To
investigate the statistical properties of the resultant

estimator, a simulation study is performed lately in
research

Akaike Information Criterion: Burnham and
Anderson [16] illustrated that the (AIC) is a quantitative
method to select a suitable model for data. Information
theory and an extension of the maximum likelihood
principle using AIC given in Akaike [17]. They defined
the AIC as:

AIC =−2logL+2q, (1)

where logL is the natural logarithm of the likelihood
function evaluated at the MLE of the model parameters
and q is the number of parameters in the model. In this
paper, the formulas for AIC will be computed for four
parametric models. These parametric models are:

Exponential model

f (x) =
1
θ

exp

(

−x
θ

)

, x > 0, (2)

Half-normal model

f (x) =
1

√
2Πσ2

exp

(

−x2

2σ2

)

, x > 0, (3)
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Weighted Exponential model

f (x) =
2θ

3log3
exp(−θx)(2− exp(−θx)) , x > 0, (4)

Reversed Logistic model

2θexp(−θx)
3log3(1+2exp(−θx))

, x > 0, (5)

Also, we derived the smoothing parameter of the fourth-
order kernel estimator based on each model separately.

If X1, X2, . . . , Xn is a random sample of sizen
representing the perpendicular distances and following
one of the above pdf modelsf (x) The corresponding
smoothing parameters for each model are,

hexp∼= 1.4408(θ1)(n
1
3 ), where(θ̂1) = x (6)

hhalf
∼= 1.0066(σ)(n

1
9 ),whereσ̂ =

√

∑n
i=1 x2

i

n
(7)

hweight
∼= 0.8689(

1
θ3

)(n
1
7 )),whereθ̂3 =

7
6x

(8)

hRever∼= 3.5400(
1
θ4

)(n
1
3 ),whereθ̂4 =

1.3078
x

(9)

In the following section, we derived the AIC that
corresponds to each model.

2 Akaike Information Criterion for Some
Parametric Models

For local likelihood density estimation in line transect
sampling see Barabesi [18] and Barabesi [19] Let X1, X2,
. . . , Xn be a random sample of sizen perpendicular
distances following the exponential model. The likelihood
function is

L(θ1) =

(

1
θ1

)n

exp

(

−1
θ1

n

∑
i=1

xi

)

(10)

By taking the natural logarithm of both sides, we obtain

logL(θ1) =
−1
θ1

n

∑
i=1

xi − n logθ1 (11)

Multiply both sides of the last equation by ( -2 ) we obtain

−2logL(θ1) =
2
θ1

n

∑
i=1

xi +2n logθ1 (12)

Since there is one parameter that needs to be estimated,
q=1. Therefore, the AIC for the exponential model is

AICexp=
2
θ̂1

∑n
i=1 xi +2n logθ̂1+2

= 2n(1+ logx)+2.
(13)

Note thatxis the ML estimator forθ1.
In the same way we can derive the AIC for the other

three models, which are given below:
* For the Half-normal model, the likelihood function

and the natural logarithm of the likelihood function areσ̂

L
(

σ2)=

(

1
√

2Πσ2

)n

exp

(

−1
2σ2

n

∑
i=1

x2
i

)

. (14)

logL
(

σ2)=−n log
√

2Π − n logσ −
1

2σ2

n

∑
i=1

x2
i (15)

This gives the AIC by

AIChalf =−2n log2+ n log
[

2πσ̂2
]

+ n+2

=−2n log2+ n log
[

2π ∑n
i=1 x2

i
n

]

+ n+2.
(16)

where∑n
i=1x2

i
n is the ML estimator ofσ2.

* For the weighted exponential model, the likelihood
function and the natural logarithm of the likelihood
function are

L(θ3) =

(

2θ3

3

)n

exp

(

−θ3

n

∑
i=1

xi

)

n

∏
i=1

(2−exp(−θ3x)) ,

(17)

logL(θ3) = n log
(

2θ3
3

)

−θ3 ∑n
i=1 xi

+ log

[

n
∏
i=1

(2−exp(−θ3x))

]

,
(18)

The AIC is

AICweight=−2n log
(

2θ̂3
3

)

+2nθ̂3

−2∑n
i=1 log

(

2−exp
(

−θ̂3x
))

+2.
(19)

whereθ̂3 is the ML estimator ofθ3, which does not exist in
closed form and a numerical method such as the Newton-
Raphson method is needed to obtain the value ofθ3.

* Finally, for the reversed logistic model, the
likelihood function and the natural logarithm of the
likelihood function are

L(θ4) =

(

2θ4

log3

)n exp(−θ4 ∑n
i=1 xi)

n
∏
i=1

(1+2exp(−θ4x))
(20)

logL(θ4) = n log
(

2θ4
log3

)

−θ4∑n
i=1 xi

=− log

[

n
∏
i=1

(1+2exp(−θ4x))

]

.
(21)

The AIC is

AICRevr=−2n log
(

2θ̂4
)

+2n log(3)+2nθ̂4x
−2∑n

i=1 log
(

1+2exp
(

−θ̂4x
))

+2.
(22)
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whereθ̂4 is the ML estimator ofθ4. Again, a closed form
for the value ofθ̂4 does not exist in closed form and a
numerical method is needed to obtain it.

3 Simulation Study Design

we performed a simulation study to investigate the
properties of the proposed estimator. This estimator is the
fourth-order kernel whose parameter h can be computed
by considering any reasonable parametric model. One of
the four parametric models mentioned in Section (3.2) of
this chapter is now used to compute h. The AIC is a
criterion for choosing the most appropriate model based
on the data. The resulting estimator is denoted byf̂ (0).
The proposed estimator̂f (0) is computed as follows:

1.Simulate then perpendicular distancesX1, X2, . . . , Xn
from one of the target models mentioned in Section
(2.6).

2.For then simulated perpendicular distances, compute
the value of h that corresponds to the exponential,
half-normal, weighted exponential, and reversed
logistic models. The values of these smoothing
parameters are denoted byhexp, hhal f , hweight , and
hRever, respectively.

3.Compute the AIC for the exponential, half-normal,
weighted exponential, and reversed logistic models.

4.Select the model with the smallest AIC as a reference
model to compute the value of h based on the selected
model. The formula for computing h for each model
are given in Section (3.2).

5.Compute the value of the fourth-order kernel estimator
based on the selected h of step (4) and based on the
perpendicular distancesX1, X2, . . . ,Xn.

The data are simulated from the 16 models that were
given in Section (2.6) with the same values ofn, β , andϖ .
For a simple comparison, the results of a classical kernel
estimatorf̂k(0) are also presented. The relative bias (RB),
relative mean error (RMX), and the efficiency (EFF) of
f ∗k (0) with respect tof̂k(0) are given in Tables (3.1-3.4).
Note that,

EFF=
MSE( f̂k(0))
MSE( f ∗k (0))

(23)

as illustrated in Section (2).

4 Results

Depending on the simulation results of Tables (3.1-3.4),
several conclusions can be drawn by inspecting the results
with regard to , , and EFF.

1.It is obvious that the RBs that are associated with the
proposed estimatorsf ∗k (0) are smaller than (in their
magnitude) the corresponding RBs that are associated
with the classical kernel estimatorf̂k(0).

2.The RMEs for the two estimatorsf ∗k (0) and f̂k(0)
decrease when the sample size increases. This is a
strong indication of the consistency of these
estimators.

3.Compared tof ∗k (0) , the performance of the classical
kernel estimator seems to be reasonable for the EP
model withβ=2 at which the smoothing parameter of
f̂k(0) is computed under this model (i.e., under the
half- normal model). For the two cases, the HR model
with (β ,ω)=(2.5,10) and for the BE model with large
value of β , the classical kernel estimator performs
better thanf ∗k (0). However, the efficiencies in these
cases are around 1, which indicates that the
performances of the two estimators are similar.

4.With the exception of the three cases mentioned in (3),
the performance off ∗k (0) is better than that of̂fk(0).
In fact, out of the 16 target models, there are 12 cases
in which f ∗k (0) beatsf̂k(0).

5.In general, the performance of the fourth-order kernel
estimatorf ∗k (0) is very good for almost all considered
target models. In addition, for the cases in which
f̂k(0) seems to be better thanf ∗k (0), the gain of
efficiency is not significant compared with the large
efficiencies of f ∗k (0) over f̂k(0) in certain cases. For
example, the efficiency off ∗k (0) for the model HR
with (β ,ω ,n)=(1,35,200) is 4.086, which means that
the performance of̂fk(0) becomes the same as that of
f ∗k (0) for a sample size of approximately 4.086×200
∼=800.

6.Finally, we can say that Tables (3.1-3.4) demonstrate
clearly that there is a significant improvement when
applying the estimatorf ∗k (0) instead of the classical
kernel estimator̂fk(0).
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